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@ Course overview
© Massive data sets
© Probability basics
@ Expectation and variance of discrete variables

© Concentration of measure

@ Dictionaries and hashing
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Goals

Course overview @ Course only provides an overview of a few areas
@ Understand problems in handling massive data sets

@ Understand basic principles in addressing these issues
@ Perform a deeper study of an area of choice among

eligible ones
e Undestand problems
e Understand basic techniques
e Understand key results

Exam (2008,/2009)

Written exam

Answer 2 out of a collection of 10 possible published
questions (7.5 points each)

Answer a few questions about a research paper (25
points)

Example: explain reference scenario/key
results/techniques used/...
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Contents and expected preparation
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Course overview Toplcs

@ Basic techniques and tools

e Basic probabilistic tools
e Brief review of hashing

© Bloom filter - A compact database summary
e Properties and applications
© Data streaming

e Applications and computational model
e Some key results

Your expected preparation

@ Good understanding of 1

e Fair understanding of all topics covered in the course
e Lessons + review of main references

@ In-depth knowledge of one topic of choice
e Main references + teacher's suggested readings
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More about the exam
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Course overview

The course

o Elective Course in Computer Networks consists of 3 CFU
units

e CFU: Credito Formativo Universitario

@ Students who attend the course may pass the exam for 1
to 4 units

@ An exam has to be passed for each chosen unit

Mark
@ A mark from 18 to 30 in each unit
o Final mark is average of votes achieved in all chosen units

@ Marks received in single units are communicated to the
responsible person, Prof. Marchetti-Spaccamela
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Course overview

Evaluation criteria

@ Quality of presentation
e How you present the topic, the language used etc.
e The organization of your presentation
e How clear and rigorous is your presentation
e Adequacy of references
@ Your understanding of the topic
e How confident you are with the topic
e How able you are to discuss your topic critically, to
answer questions, to address related topics
e How well you understand the basic underlying principles
e Your ability to outline potential or motivating application
scenarios behind the topic considered
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Vassive data US Bbones [Odlyzko, 2003] [lpoque GMBH, 2007]
year TB/month
1990 L.0
1991 2.0
1992 4.4
1993 8.3 Protocol Type Distibution
1994 16.3 s
1995 ?
1996 1,600
1997 2,500 - 4,000 e

1998 5,000 - 8,000
1999 10,000 - 16,000
2000 20,000 - 35,000
2001 40,000 - 70,000 TumeEnc
2002 80,000 - 140,000

e Traffic explosion in past years [Muthukrishnan, 2005]
e 30 billions emails, 1 billions SMS, IMs daily (2005)
o ~ 1 billion packets/router x hr

P2P, 73.79%



SNMP log

Router

@ SNMP: (Router ID, Interface ID, Timestamp, Bytes sent since
last obs.)

@ Flow: (Source IP, Dest IP, Start Time, Duration, No. Packets,
No. Bytes)

@ (Source IP, Dest IP, Src/Dest Port Numbers, Time, No. Bytes)



Main memory

retrieve obj(k)

LI

@ Huge amounts of data

@ Large number of retrieve requests per sec.
@ DB index in main memory

@ May be too large to fit in or for fast access




< Challenges [Muthukrishnan, 2005]
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Massive data
sets

1 link with 2 Gb/s. Say avg packet size is 50 bytes

°
@ Number of pkts/sec = 5 Million

e Time per pkt = 0.2 usec (time available for processing)
°

If we capture pkt headers per packet: src/dest IP, time,
no of bytes, etc. at least 10 bytes

Space per second is 50 MB. Space per day is 4.5 TB per
link
@ ISPs have hundreds of links.

Focus is on solutions for real applications

Note: we seek solutions that work in practice — easy to
implement, require small space, allow fast updates and queries
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@ Sample space O
@ Event: subset E C O of outcomes that satisfy given
S condition _
basics @ In the example: choose a ball uniformly at random
o E = (A yellow ball is picked)

Sample space

Event

e»‘ Pr(E]

PrE] = 1/4
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Axioms of probability
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Probability . .
basics @ F is the set of possible events

e Example of event: A yellow or a green ball is extracted —
subset of yellow and green balls

Probability function: any function P : 7 — R
Axioms of probability:
@ Forevery Ec F: 0<P[E] <1
e P[O]=1
e For any set E; ..., E, of mutually disjoint events
(EiN Ep=0,Vi, h): PU"_E]=>"", P[E]
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For any two events Ej, E»:
o P[El U E2] = P[El] + P[Ez] - P[El N E2]
orababily @ Formula above generalizes
basics In general:

