Overview and basic techniques

Luca Becchetti
"Sapienza" Università di Roma - Rome, Italy

June 18, 2011
(1) Course overview
(2) Massive data sets
(3) Probability basics
4. Expectation and variance of discrete variables
(5) Concentration of measure
(6) Dictionaries and hashing

Goals

- Course only provides an overview of a few areas
- Understand problems in handling massive data sets
- Understand basic principles in addressing these issues
- Perform a deeper study of an area of choice among eligible ones
- Undestand problems
- Understand basic techniques
- Understand key results

Exam (2008/2009)

- Written exam
- Answer 2 out of a collection of 10 possible published questions (7.5 points each)
- Answer a few questions about a research paper (25 points)
- Example: explain reference scenario/key results/techniques used/...

Contents and expected preparation

L. Becchetti

Course overview

Topics

(1) Basic techniques and tools

- Basic probabilistic tools
- Brief review of hashing
(2) Bloom filter - A compact database summary
- Properties and applications
(3) Data streaming
- Applications and computational model
- Some key results

Your expected preparation

- Good understanding of 1
- Fair understanding of all topics covered in the course
- Lessons + review of main references
- In-depth knowledge of one topic of choice
- Main references + teacher's suggested readings

More about the exam

The course

- Elective Course in Computer Networks consists of 3 CFU units
- CFU: Credito Formativo Universitario
- Students who attend the course may pass the exam for 1 to 4 units
- An exam has to be passed for each chosen unit

Mark

- A mark from 18 to 30 in each unit
- Final mark is average of votes achieved in all chosen units
- Marks received in single units are communicated to the responsible person, Prof. Marchetti-Spaccamela

Evaluation criteria

- Quality of presentation
- How you present the topic, the language used etc.
- The organization of your presentation
- How clear and rigorous is your presentation
- Adequacy of references
- Your understanding of the topic
- How confident you are with the topic
- How able you are to discuss your topic critically, to answer questions, to address related topics
- How well you understand the basic underlying principles
- Your ability to outline potential or motivating application scenarios behind the topic considered

Motivations/1

L. Becchetti

US Bbones [Odlyzko, 2003]
[Ipoque GMBH, 2007]

year	TB/month
1990	1.0
1991	2.0
1992	4.4
1993	8.3
1994	16.3
1995	$?$
1996	1,500
1997	$2,500-4,000$
1998	$5,000-8,000$
1999	$10,000-16,000$
2000	$20,000-35,000$
2001	$40,000-70,000$
2002	$80,000-140,000$

- Traffic explosion in past years [Muthukrishnan, 2005]
- 30 billions emails, 1 billions SMS, IMs daily (2005)
- ≈ 1 billion packets/router $\times \mathrm{hr}$

Motivations/2

L. Becchetti

Course overview

Logs

- SNMP: (Router ID, Interface ID, Timestamp, Bytes sent since last obs.)
- Flow: (Source IP, Dest IP, Start Time, Duration, No. Packets, No. Bytes)
- (Source IP, Dest IP, Src/Dest Port Numbers, Time, No. Bytes)

Motivations/3

L. Becchetti

Course overview
Massive data sets

Probability basics

Expectation and variance of discrete variables

Database access

- Huge amounts of data
- Large number of retrieve requests per sec.
- DB index in main memory
- May be too large to fit in or for fast access

Challenges [Muthukrishnan, 2005]

- 1 link with $2 \mathrm{~Gb} / \mathrm{s}$. Say avg packet size is 50 bytes
- Number of pkts/sec $=5$ Million
- Time per pkt $=0.2 \mu \mathrm{sec}$ (time available for processing)
- If we capture pkt headers per packet: src/dest IP, time, no of bytes, etc. at least 10 bytes
- Space per second is 50 MB . Space per day is 4.5 TB per link
- ISPs have hundreds of links.

