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Goals

Course only provides an overview of a few areas
Understand problems in handling massive data sets
Understand basic principles in addressing these issues
Perform a deeper study of an area of choice among
eligible ones

Undestand problems
Understand basic techniques
Understand key results

Exam (2008/2009)

Written exam

Answer 2 out of a collection of 10 possible published
questions (7.5 points each)

Answer a few questions about a research paper (25
points)

Example: explain reference scenario/key
results/techniques used/...
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Contents and expected preparation

Topics

1 Basic techniques and tools

Basic probabilistic tools
Brief review of hashing

2 Bloom filter - A compact database summary

Properties and applications

3 Data streaming

Applications and computational model
Some key results

Your expected preparation

Good understanding of 1

Fair understanding of all topics covered in the course

Lessons + review of main references

In-depth knowledge of one topic of choice

Main references + teacher’s suggested readings
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More about the exam

The course

Elective Course in Computer Networks consists of 3 CFU
units

CFU: Credito Formativo Universitario

Students who attend the course may pass the exam for 1
to 4 units

An exam has to be passed for each chosen unit

Mark

A mark from 18 to 30 in each unit

Final mark is average of votes achieved in all chosen units

Marks received in single units are communicated to the
responsible person, Prof. Marchetti-Spaccamela
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For this unit...

Evaluation criteria

Quality of presentation

How you present the topic, the language used etc.
The organization of your presentation
How clear and rigorous is your presentation
Adequacy of references

Your understanding of the topic

How confident you are with the topic
How able you are to discuss your topic critically, to
answer questions, to address related topics
How well you understand the basic underlying principles
Your ability to outline potential or motivating application
scenarios behind the topic considered
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Motivations/1

US Bbones [Odlyzko, 2003] [Ipoque GMBH, 2007]

Traffic explosion in past years [Muthukrishnan, 2005]
30 billions emails, 1 billions SMS, IMs daily (2005)
≈ 1 billion packets/router x hr
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Motivations/2

LAN

LAN

INTERNET

Router

SNMP log
Flow log

Packet log

Logs

SNMP: (Router ID, Interface ID, Timestamp, Bytes sent since
last obs.)

Flow: (Source IP, Dest IP, Start Time, Duration, No. Packets,
No. Bytes)

(Source IP, Dest IP, Src/Dest Port Numbers, Time, No. Bytes)
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Motivations/3

CPU
retrieve obj(k)

Database

Main memory

Database access

Huge amounts of data

Large number of retrieve requests per sec.

DB index in main memory

May be too large to fit in or for fast access
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Challenges [Muthukrishnan, 2005]

1 link with 2 Gb/s. Say avg packet size is 50 bytes

Number of pkts/sec = 5 Million

Time per pkt = 0.2 µsec (time available for processing)

If we capture pkt headers per packet: src/dest IP, time,
no of bytes, etc. at least 10 bytes

Space per second is 50 MB. Space per day is 4.5 TB per
link

ISPs have hundreds of links.

Focus is on solutions for real applications

Note: we seek solutions that work in practice → easy to
implement, require small space, allow fast updates and queries
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Events and probability

Sample space O
Event: subset E ⊆ O of outcomes that satisfy given
condition
In the example: choose a ball uniformly at random

E = (A yellow ball is picked)

E

Sample space

Event

O
Pr[E]

0

1

Pr[E] = 1/4

Example: bin with balls extracted at random
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Axioms of probability

F is the set of possible events

Example of event: A yellow or a green ball is extracted →
subset of yellow and green balls

Probability function: any function P : F → R
Axioms of probability:

For every E ∈ F : 0 ≤ P[E ] ≤ 1

P[O] = 1

For any set E1 . . . ,En of mutually disjoint events
(Ei ∩ Eh = ∅, ∀i , h): P[∪ni=1Ei ] =

∑n
i=1 P[Ei ]
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Some basic facts

For any two events E1,E2:

P[E1 ∪ E2] = P[E1] + P[E2]− P[E1 ∩ E2]

Formula above generalizes

In general:

Fact

P[∪ni=1Ei ] ≤
∑n

i=1 P[Ei ]

Conditional probability

Conditional probability that E occurs given that F occurs:

P[E |F ] =
P[E ∩ F ]

P[F ]

Events E1, . . . ,Ek are mutually independent if and only if, for
every I ⊆ {1, . . . , k}: P[∩i∈IEi ] =

∏
i∈I P[Ei ]

For two events E ,F this implies: P[E |F ] = P[E ]
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Warm up questions

Q1: Consider a bin with an equal number n/2 of white and
black balls. Assume w white and b black balls have been
extracted with replacement.