Fact
P[U?ZlE,-] < 27:1 P[Ei]

Conditional probability
Conditional probability that E occurs given that F occurs:

P[ENF]
P[E|F]|= ——=—
E1A =~ oA
Events Ei, ..., Ex are mutually independent if and only if, for

every I C {17 SO k} P[ﬂieIEi] = Hiel P[EI]
For two events E, F this implies: P[E | F] = P[E]
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Warm up questions
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Q1: Consider a bin with an equal number n/2 of white and
black balls. Assume w white and b black balls have been
Probability .
basics extracted with replacement.

@ What is the probability that the next ball extracted is
white?

@ What does the sample space look like?

Q2: Answer again the first question if extraction occurs
without replacement

Q3: n bits are transmitted in sequence over a line on which
every bit has probability 1/2 of being flipped due to noise,
independently of all other bits in the sequence. For k > 0,
give an upper bound on the probability that there is a
sequence of at least log, n+ k consecutive inversions (see also
exercise 1.11 in [Mitzenmacher and Upfal, 2005])



7= Q3: sketch of solution
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@ Let X; =1 if i-th bit flipped, 0 otherwise
ity o Let £ — (AHom My _ 1)
Solution
P[At least log, n + k consecutive bits flipped] =

P [u,”;{"gz =S E,} < ek plE) =

Syttt = 1] =

(n —logy n — k) (%)Iog2 ko (%)k

2nd inequality follows from Fact 1 about the probability of
event union, the 4th equality follows from independence of bit
flips
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An often useful theorem
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- Theorem
Probability

basics

Assume Eq, ... E, are mutually disjoint events such that
U/, E; = O. Then, considered any event B:

P[B] = Zn: P[BNE] = z”: P[B|E]P[Ei]
— il

Law of total probability

You should convince yourself (and prove) that the theorem
works
What happens if the E;’s are not disjoint?



Basics

L. Becchetti

Expectation and
variance of
discrete variables

Discrete random variables

Definition (Random variable)
Random variable on a sample space O:

X:0—=R

X is discrete if it can only take on a finite or countably infinite
set of values

Independence

X, Y independent if and only if

P[(X =x)N(Y =y)] = P[X = x]P[Y = y] for all possible
values x, y

X1, ..., X, mutually independent if and only if, for every

I C{1,...,k} and values x;, i € I

P[ﬂf'(el(xf = xi)] = erl PXi = xi]
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Definition (Expectation)

Random variable X on a sample space O.

Expectation and . B
variance of E[X] = E IP[X = I] ;
discrete variables

!

where j varies over all possible values in the range of X

Theorem (Linearity of expectation)

For any finite collection Xi, ..., Xy of discrete random

variables:
k k
> Xi| =D _EIX]
i=1 i=1

Note: this result holds always.

E




A: Assume we toss a fair coin n times. Let X denote the
number of heads. Determine E[X].
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A: Assume we toss a fair coin n times. Let X denote the
number of heads. Determine E[X].
Expectation and . \\e define binary variables Xi, ..., X,, with X; = 1 if the i-th

variance of

discrete variables.  coin toss gave head, 0 otherwise. We obviously have:

X = iX,-
i=1

Hence:

E[X] = D EX] =Y _PIX=1=7
i=1 i=1
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Expectation and
variance of
discrete variables

Bernoulli variable and binomial distribution

Assume an experiment succeeds with probability p and fails
with probability 1 — p. The following is Bernoulli indicator
variable:

Y — 1, The experiment succeeds
~ | 0, Otherwise

Of course: E[Y] = P[Y = 1] = p (prove)

Binomial distribution

Consider n independent trials of the experiment and let X
denote the number of successes. Then X follows the binomial
distribution:

Pix == (7)pa-p-

Q4: prove the claim above. Prove that E[X] = np
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Geometric distribution
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Consider the number Z of independent trials until the first
success of the experiment. Prove that X follows a geometric
distribution with parameter p, i.e.:
Expectation and P[Z = i] = (1 - p)lilp'

variance of
discrete variables

Expectation
Q5: prove that E[Z] = ;. Hint. Use the following result:

Lemma

Assume Z is a discrete random variable that takes on only
non-negative values:

E[Z] = f: P[Z > i]
i=1
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Conditional expectation
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Definition
Assume X and Y are discrete random variables.