Focus is on solutions for real applications
Note: we seek solutions that work in practice \rightarrow easy to implement, require small space, allow fast updates and queries

Events and probability

- Sample space O
- Event: subset $E \subseteq O$ of outcomes that satisfy given condition
- In the example: choose a ball uniformly at random
- $E=$ (A yellow ball is picked)

Axioms of probability

- \mathcal{F} is the set of possible events
- Example of event: A yellow or a green ball is extracted \rightarrow subset of yellow and green balls

Probability function: any function $\mathbf{P}: \mathcal{F} \rightarrow \mathbb{R}$
Axioms of probability:

- For every $E \in \mathcal{F}: 0 \leq \mathbf{P}[E] \leq 1$
- $\mathbf{P}[O]=1$
- For any set $E_{1} \ldots, E_{n}$ of mutually disjoint events
$\left(E_{i} \cap E_{h}=\emptyset, \forall i, h\right): \mathbf{P}\left[\cup_{i=1}^{n} E_{i}\right]=\sum_{i=1}^{n} \mathbf{P}\left[E_{i}\right]$

Some basic facts

L. Becchetti

For any two events E_{1}, E_{2} :

- $\mathbf{P}\left[E_{1} \cup E_{2}\right]=\mathbf{P}\left[E_{1}\right]+\mathbf{P}\left[E_{2}\right]-\mathbf{P}\left[E_{1} \cap E_{2}\right]$
- Formula above generalizes

In general:

Fact

$$
\mathbf{P}\left[\cup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \mathbf{P}\left[E_{i}\right]
$$

Conditional probability

Conditional probability that E occurs given that F occurs:

$$
\mathbf{P}[E \mid F]=\frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]}
$$

Events E_{1}, \ldots, E_{k} are mutually independent if and only if, for every $I \subseteq\{1, \ldots, k\}: \mathbf{P}\left[\cap_{i \in I} E_{i}\right]=\prod_{i \in I} \mathbf{P}\left[E_{i}\right]$ For two events E, F this implies: $\mathbf{P}[E \mid F]=\mathbf{P}[E]$

Warm up questions

Q1: Consider a bin with an equal number $n / 2$ of white and black balls. Assume w white and b black balls have been extracted with replacement.

- What is the probability that the next ball extracted is white?
- What does the sample space look like?

Q2: Answer again the first question if extraction occurs without replacement
Q3: n bits are transmitted in sequence over a line on which every bit has probability $1 / 2$ of being flipped due to noise, independently of all other bits in the sequence. For $k>0$, give an upper bound on the probability that there is a sequence of at least $\log _{2} n+k$ consecutive inversions (see also exercise 1.11 in [Mitzenmacher and Upfal, 2005])

Q3: sketch of solution

- Let $X_{i}=1$ if i-th bit flipped, 0 otherwise
- Let $E_{i}=\left(\wedge_{t=i}^{i+\log _{2} n+k} X_{i}=1\right)$

Solution

\mathbf{P} [At least $\log _{2} n+k$ consecutive bits flipped] $=$
$\mathbf{P}\left[\cup_{i=1}^{n-\log _{2} n-k} E_{i}\right] \leq \sum_{i=1}^{n-\log _{2} n-k} \mathbf{P}\left[E_{i}\right]=$
$\sum_{i=1}^{n-\log _{2} n-k} \mathbf{P}\left[\Lambda_{t=i}^{i+\log _{2} n+k} X_{i}=1\right]=$
$\left(n-\log _{2} n-k\right)\left(\frac{1}{2}\right)^{\log _{2} n+k}<\left(\frac{1}{2}\right)^{k}$
2nd inequality follows from Fact 1 about the probability of event union, the 4th equality follows from independence of bit flips

An often useful theorem

Theorem

Assume $E_{1}, \ldots E_{n}$ are mutually disjoint events such that $\cup_{i=1}^{n} E_{i}=O$. Then, considered any event B :

$$
\mathbf{P}[B]=\sum_{i=1}^{n} \mathbf{P}\left[B \cap E_{i}\right]=\sum_{i=1}^{n} \mathbf{P}\left[B \mid E_{i}\right] \mathbf{P}\left[E_{i}\right]
$$

Law of total probability
You should convince yourself (and prove) that the theorem works
What happens if the E_{i} 's are not disjoint?