What is the probability that the next ball extracted is
white?

What does the sample space look like?

Q2: Answer again the first question if extraction occurs
without replacement
Q3: n bits are transmitted in sequence over a line on which
every bit has probability 1/2 of being flipped due to noise,
independently of all other bits in the sequence. For k > 0,
give an upper bound on the probability that there is a
sequence of at least log2 n + k consecutive inversions (see also
exercise 1.11 in [Mitzenmacher and Upfal, 2005])
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Q3: sketch of solution

Let Xi = 1 if i-th bit flipped, 0 otherwise

Let Ei = (∧i+log2 n+k
t=i Xi = 1)

Solution

P[At least log2 n + k consecutive bits flipped] =

P
[
∪n−log2 n−k
i=1 Ei

]
≤
∑n−log2 n−k

i=1 P[Ei ] =∑n−log2 n−k
i=1 P

[
∧i+log2 n+k
t=i Xi = 1

]
=

(n − log2 n − k)
(

1
2

)log2 n+k
<
(

1
2

)k
2nd inequality follows from Fact 1 about the probability of
event union, the 4th equality follows from independence of bit
flips



Basics

L. Becchetti

Course overview

Massive data
sets

Probability
basics

Expectation and
variance of
discrete variables

Concentration of
measure

Dictionaries and
hashing

An often useful theorem

Theorem

Assume E1, . . .En are mutually disjoint events such that
∪ni=1Ei = O. Then, considered any event B:

P[B] =
n∑

i=1

P[B ∩ Ei ] =
n∑

i=1

P[B |Ei ]P[Ei ]

Law of total probability

You should convince yourself (and prove) that the theorem
works
What happens if the Ei ’s are not disjoint?
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Discrete random variables

Definition (Random variable)

Random variable on a sample space O:

X : O → R

X is discrete if it can only take on a finite or countably infinite
set of values

Independence

X ,Y independent if and only if
P[(X = x) ∩ (Y = y)] = P[X = x ]P[Y = y ] for all possible
values x , y
X1, . . . ,Xk mutually independent if and only if, for every
I ⊆ {1, . . . , k} and values xi , i ∈ I :
P
[
∩ki∈I (Xi = xi )

]
=
∏k

i∈I P[Xi = xi ]
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Expectation of discrete random variables

Definition (Expectation)

Random variable X on a sample space O.

E[X ] =
∑
i

iP[X = i ] ,

where i varies over all possible values in the range of X

Theorem (Linearity of expectation)

For any finite collection X1, . . . ,Xk of discrete random
variables:

E

[
k∑

i=1

Xi

]
=

k∑
i=1

E[Xi ]

Note: this result holds always.
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Example

A: Assume we toss a fair coin n times. Let X denote the
number of heads. Determine E[X ].

We define binary variables X1, . . . ,Xn, with Xi = 1 if the i-th
coin toss gave head, 0 otherwise. We obviously have:

X =
n∑

i=1

Xi

Hence:

E[X ] =
n∑

i=1

E[Xi ] =
n∑

i=1

P[Xi = 1] =
n

2



Basics

L. Becchetti

Course overview

Massive data
sets

Probability
basics

Expectation and
variance of
discrete variables

Concentration of
measure

Dictionaries and
hashing

Example

A: Assume we toss a fair coin n times. Let X denote the
number of heads. Determine E[X ].
We define binary variables X1, . . . ,Xn, with Xi = 1 if the i-th
coin toss gave head, 0 otherwise. We obviously have:

X =
n∑

i=1

Xi

Hence:

E[X ] =
n∑

i=1

E[Xi ] =
n∑

i=1

P[Xi = 1] =
n

2
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Bernoulli variable and binomial distribution

Assume an experiment succeeds with probability p and fails
with probability 1− p. The following is Bernoulli indicator
variable:

Y =

{
1, The experiment succeeds
0, Otherwise

Of course: E[Y ] = P[Y = 1] = p (prove)

Binomial distribution

Consider n independent trials of the experiment and let X
denote the number of successes. Then X follows the binomial
distribution:

P[X = i ] =

(
n

i

)
pi (1− p)n−i

Q4: prove the claim above. Prove that E[X ] = np
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Geometric distribution

Consider the number Z of independent trials until the first
success of the experiment. Prove that X follows a geometric
distribution with parameter p, i.e.:

P[Z = i ] = (1− p)i−1p.

