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“Sapienza” Università di Roma – Rome, Italy

November 11, 2013

http://www.dis.uniroma1.it/~becchet/
http://www.uniroma1.it/


Set similarity
estimation

L. Becchetti



Set similarity
estimation

L. Becchetti

Playing with sets

How “similar”?

User 1: {Murray Gell-Mann, Sheldon Cooper, Leonard
Susskind, Rajesh Kuthrapalli}
User 2: {Sheldon Cooper, Murray Gell-Mann, Howard
Wolowitz, Rajesh Kuthrapalli, Leonard Hofstadter}

Why bother? Find similar users, filter out “similar” results
etc.
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Jaccard similarity coefficient

Given two discrete sets A and B :

J(A,B) = |A∩B|
|A∪B| (Jaccard coefficient)

c(A,B) = |A∩B|
|B| (containment of A in B)

Estimation

J(A,B) (also known as resemblance) measures the extent to
which A and B overlap
c(A,B) measures extent to which A is a subset of B
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Estimating similarity coefficients

Expensive to do exactly...

Linear if we use a hash table (needs the hash table)

Can be overly expensive in many cases

E.g.: detecting almost duplicates in the Web

How to proceed...

Use compact set representations
References: [Broder et al., 1997, Broder, 2000] for (Web)
documents, [Broder, 2000], [Broder et al., 2000],
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Estimating similarity coefficients - Idea

Assume we have a family H of hash functions that
permute [n] = {0, . . . n − 1}
Example (n = 10): for a particular h ∈ H and the set (2
5 8 9) we might have:

... hence applying h(·) we obtain the set (4 8 9 10) in this case
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Estimating similarity coefficients - cont.

Assume we extract h uniformly at random from H...

What does it mean to extract u. a. r?

Depends on how you define H
Example: if H = {(ax + b mod p) mod n}, with
a, b ∈ {0, . . . , p − 1} for p prime, p > n this means choosing
a, b u.a.r. in {0, . . . , p − 1}

For every h and X ⊆ [n], let h(X ) denote the image of X
under h and min{h(X )} = minx∈X h(x)

H is min-wise independent if, once h is chosen u.a.r.
from H we have:

P[min{h(X )} = h(z)] =
1

|X |
, ∀z ∈ X
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Estimating similarity coefficients - cont.

Assume H is min-wise independent
Consider two sets A,B ⊆ [n]

Theorem ([Broder et al., 2000])

Assume h is chosen u.a.r. from H. Then:

P[min{h(A)} = min{h(B)}] = J(A,B) =
|A ∩ B|
|A ∪ B|

In the picture: |A ∩ B| = 6, |A ∪ B| = 24, J(A,B) = 0.25
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Estimating similarity coefficients - cont.

Proof idea

min{h(A)} = min{h(B)} if and only if
min{h(A ∪ B)} = h(z), with z ∈ A ∩ B

All items in A ∪ B have equal chances of being the
minimum

P[arg min{h(A ∪ B)} ∈ A ∩ B] = |A∩B|
|A∪B|
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How to proceed in practice?

Given:

A collection of sets. E.g.: each set is a handy’s address book
containing a set of names, such as: (“S. Cooper”, “L.
Hofstadter”, “R. Kuthrapalli”, “H. Wolowitz”)

Step 0: Pick m hash functions h1 . . . , hm u.a.r. from a
min-wise independent family H, with hi : [n]→ [n]
For each set X :

1 (If necessary) map X ’s items to integers in [n] (use same
encoding for all sets)

2 Compute Mi (X ) = min{hi (X )}, i = 1, . . . ,m

(M1(X ), . . . ,Mm(X )) is X ’s fingerprint. To estimate J(A,B):

J(A,B) '
∑m

i=1(Mi (A) == Mi (B))

m

Q.: can you figure out why?
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Applying to user-user recommendations/1

Users and their profiles:

Each user is represented by an incidence vector
~u ∈ {0, 1}n : ~ux = 1 if u purchased (browsed, considered ...)
item x , 0 otherwise

Representing a user’s profile in compact form

User u, i.e., ~u, is represented by a fingerprint
F (u) = (Mu

1 (Xu), . . . ,Mm
m (Xu)), where Xu is the set of items

purchased (browsed, considered ...) by u

Computing fingerprints

For i = 1, . . . ,m, Mu
i (Xu) is computed by hashing the set Xu

using the i-th hash function, as shown before
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Applying to user-user recommendations/2

User similarity

The similarity between two users u and v is given by their
Jaccard coefficient:

J(u, v) =
~u · ~v∑n

x=1(~ux OR ~vx)

Estimating user similarity

J(u, v) '
∑m

i=1(Mu
i (Xu) == Mu

i (Xv ))

m

Neighbourhood

Neighbourhood can be of fixed size or threshold based, as
before
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Applying to user-user recommendations/3

Estimating z-scores

ẑJoe(x) =
∑

v∈Pool

J(Joe, v)

JJoe
zv (x),

where JJoe =
∑

v∈Pool J(Joe, v) and the zv (x) as usual is
computed from v ’s past ratings

Making a prediction

r̂Joe(x) = µJoe + σJoe ẑJoe(x)

as before

Note

Ratings are not used to compute user pairwise similarities but
they are used to compute z-scores
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What else?

Perfect, min-wise independent hash functions can be very
expensive

Ω(n log n) truly random bits necessary
[Broder et al., 2000]

In practice: use pairwise independent hash functions
[Carter and Wegman, 1979] or approximate min-wise
independent families of small (roughly logarithmic) size
[Indyk, 1999]

Pairwise independent hash functions

H = {(ax + b mod p) mod n}, for p prime, p > n

with a chosen u.a.r. {1, . . . , p − 1}, b chosen u.a.r.
{0, . . . , p − 1}
In practice, p might be the Mersenne prime 231 − 1 in
many cases
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