Discrete random variables

Definition (Random variable)

Random variable on a sample space O :

$$
X: O \rightarrow \mathbb{R}
$$

X is discrete if it can only take on a finite or countably infinite set of values

Independence

X, Y independent if and only if $\mathbf{P}[(X=x) \cap(Y=y)]=\mathbf{P}[X=x] \mathbf{P}[Y=y]$ for all possible values x, y
X_{1}, \ldots, X_{k} mutually independent if and only if, for every $I \subseteq\{1, \ldots, k\}$ and values $x_{i}, i \in I$:
$\mathbf{P}\left[\cap_{i \in I}^{k}\left(X_{i}=x_{i}\right)\right]=\prod_{i \in I}^{k} \mathbf{P}\left[X_{i}=x_{i}\right]$

Expectation of discrete random variables

Definition (Expectation)

Random variable X on a sample space O.

$$
\mathbf{E}[X]=\sum_{i} i \mathbf{P}[X=i]
$$

where i varies over all possible values in the range of X

Theorem (Linearity of expectation)

For any finite collection X_{1}, \ldots, X_{k} of discrete random variables:

$$
\mathbf{E}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \mathbf{E}\left[X_{i}\right]
$$

Note: this result holds always.

Example

L. Becchetti

Course overview

A: Assume we toss a fair coin n times. Let X denote the number of heads. Determine $\mathbf{E}[X]$.

Example

A: Assume we toss a fair coin n times. Let X denote the number of heads. Determine $\mathbf{E}[X]$.
We define binary variables X_{1}, \ldots, X_{n}, with $X_{i}=1$ if the i-th coin toss gave head, 0 otherwise. We obviously have:

$$
X=\sum_{i=1}^{n} X_{i}
$$

Hence:

$$
\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{n} \mathbf{P}\left[X_{i}=1\right]=\frac{n}{2}
$$

Bernoulli variable and binomial distribution

Assume an experiment succeeds with probability p and fails with probability $1-p$. The following is Bernoulli indicator variable:

$$
Y= \begin{cases}1, & \text { The experiment succeeds } \\ 0, & \text { Otherwise }\end{cases}
$$

Of course: $\mathbf{E}[Y]=\mathbf{P}[Y=1]=p$ (prove)

Binomial distribution

Consider n independent trials of the experiment and let X denote the number of successes. Then X follows the binomial distribution:

$$
\mathbf{P}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

Q4: prove the claim above. Prove that $\mathbf{E}[X]=n p$

Geometric distribution

Consider the number Z of independent trials until the first success of the experiment. Prove that X follows a geometric distribution with parameter p, i.e.:

$$
\mathbf{P}[Z=i]=(1-p)^{i-1} p
$$

Expectation

Q5: prove that $\mathbf{E}[Z]=\frac{1}{p}$. Hint. Use the following result:

Lemma

Assume Z is a discrete random variable that takes on only non-negative values:

$$
\mathbf{E}[Z]=\sum_{i=1}^{\infty} \mathbf{P}[Z \geq i]
$$

Conditional expectation

L. Becchetti

Course overview

Definition

Assume X and Y are discrete random variables.

$$
\mathbf{E}[X \mid Y=i]=\sum_{j} j \mathbf{P}[X=j \mid Y=i]
$$

where j varies in the range of X.
The following holds:

Lemma

$$
\mathbf{E}[X]=\sum_{i} \mathbf{E}[X \mid Y=i] \mathbf{P}[Y=i]
$$

where i varies over the range of Y.

Variance and more...

L. Becchetti

Course overview

Definition

If X is a random variable

$$
\operatorname{var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] .
$$

$\sigma(X)=\sqrt{\mathbf{v a r}[X]}$ is the standard deviation of X.
The following holds:

Lemma

If X_{1}, \ldots, X_{k} are mutually independent random variables:

$$
\mathbf{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbf{E}\left[X_{i}\right]
$$

Q6: prove the lemma for $k=2$.

Example

L. Becchetti

Assume we observe a binary string \mathcal{S} of variable length. In particular, the length of the string falls in the range $\{1, \ldots, n\}$ with uniform probability, while for any particular string length, every bit is 1 or 0 with equal probability, independently of the others. What is the average number of 1 's observed?