Expectation

Q5: prove that E[Z ] = 1
p . Hint. Use the following result:

Lemma

Assume Z is a discrete random variable that takes on only
non-negative values:

E[Z ] =
∞∑
i=1

P[Z ≥ i ]
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Conditional expectation

Definition

Assume X and Y are discrete random variables.

E[X |Y = i ] =
∑
j

jP[X = j |Y = i ] ,

where j varies in the range of X .

The following holds:

Lemma

E[X ] =
∑
i

E[X |Y = i ]P[Y = i ] ,

where i varies over the range of Y .
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Variance and more...

Definition

If X is a random variable

var [X ] = E
[
(X − E[X ])2

]
.

σ(X ) =
√
var [X ] is the standard deviation of X .

The following holds:

Lemma

If X1, . . . ,Xk are mutually independent random variables:

E

[
k∏

i=1

Xi

]
=

k∏
i=1

E[Xi ]

Q6: prove the lemma for k = 2.
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Example

Assume we observe a binary string S of variable length. In
particular, the length of the string falls in the range {1, . . . , n}
with uniform probability, while for any particular string length,
every bit is 1 or 0 with equal probability, independently of the
others. What is the average number of 1’s observed?

Sol.: we apply Lemma 8. More in detail, let L denote the
random variable that gives the length of the string. For any
fixed value k of L, We define binary variables X1, . . . ,Xk ,
where Xi is equal to the i-th bit of the string. If Y denotes
the number of 1’s in S have:

E[Y | L = k] =
k∑

i=1

P[Xi = 1 | L = k] =
k

2
.

Applying Lemma 8:

E[Y ] =
n∑

L=1

E[Y | L = k]P[L = k] =
1

n

n∑
k=1

k

2
=

n + 1

4
.
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Concentration of measure

“Concentration of measure refers to the phenomenon that a
function of a large number of random variables tends to
concentrate its values in a relatively narrow range (under
certain conditions of smoothness of the function and under
certain conditions on the dependence amongst the set of
random variables)” [Dubhashi and Panconesi, 2009].

In this lecture

General but weaker results (Markov’s and Chebyshev’s
inequality)

Strong results for the sum of independent random
variables in [0, 1] (Chernoff bound)
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Markov’s and Chebyshev’s inequalities

Theorem (Markov’s inequality)

Let X denote a random variable that assumes only
non-negative values. Then, for every a > 0:

P[X ≥ a] ≤ E[X ]

a
.

Theorem (Chebyshev’s inequality)

Let X denote a random variable. Then, for every a > 0:

P[|X − E[X ] | ≥ a] ≤ var [X ]

a2
.
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Markov vs Chebyshev

Markov inequality applies to non-negative variables, while
Chebyshev’s to any variable

Chebyshev’s inequality often stronger, but you need at
least upper bound on variance (not always trivial to
estimate)

Example (Markov)

Consider n independent flips of a fair coin. Use Markov’s and
Chebyshev’s inequalities to give bound on the probability of
obtaining more than 3n/4 heads.

Sol.: Let Xi = 1 if i-th coin toss gives heads 0 otherwise and
let X =

∑n
i=1 Xi . Of course, E[x ] = n/2. Applying Markov’s

inequality thus gives:

P

[
X >

3

4
n

]
≤ n/2

3n/4
=

2

3
.
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Example/2

Example (Chebyshev)

We need the variance of X in order to apply Chebyshev’s
inequality. We have:

var [X ] = E
[
(X − E[X ])2

]
= E

( n∑
i=1

(
Xi −

1

2

))2


=
n∑

i=1

E

[(
Xi −

1

2

)2
]

+ 2
n−1∑
i=1

n∑
h=i+1

E

[(
Xi −

1

2

)(
Xh −

1

2

)]

=
n∑

i=1

var [Xi ] =
n

4
,

where last equality follows since i) the Xi are mutually
independent, ii) E[Xi ] = 1/2 for every i and iii) var [Xi ] = 1/4
for every i .
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Example (Chebyshev)

We need the variance of X in order to apply Chebyshev’s
inequality. We have:
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2
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=
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4
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where last equality follows since i) the Xi are mutually
independent, ii) E[Xi ] = 1/2 for every i and iii) var [Xi ] = 1/4
for every i .
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Example/3

Example (Chebyshev cont.)