Expectation and . 5 o d
variance o E X Y = = P X = Y =
discrete vafriables [ | I] ZJ [ J | I] ’
J
where j varies in the range of X.
The following holds:

Lemma

E[X]:ZE[X\Y:/]P[Y:/],

where i varies over the range of Y.
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Variance and more...
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Definition
If X is a random variable

oy var [X] = E[(X — E[X])*].
discrete variables

o(X) = y/var [X] is the standard deviation of X.

The following holds:

Lemma
If X1,..., Xk are mutually independent random variables:
k k
E\J]Xx| =]TEX]
i=1 i=1

Q6: prove the lemma for k = 2.
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Expectation and
variance of
discrete variables

Example

Assume we observe a binary string S of variable length. In
particular, the length of the string falls in the range {1,...,n}
with uniform probability, while for any particular string length,
every bit is 1 or 0 with equal probability, independently of the
others. What is the average number of 1's observed?
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Example
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Assume we observe a binary string S of variable length. In

particular, the length of the string falls in the range {1,...,n}
with uniform probability, while for any particular string length,
every bit is 1 or 0 with equal probability, independently of the

Expectation and  Others. What is the average number of 1's observed?

S ribes Sol.z we apply Lemma 8. More in detail, let L denote the
random variable that gives the length of the string. For any
fixed value k of L, We define binary variables X, ..., Xk,
where X; is equal to the i-th bit of the string. If Y denotes

the number of 1's in S have:
ul k
E[Y|L=k|]= P[X;=1|L =k =—.
YIL=H =2 Pl =1L =K =

Applying Lemma 8:

n k_n+1
5=

E[Y]:ZH:E[Y\L:k]P[L:k]: "
L=1

S|

k=1
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“Concentration of measure refers to the phenomenon that a

function of a large number of random variables tends to

concentrate its values in a relatively narrow range (under

certain conditions of smoothness of the function and under
Concentration of  Certain conditions on the dependence amongst the set of
e random variables)” [Dubhashi and Panconesi, 2009].

In this lecture

@ General but weaker results (Markov's and Chebyshev's
inequality)

@ Strong results for the sum of independent random
variables in [0, 1] (Chernoff bound)



¥ Markov's and Chebyshev's inequalities
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Theorem (Markov's inequality)

Let X denote a random variable that assumes only
non-negative values. Then, for every a > 0:

Concentration of
measure

P[X > a] < E[X]

Theorem (Chebyshev's inequality)

Let X denote a random variable. Then, for every a > 0:

P[IX — E[X]| > 4] < "3’2[X].



##=  Markov vs Chebyshev
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@ Markov inequality applies to non-negative variables, while
Chebyshev's to any variable
@ Chebyshev's inequality often stronger, but you need at
least upper bound on variance (not always trivial to
estimate)

Concentration of

messure Example (Markov)
Consider n independent flips of a fair coin. Use Markov's and
Chebyshev's inequalities to give bound on the probability of
obtaining more than 3n/4 heads.
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Markov vs Chebyshev
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@ Markov inequality applies to non-negative variables, while
Chebyshev's to any variable

@ Chebyshev's inequality often stronger, but you need at
least upper bound on variance (not always trivial to
estimate)

Concentration of

messare Example (Markov)
Consider n independent flips of a fair coin. Use Markov's and
Chebyshev's inequalities to give bound on the probability of
obtaining more than 3n/4 heads.
Sol.: Let X; = 1 if i-th coin toss gives heads 0 otherwise and
let X =37 ; Xj. Of course, E[x] = n/2. Applying Markov's
inequality thus gives:
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Example (Chebyshev)

We need the variance of X in order to apply Chebyshev's
inequality. We have:

n 2
oo V7P =L EDD) [@( >>
Sl S el )

_ Z ] =2,

where last equality follows since i) the X; are mutually
independent, ii) E[X;] = 1/2 for every i and iii) var [X;] = 1/4
for every i.
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Example (Chebyshev cont.)
Now, from Chebyshev's inequality:
o var [X] 4
T (042

P{Xzin} §P[|X—E[X]|2£

Concentration of Observe the following:

measure

@ This result is much stronger than previous one

@ We implicitely proved a special case of a general result:
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Example (Chebyshev cont.)
Now, from Chebyshev's inequality:
o var [X] 4
T (042

P{Xzin} gP[\X—E[X]\zg

Concentration of Observe the following:

measure

@ This result is much stronger than previous one

o We implicitely proved a special case of a general result:

