
Set similarity
estimation

L. Becchetti

Compact data structures: Broder’s set sketches

Luca Becchetti

“Sapienza” Università di Roma – Rome, Italy

November 11, 2013

http://www.dis.uniroma1.it/~becchet/
http://www.uniroma1.it/

Set similarity
estimation

L. Becchetti

Set similarity
estimation

L. Becchetti

Playing with sets

How “similar”?

User 1: {Murray Gell-Mann, Sheldon Cooper, Leonard
Susskind, Rajesh Kuthrapalli}
User 2: {Sheldon Cooper, Murray Gell-Mann, Howard
Wolowitz, Rajesh Kuthrapalli, Leonard Hofstadter}

Why bother? Find similar users, filter out “similar” results
etc.

Set similarity
estimation

L. Becchetti

Jaccard similarity coefficient

Given two discrete sets A and B :

J(A,B) = |A∩B|
|A∪B| (Jaccard coefficient)

c(A,B) = |A∩B|
|B| (containment of A in B)

Estimation

J(A,B) (also known as resemblance) measures the extent to
which A and B overlap
c(A,B) measures extent to which A is a subset of B

Set similarity
estimation

L. Becchetti

Estimating similarity coefficients

Expensive to do exactly...

Linear if we use a hash table (needs the hash table)

Can be overly expensive in many cases

E.g.: detecting almost duplicates in the Web

How to proceed...

Use compact set representations
References: [Broder et al., 1997, Broder, 2000] for (Web)
documents, [Broder, 2000], [Broder et al., 2000],

Set similarity
estimation

L. Becchetti

Estimating similarity coefficients - Idea

Assume we have a family H of hash functions that
permute [n] = {0, . . . n − 1}
Example (n = 10): for a particular h ∈ H and the set (2
5 8 9) we might have:

... hence applying h(·) we obtain the set (4 8 9 10) in this case

Set similarity
estimation

L. Becchetti

Estimating similarity coefficients - cont.

Assume we extract h uniformly at random from H...

What does it mean to extract u. a. r?

Depends on how you define H
Example: if H = {(ax + b mod p) mod n}, with
a, b ∈ {0, . . . , p − 1} for p prime, p > n this means choosing
a, b u.a.r. in {0, . . . , p − 1}

For every h and X ⊆ [n], let h(X) denote the image of X
under h and min{h(X)} = minx∈X h(x)

H is min-wise independent if, once h is chosen u.a.r.
from H we have:

P[min{h(X)} = h(z)] =
1

|X |
, ∀z ∈ X

Set similarity
estimation

L. Becchetti

Estimating similarity coefficients - cont.

Assume H is min-wise independent
Consider two sets A,B ⊆ [n]

Theorem ([Broder et al., 2000])

Assume h is chosen u.a.r. from H. Then:

P[min{h(A)} = min{h(B)}] = J(A,B) =
|A ∩ B|
|A ∪ B|

In the picture: |A ∩ B| = 6, |A ∪ B| = 24, J(A,B) = 0.25

Set similarity
estimation

L. Becchetti

Estimating similarity coefficients - cont.

Proof idea

min{h(A)} = min{h(B)} if and only if
min{h(A ∪ B)} = h(z), with z ∈ A ∩ B

All items in A ∪ B have equal chances of being the
minimum

P[arg min{h(A ∪ B)} ∈ A ∩ B] = |A∩B|
|A∪B|

Set similarity
estimation

L. Becchetti

How to proceed in practice?

Given:

A collection of sets. E.g.: each set is a handy’s address book
containing a set of names, such as: (“S. Cooper”, “L.
Hofstadter”, “R. Kuthrapalli”, “H. Wolowitz”)

Step 0: Pick m hash functions h1 . . . , hm u.a.r. from a
min-wise independent family H, with hi : [n]→ [n]
For each set X :

1 (If necessary) map X ’s items to integers in [n] (use same
encoding for all sets)

2 Compute Mi (X) = min{hi (X)}, i = 1, . . . ,m

(M1(X), . . . ,Mm(X)) is X ’s fingerprint. To estimate J(A,B):

J(A,B) '
∑m

i=1(Mi (A) == Mi (B))

m

Q.: can you figure out why?

Set similarity
estimation

L. Becchetti

Applying to user-user recommendations/1

Users and their profiles:

Each user is represented by an incidence vector
~u ∈ {0, 1}n : ~ux = 1 if u purchased (browsed, considered ...)
item x , 0 otherwise

Representing a user’s profile in compact form

User u, i.e., ~u, is represented by a fingerprint
F (u) = (Mu

1 (Xu), . . . ,Mm
m (Xu)), where Xu is the set of items

purchased (browsed, considered ...) by u

Computing fingerprints

For i = 1, . . . ,m, Mu
i (Xu) is computed by hashing the set Xu

using the i-th hash function, as shown before

Set similarity
estimation

L. Becchetti

Applying to user-user recommendations/2

User similarity

The similarity between two users u and v is given by their
Jaccard coefficient:

J(u, v) =
~u · ~v∑n

x=1(~ux OR ~vx)

Estimating user similarity

J(u, v) '
∑m

i=1(Mu
i (Xu) == Mu

i (Xv))

m

Neighbourhood

Neighbourhood can be of fixed size or threshold based, as
before

Set similarity
estimation

L. Becchetti

Applying to user-user recommendations/3

Estimating z-scores

ẑJoe(x) =
∑

v∈Pool

J(Joe, v)

JJoe
zv (x),

where JJoe =
∑

v∈Pool J(Joe, v) and the zv (x) as usual is
computed from v ’s past ratings

Making a prediction

r̂Joe(x) = µJoe + σJoe ẑJoe(x)

as before

Note

Ratings are not used to compute user pairwise similarities but
they are used to compute z-scores

Set similarity
estimation

L. Becchetti

What else?

Perfect, min-wise independent hash functions can be very
expensive

Ω(n log n) truly random bits necessary
[Broder et al., 2000]

In practice: use pairwise independent hash functions
[Carter and Wegman, 1979] or approximate min-wise
independent families of small (roughly logarithmic) size
[Indyk, 1999]

Pairwise independent hash functions

H = {(ax + b mod p) mod n}, for p prime, p > n

with a chosen u.a.r. {1, . . . , p − 1}, b chosen u.a.r.
{0, . . . , p − 1}
In practice, p might be the Mersenne prime 231 − 1 in
many cases

Set similarity
estimation

L. Becchetti

Broder, A. Z. (2000).

Identifying and filtering near-duplicate documents.

In 11th Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 1–10.

Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher,
M. (2000).

Min-wise independent permutations.

J. Comput. Syst. Sci., 60(3):630–659.

Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G.
(1997).

Syntactic clustering of the web.

In Selected papers from the sixth international conference on
World Wide Web, pages 1157–1166, Essex, UK. Elsevier
Science Publishers Ltd.

Carter, J. L. and Wegman, M. N. (1979).

Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143–154.

Set similarity
estimation

L. Becchetti

Indyk, P. (1999).

A small approximately min-wise independent family of hash
functions.

In SODA ’99: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 454–456,
Philadelphia, PA, USA. Society for Industrial and Applied
Mathematics.