Example

Assume we observe a binary string \mathcal{S} of variable length. In particular, the length of the string falls in the range $\{1, \ldots, n\}$ with uniform probability, while for any particular string length, every bit is 1 or 0 with equal probability, independently of the others. What is the average number of 1's observed? Sol.: we apply Lemma 8. More in detail, let L denote the random variable that gives the length of the string. For any fixed value k of L, We define binary variables X_{1}, \ldots, X_{k}, where X_{i} is equal to the i-th bit of the string. If Y denotes the number of 1 's in \mathcal{S} have:

$$
\mathbf{E}[Y \mid L=k]=\sum_{i=1}^{k} \mathbf{P}\left[X_{i}=1 \mid L=k\right]=\frac{k}{2}
$$

Applying Lemma 8:

$$
\mathbf{E}[Y]=\sum_{L=1}^{n} \mathbf{E}[Y \mid L=k] \mathbf{P}[L=k]=\frac{1}{n} \sum_{k=1}^{n} \frac{k}{2}=\frac{n+1}{4} .
$$

Concentration of measure

"Concentration of measure refers to the phenomenon that a function of a large number of random variables tends to concentrate its values in a relatively narrow range (under certain conditions of smoothness of the function and under certain conditions on the dependence amongst the set of random variables)" [Dubhashi and Panconesi, 2009].

In this lecture

- General but weaker results (Markov's and Chebyshev's inequality)
- Strong results for the sum of independent random variables in $[0,1]$ (Chernoff bound)

Markov's and Chebyshev's inequalities

L. Becchetti

Theorem (Markov's inequality)

Let X denote a random variable that assumes only non-negative values. Then, for every a >0 :

$$
\mathbf{P}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}
$$

Theorem (Chebyshev's inequality)

Let X denote a random variable. Then, for every a >0 :

$$
\mathbf{P}[|X-\mathbf{E}[X]| \geq a] \leq \frac{\operatorname{var}[X]}{a^{2}}
$$

Markov vs Chebyshev

- Markov inequality applies to non-negative variables, while Chebyshev's to any variable
- Chebyshev's inequality often stronger, but you need at least upper bound on variance (not always trivial to estimate)

Example (Markov)

Consider n independent flips of a fair coin. Use Markov's and Chebyshev's inequalities to give bound on the probability of obtaining more than $3 n / 4$ heads.

Markov vs Chebyshev

- Markov inequality applies to non-negative variables, while Chebyshev's to any variable
- Chebyshev's inequality often stronger, but you need at least upper bound on variance (not always trivial to estimate)

Example (Markov)

Consider n independent flips of a fair coin. Use Markov's and Chebyshev's inequalities to give bound on the probability of obtaining more than $3 n / 4$ heads.
Sol.: Let $X_{i}=1$ if i-th coin toss gives heads 0 otherwise and let $X=\sum_{i=1}^{n} X_{i}$. Of course, $\mathbf{E}[x]=n / 2$. Applying Markov's inequality thus gives:

$$
\mathbf{P}\left[X>\frac{3}{4} n\right] \leq \frac{n / 2}{3 n / 4}=\frac{2}{3} .
$$