Now, from Chebyshev’s inequality:

P

[
X ≥ 3

4
n

]
≤ P

[
|X − E[X ] | ≥ n

4

]
≤ var [X ]

(n/4)2
=

4

n
.

Observe the following:

This result is much stronger than previous one

We implicitely proved a special case of a general result:

Theorem (Variance of the sum of independent variables)

If X1, . . . ,Xn are mutually independent random variables:

var

[
n∑

i=1

Xi

]
=
∑
i=1

var [Xi ] .
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Example (Chebyshev cont.)
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∑
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Poisson trials

Definition

X1, . . . ,Xn form a sequence of Poisson trials if they are binary
and mutually independent, so that P[Xi = 1] = pi ,
0 < pi ≤ 1.

Note the difference with Bernoulli trials: these are the special
case of Poisson trials when pi = p, for every i . In the next
slides:

We assume a sequence X1, . . . ,Xn of independent
Poisson trials

In particular: P[Xi = 1] = pi

X =
∑n

i=1 Xi and µ = E[X ].
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Chernoff bound(s)

A set of powerful concentration bounds. Hold for the sum or
linear combination of Poisson trials.

Theorem (Chernoff bound (upper
tail)[Mitzenmacher and Upfal, 2005])

Assume X1, . . . ,Xn form a sequence of independent Poisson
trials, so that P[Xi = 1] = pi , X =

∑n
i=1 Xi and µ = E[X ].

Then:

For δ > 0: P[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

(1)

For 0 < δ ≤ 1: P[X ≥ (1 + δ)µ] ≤ e− δ2

3 µ (2)

For any t ≥ 6µ: P[X ≥ t] ≤ 2−t (3)
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Chernoff bound(s)/cont.

Theorem (Chernoff bound (lower
tail)[Mitzenmacher and Upfal, 2005])

Under the same assumptions, for 0 < δ < 1:

P[X ≤ (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ

(4)

For 0 < δ ≤ 1: P[X ≤ (1− δ)µ] ≤ e− δ2

2 µ (5)

(2) and (5) most used in practice

Many different versions of the bound exist for different
scenarios, also addressing the issue of (limited)
dependence [Mitzenmacher and Upfal, 2005,
Dubhashi and Panconesi, 2009]
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Sketch of proof for Chernoff bounds

Consider the upper tail. The proof uses Markov’s inequality in
a very smart way. In particular, considered any s > 0:

P[X ≥ (1 + δ)µ] = P
[
esX ≥ es(1+δ)µ

]
≤

E
[
esX
]

es(1+δ)µ

=

∏n
i=1 E

[
esXi

]
es(1+δ)µ

=

∏n
i=1(1 + pi (es − 1))

es(1+δ)µ
≤
∏n

i=1 epi (e
s−1)

es(1+δ)µ

=
e(es−1)µ

es(1+δ)µ
.

Second inequality follows from Markov’s inequality, third
equality from independence of the Xi ’s, fourth inequality
since 1 + x ≤ ex

Bounds follow by appropriately choosing s (i.e.,
optimizing w.r.t. s)
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Example: coin flips

X (no. heads) the sum of independent Poisson trials
(Bernoulli trials in this case), with E[X ] = n/2. We apply
bound (2) with δ = 1/2 to get:

P

[
X ≥ 3

4
n

]
= P[X ≥ (1 + δ)E[X ]] ≤ e−

n
12

Remarks

Useful if n large enough

Observe that P[X ≥ 3n/4]

≤ 2/3 (Markov)
≤ 4/n (Chebyshev)
≤ e− n

12 (Chernoff)

Concentration results at the basis of statistics
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Dictionaries

A dynamic set S of objects from a discrete universe U, on
which (at least) the following operations are possible:

Item insertion

Item deletion

Set memberhisp: decide whether item x ∈ S

Typically, it is assumed that each item in S is uniquely
identified by a key. Let obj(k) be item with key k :

Operations

insert(x, S): insert item x
delete(k, S): delete obj(k)

retrieve(k, S): retrieve obj(k)

This is a minimal set of operations. Any database implements
a (greatly augmented) dictionary
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Hash functions

- Often used to implement insert, delete and retrieve in
a dictionary
- In general, a hash function h : U → [n] maps elements of
some discrete universe U onto integers belonging to some
range [n] = {0, 1, . . . , n− 1}. Typically, |U| >> n. Ideally, the
mapping should be uniform. We assume without loss of
generality that U is some subset of the integers (why can we
state this?)