Example/2

```

\section*{Example (Chebyshev)}

\section*{Example/2}

\section*{Example (Chebyshev)}

We need the variance of \(X\) in order to apply Chebyshev's inequality. We have:
\[
\begin{aligned}
& \operatorname{var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[\left(\sum_{i=1}^{n}\left(X_{i}-\frac{1}{2}\right)\right)^{2}\right] \\
& =\sum_{i=1}^{n} \mathbf{E}\left[\left(X_{i}-\frac{1}{2}\right)^{2}\right]+2 \sum_{i=1}^{n-1} \sum_{h=i+1}^{n} \mathbf{E}\left[\left(X_{i}-\frac{1}{2}\right)\left(X_{h}-\frac{1}{2}\right)\right] \\
& =\sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]=\frac{n}{4}
\end{aligned}
\]
where last equality follows since i) the \(X_{i}\) are mutually independent, ii) \(\mathbf{E}\left[X_{i}\right]=1 / 2\) for every \(i\) and iii) \(\operatorname{var}\left[X_{i}\right]=1 / 4\) for every \(i\).


\section*{Example/3}

Example (Chebyshev cont.)
Now, from Chebyshev's inequality:
\[
\mathbf{P}\left[X \geq \frac{3}{4} n\right] \leq \mathbf{P}\left[|X-\mathbf{E}[X]| \geq \frac{n}{4}\right] \leq \frac{\mathbf{v a r}[X]}{(n / 4)^{2}}=\frac{4}{n}
\]

Observe the following:
- This result is much stronger than previous one
- We implicitely proved a special case of a general result:

\section*{Example/3}

Example (Chebyshev cont.)
Now, from Chebyshev's inequality:
\[
\mathbf{P}\left[X \geq \frac{3}{4} n\right] \leq \mathbf{P}\left[|X-\mathbf{E}[X]| \geq \frac{n}{4}\right] \leq \frac{\mathbf{v a r}[X]}{(n / 4)^{2}}=\frac{4}{n}
\]

Observe the following:
- This result is much stronger than previous one
- We implicitely proved a special case of a general result:

Theorem (Variance of the sum of independent variables)
If \(X_{1}, \ldots, X_{n}\) are mutually independent random variables:
\[
\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1} \operatorname{var}\left[X_{i}\right]
\]

\section*{Poisson trials}

\section*{Definition}
\(X_{1}, \ldots, X_{n}\) form a sequence of Poisson trials if they are binary and mutually independent, so that \(\mathbf{P}\left[X_{i}=1\right]=p_{i}\), \(0<p_{i} \leq 1\).

Note the difference with Bernoulli trials: these are the special case of Poisson trials when \(p_{i}=p\), for every \(i\). In the next slides:
- We assume a sequence \(X_{1}, \ldots, X_{n}\) of independent Poisson trials
- In particular: \(\mathbf{P}\left[X_{i}=1\right]=p_{i}\)
- \(X=\sum_{i=1}^{n} X_{i}\) and \(\mu=\mathbf{E}[X]\).

\section*{Chernoff bound(s)}

A set of powerful concentration bounds. Hold for the sum or linear combination of Poisson trials.

\section*{Theorem (Chernoff bound (upper tail)[Mitzenmacher and Upfal, 2005])}

Assume \(X_{1}, \ldots, X_{n}\) form a sequence of independent Poisson trials, so that \(\mathbf{P}\left[X_{i}=1\right]=p_{i}, X=\sum_{i=1}^{n} X_{i}\) and \(\mu=\mathbf{E}[X]\). Then:
\[
\begin{align*}
& \text { For } \delta>0: \mathbf{P}[X \geq(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}  \tag{1}\\
& \text { For } 0<\delta \leq 1: \mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\frac{\delta^{2}}{3} \mu}  \tag{2}\\
& \text { For any } t \geq 6 \mu: \mathbf{P}[X \geq t] \leq 2^{-t} \tag{3}
\end{align*}
\]

\section*{Chernoff bound(s)/cont.}

\section*{Theorem (Chernoff bound (lower} tail)[Mitzenmacher and Upfal, 2005])

Under the same assumptions, for \(0<\delta<1\) :
\[
\begin{align*}
& \mathbf{P}[X \leq(1-\delta) \mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}  \tag{4}\\
& \text { For } 0<\delta \leq 1: \mathbf{P}[X \leq(1-\delta) \mu] \leq e^{-\frac{\delta^{2}}{2} \mu} \tag{5}
\end{align*}
\]
- (2) and (5) most used in practice
- Many different versions of the bound exist for different scenarios, also addressing the issue of (limited) dependence [Mitzenmacher and Upfal, 2005, Dubhashi and Panconesi, 2009]

\section*{Sketch of proof for Chernoff bounds}

Consider the upper tail. The proof uses Markov's inequality in a very smart way. In particular, considered any \(s>0\) :
\[
\begin{aligned}
& \mathbf{P}[X \geq(1+\delta) \mu]=\mathbf{P}\left[e^{s X} \geq e^{s(1+\delta) \mu}\right] \leq \frac{\mathbf{E}\left[e^{s X}\right]}{e^{s(1+\delta) \mu}} \\
& =\frac{\prod_{i=1}^{n} \mathbf{E}\left[e^{s X_{i}}\right]}{e^{s(1+\delta) \mu}}=\frac{\prod_{i=1}^{n}\left(1+p_{i}\left(e^{s}-1\right)\right)}{e^{s(1+\delta) \mu}} \leq \frac{\prod_{i=1}^{n} e^{p_{i}\left(e^{s}-1\right)}}{e^{s(1+\delta) \mu}} \\
& =\frac{e^{\left(e^{s}-1\right) \mu}}{e^{s(1+\delta) \mu}}
\end{aligned}
\]
- Second inequality follows from Markov's inequality, third equality from independence of the \(X_{i}\) 's, fourth inequality since \(1+x \leq e^{x}\)
- Bounds follow by appropriately choosing s (i.e., optimizing w.r.t. s)

\section*{Example: coin flips}
L. Becchetti
\(X\) (no. heads) the sum of independent Poisson trials (Bernoulli trials in this case), with \(\mathbf{E}[X]=n / 2\). We apply bound (2) with \(\delta=1 / 2\) to get:
\[
\mathbf{P}\left[X \geq \frac{3}{4} n\right]=\mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq e^{-\frac{n}{12}}
\]

\section*{Remarks}
- Useful if \(n\) large enough
- Observe that \(\mathbf{P}[X \geq 3 n / 4]\)
- \(\leq 2 / 3\) (Markov)
- \(\leq 4 / n\) (Chebyshev)
- \(\leq e^{-\frac{n}{12}}\) (Chernoff)
- Concentration results at the basis of statistics

\section*{Dictionaries}

A dynamic set \(S\) of objects from a discrete universe \(U\), on which (at least) the following operations are possible:
- Item insertion
- Item deletion
- Set memberhisp: decide whether item \(x \in S\)

Typically, it is assumed that each item in \(S\) is uniquely identified by a key. Let obj(k) be item with key \(k\) :

\section*{Operations}
insert ( \(\mathrm{x}, \mathrm{S}\) ): insert item \(x\)
delete(k, S): delete obj(k)
retrieve(k, S): retrieve obj(k)
This is a minimal set of operations. Any database implements a (greatly augmented) dictionary

\section*{Hash functions}
- Often used to implement insert, delete and retrieve in a dictionary
- In general, a hash function \(h: U \rightarrow[n]\) maps elements of some discrete universe \(U\) onto integers belonging to some range \([n]=\{0,1, \ldots, n-1\}\). Typically, \(|U| \gg n\). Ideally, the mapping should be uniform. We assume without loss of generality that \(U\) is some subset of the integers (why can we state this?)


Ideal behaviour: items in \(U\) mapped
uniformly at random in \(\{0, \ldots, n-1\}\)

\section*{Hash functions/2}

Mapping should look "random" \(\rightarrow\) If \(m\) items are mapped, then every \(i \in[n]\) should be the image of \(\approx m / n\) items.
- E.g.: if \(U=\{0, \ldots, m-1\}\) consider \(h(x)=x \bmod p\), with \(p\) a suitable prime.
- Problem: this works if items from \(U\) appear at random \(\rightarrow\) often many correlations present
- Q7a: create an adversarial sequence that maps all elements of the sequence onto the same \(i\)
- Main question in many applications: mitigate the impact of adversarial sequences
- Q7b: Assume \(n \leq m\) items chosen u.a.r. from \(U\) are inserted into a hash table of size \(p\), using the hash function \(h(x)=x \bmod p\), with \(p\) a suitable prime. What is the expected number of items hashed to the same location of the hash table?

\section*{Randomizing the hash function}

Use a randomly generated hash function to map items to integers.
Idea: even if correlations present, items are mapped randomly. Ideal behaviour
- For each \(x \in U, \mathbf{P}[h(x)=j]=1 / n\), for every \(j=1, \ldots, n\)
- The values \(h(x)\) are independent

\section*{Caveats}
- This does not mean that every evaluation of \(h(x)\) yields a different random mapping, but only that \(h(x)\) is equally likely to take any value in \([0, \ldots, n-1]\)
- Not easy to design an "ideal" hash function (many truly random bits necessary)

\section*{Families of universal hash functions}