U h(x)

0

n-1

Ideal behaviour: items in U mapped 
uniformly at random in {0, ... , n-1}

x
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Hash functions/2

Mapping should look “random” → If m items are mapped,
then every i ∈ [n] should be the image of ≈ m/n items.

E.g.: if U = {0, . . . ,m − 1} consider h(x) = x mod p,
with p a suitable prime.

Problem: this works if items from U appear at random
→ often many correlations present

Q7a: create an adversarial sequence that maps all
elements of the sequence onto the same i

Main question in many applications: mitigate the impact
of adversarial sequences

Q7b: Assume n ≤ m items chosen u.a.r. from U are
inserted into a hash table of size p, using the hash
function h(x) = x mod p, with p a suitable prime.
What is the expected number of items hashed to the
same location of the hash table?
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Randomizing the hash function

Use a randomly generated hash function to map items to
integers.
Idea: even if correlations present, items are mapped
randomly. Ideal behaviour

For each x ∈ U, P[h(x) = j ] = 1/n, for every
j = 1, . . . , n

The values h(x) are independent

Caveats

This does not mean that every evaluation of h(x) yields a
different random mapping, but only that h(x) is equally
likely to take any value in [0, . . . , n − 1]

Not easy to design an “ideal” hash function (many truly
random bits necessary)
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Families of universal hash functions

We assume we have a suitably defined family F of hash
functions, such that every member of h ∈ F is a function
h : U → [n].

Definition

F is a 2-universal hash family if, for any h(·) chosen uniformly
at random from F and for every x , y ∈ U we have:

P[h(x) = h(y)] ≤ 1

n
.

Definitions generalizes to k-universality
[Mitzenmacher and Upfal, 2005, Section 13.3]

Problem: define “compact” universal hash families
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A 2-universal family

Assume U = [m] and assume the range of the hash functions
we use is [n], where m ≥ n (typically, m >> n). We consider
the family F defined by hab(x) = ((ax + b) mod p) mod n,
where a ∈ {1, . . . , p − 1}, b ∈ {0, . . . , p} and p is a prime
p ≥ m.

How to choose u.a.r. from F
For a given p: Simply choose a u.a.r. from {1, . . . , p − 1} and
b u.a.r. from {0, . . . , p}



Basics

L. Becchetti

Course overview

Massive data
sets

Probability
basics

Expectation and
variance of
discrete variables

Concentration of
measure

Dictionaries and
hashing

A 2-universal family/cont.

Theorem ([Carter and Wegman, 1979,
Mitzenmacher and Upfal, 2005])

F is a 2-universal hash family. In particular, if a, b are chosen
uniformly at random:

P[hab(x) = i ] =
1

n
,∀x ∈ U, i ∈ [n].

P[hab(x) = hab(y)] ≤ 1

n
,∀x , y ∈ U.
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Example: hash tables

Consider a hash table implemented as follows:

An array A of lists of size n
h : U → [n], mapping each object in U onto a position of
A
Ai is the list of objects hashed to position i (collisions
solved by concatenation)

U h(x)

0

n-1

Hash table using concatenation

x

A

i
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Example/cont.

Case 1

Assume that h(·) is selected uniformly at random from an
“ideal” family, so that:
1. P[h(x) = i ] = 1

n , ∀x ∈ U, i ∈ [n]
2. ∀k , x1, . . . , xk ∈ U, ∀y1, . . . , yk ∈ [n]:

P

[
k⋂

i=1

(h(xi ) = yi )

]
=

k∏
i=1

P[h(xi ) = yi ] =
1

nk

Q8

Consider the insertion of the m elements of U and denote by
Si the size of list Ai . Prove the following: for 0 < ε < 1

P
[
∃i : Si > (1 + ε)

m

n

]
≤ 1

n
,

whenever m = Ω( 1
ε2 n ln n) (Use Chernoff bound)
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Example/cont.

Case 2

Assume that h(·) is selected uniformly at random from a
2-universal hash family

Q9

Prove that the following, much weaker result holds:

P

[
∃i : Si ≥ m

√
2

n

]
≤ 1

2
.

Hints:

1 Define Xjk = 1 iff items j and k mapped onto same array

position and let X =
∑m−1

j=1

∑m
k=j+1 Xjk the total

number of collisions.

2 Note that, if the maximum number of items mapped to
the same position in A is Y , then X ≥

(Y
2

)
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