We assume we have a suitably defined family \(\mathcal{F}\) of hash functions, such that every member of \(h \in \mathcal{F}\) is a function \(h: U \rightarrow[n]\).

\section*{Definition}
\(\mathcal{F}\) is a 2-universal hash family if, for any \(h(\cdot)\) chosen uniformly at random from \(\mathcal{F}\) and for every \(x, y \in U\) we have:
\[
\mathbf{P}[h(x)=h(y)] \leq \frac{1}{n}
\]
- Definitions generalizes to \(k\)-universality [Mitzenmacher and Upfal, 2005, Section 13.3]
- Problem: define "compact" universal hash families

Assume \(U=[m]\) and assume the range of the hash functions we use is [ \(n\) ], where \(m \geq n\) (typically, \(m \gg n\) ). We consider the family \(\mathcal{F}\) defined by \(h_{a b}(x)=((a x+b) \bmod p) \bmod n\), where \(a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p\}\) and \(p\) is a prime \(p \geq m\).

How to choose u.a.r. from \(\mathcal{F}\)
For a given \(p\) : Simply choose a u.a.r. from \(\{1, \ldots, p-1\}\) and \(b\) u.a.r. from \(\{0, \ldots, p\}\)

\section*{A 2-universal family/cont.}

Theorem ([Carter and Wegman, 1979, Mitzenmacher and Upfal, 2005])
\(\mathcal{F}\) is a 2-universal hash family. In particular, if \(a, b\) are chosen uniformly at random:
\[
\begin{aligned}
& \mathbf{P}\left[h_{a b}(x)=i\right]=\frac{1}{n}, \forall x \in U, i \in[n] . \\
& \mathbf{P}\left[h_{a b}(x)=h_{a b}(y)\right] \leq \frac{1}{n}, \forall x, y \in U .
\end{aligned}
\]

\section*{Example: hash tables}

Consider a hash table implemented as follows:
- An array \(A\) of lists of size \(n\)
- \(h: U \rightarrow[n]\), mapping each object in \(U\) onto a position of \(A\)
- \(A_{i}\) is the list of objects hashed to position \(i\) (collisions solved by concatenation)


\section*{Example/cont.}
L. Becchetti

\section*{Case 1}

Assume that \(h(\cdot)\) is selected uniformly at random from an "ideal" family, so that:
1. \(\mathbf{P}[h(x)=i]=\frac{1}{n}, \forall x \in U, i \in[n]\)
2. \(\forall k, x_{1}, \ldots, x_{k} \in U, \forall y_{1}, \ldots, y_{k} \in[n]:\)
\[
\mathbf{P}\left[\bigcap_{i=1}^{k}\left(h\left(x_{i}\right)=y_{i}\right)\right]=\prod_{i=1}^{k} \mathbf{P}\left[h\left(x_{i}\right)=y_{i}\right]=\frac{1}{n^{k}}
\]

\section*{Q8}

Consider the insertion of the \(m\) elements of \(U\) and denote by \(S_{i}\) the size of list \(A_{i}\). Prove the following: for \(0<\epsilon<1\)
\[
\mathbf{P}\left[\exists i: S_{i}>(1+\epsilon) \frac{m}{n}\right] \leq \frac{1}{n},
\]
whenever \(m=\Omega\left(\frac{1}{\epsilon^{2}} n \ln n\right)\) (Use Chernoff bound)

\section*{Example/cont.}

\section*{Case 2}

Assume that \(h(\cdot)\) is selected uniformly at random from a 2-universal hash family

\section*{Q9}

Prove that the following, much weaker result holds:
\[
\mathbf{P}\left[\exists i: S_{i} \geq m \sqrt{\frac{2}{n}}\right] \leq \frac{1}{2} .
\]

\section*{Hints:}
(1) Define \(X_{j k}=1\) iff items \(j\) and \(k\) mapped onto same array position and let \(X=\sum_{j=1}^{m-1} \sum_{k=j+1}^{m} X_{j k}\) the total number of collisions.
(2) Note that, if the maximum number of items mapped to the same position in \(A\) is \(Y\), then \(X \geq\binom{ Y}{2}\)

Carter, J. L. and Wegman, M. N. (1979).
Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143-154.
围 Dubhashi, D. and Panconesi, A. (2009).
Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press.
囯 Ipoque GMBH, G. (2007).
Internet study 2007. URL: http://www.ipoque.com/.Mitzenmacher, M. and Upfal, E. (2005).
Probability and Computing : Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press.Muthukrishnan, S. (2005).
Data stream algorithms. URL:
http://www.cs.rutgers.edu/~muthu/str05.html.

\section*{Course overview}

\section*{Massive data}

\section*{sets}

Probability basics

Expectation and variance of discrete variables measure

Dictionaries and hashing

围 Odlyzko, A. M. (2003).
Internet traffic growth: sources and implications.
In Proc. of SPIE conference on Optical Transmission Systems and Equipment for WDM Networking, pages 1-15.```