Theorem (Variance of the sum of independent variables)

If X1,...,X, are mutually independent random variables:

ZH:X; = Zvar [Xi] -
i=1 i=1

var
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Poisson trials
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Definition
X1,...,X, form a sequence of Poisson trials if they are binary
and mutually independent, so that P[X; = 1] = p;,
0<p <1

Concentration of

messuE Note the difference with Bernoulli trials: these are the special
case of Poisson trials when p; = p, for every i. In the next
slides:

@ We assume a sequence X, ..., X, of independent

Poisson trials
@ In particular: P[X; = 1] = p;
e X =5%7",Xand u=E[X].
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A set of powerful concentration bounds. Hold for the sum or
linear combination of Poisson trials.

Theorem (Chernoff bound (upper
tail)[Mitzenmacher and Upfal, 2005])

Concentration of Assume X1, ..., X, form a sequence of independent Poisson
trials, so that P[X; = 1] = p;, X = >_7_; X; and p = E[X].
Then:

1) £
For§>0: P[X > (1+6)u] < ((1;5)1%) (1)

2
For0<§<1:P[X>(1+06)u] <e 5H (2)
For any t > 6u: P[X >t] <27! (3)
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Theorem (Chernoff bound (lower
tail)[Mitzenmacher and Upfal, 2005])

Under the same assumptions, for 0 < § < 1:

675 K
Concentration of P[X é (1 - 5)/,L] < ((1 _ 5)1—5)

For0<6<1:PIX<(l—6)u]<e 5w

@ (2) and (5) most used in practice

(5)

@ Many different versions of the bound exist for different

scenarios, also addressing the issue of (limited)
dependence [Mitzenmacher and Upfal, 2005,
Dubhashi and Panconesi, 2009]
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Consider the upper tail. The proof uses Markov's inequality in
a very smart way. In particular, considered any s > 0:

PIX > (1+0)u] = P|e™ = X1+ < ;([fii
| [T, B[] TI0,(1+pi(e —1) _ [I1,eP=D
Concentration of T e om es(L+o)u - eslHou
ele*=1)u
= S

@ Second inequality follows from Markov's inequality, third
equality from independence of the X;'s, fourth inequality
since 1+ x < ¢e*

@ Bounds follow by appropriately choosing s (i.e.,
optimizing w.r.t. s)
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X (no. heads) the sum of independent Poisson trials
(Bernoulli trials in this case), with E[X] = n/2. We apply
bound (2) with 6 = 1/2 to get:

P[X > in] = P[X > (1+0)E[X]] < e 1
Concentration of

Remarks
@ Useful if n large enough
@ Observe that P[X > 3n/4]
o < 2/3 (Markov)
o < 4/n (Chebyshev)
o < e 1 (Chernoff)

@ Concentration results at the basis of statistics
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Dictionaries and
hashing

Dictionaries

A dynamic set S of objects from a discrete universe U, on
which (at least) the following operations are possible:

@ Item insertion
@ Item deletion
@ Set memberhisp: decide whether item x € S

Typically, it is assumed that each item in S is uniquely
identified by a key. Let obj (k) be item with key k:

Operations

insert(x, S): insert item x
delete(k, S): delete obj (k)
retrieve(k, S): retrieve obj (k)

This is a minimal set of operations. Any database implements
a (greatly augmented) dictionary
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Hash functions
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- Often used to implement insert, delete and retrieve in
a dictionary

- In general, a hash function h: U — [n] maps elements of
some discrete universe U onto integers belonging to some
range [n] = {0,1,...,n—1}. Typically, |U| >> n. ldeally, the
mapping should be uniform. We assume without loss of
generality that U is some subset of the integers (why can we
state this?)

Dictionaries and
hashing

n-1—]

//_.
L h | T— 7
1

0

Ideal behaviour: items in U mapped
uniformly at random in {0, ..., n-1}




= Hash functions/2
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Mapping should look “random” — If m items are mapped,
then every i € [n] should be the image of ~ m/n items.
e Eg.: if U={0,...,m— 1} consider h(x) = x mod p,
with p a suitable prime.
@ Problem: this works if items from U appear at random
— often many correlations present

Dictionar @ Q7a: create an adversarial sequence that maps all
|ct|9nar|es and )
ISl elements of the sequence onto the same i

@ Main question in many applications: mitigate the impact
of adversarial sequences

@ Q7b: Assume n < m items chosen u.a.r. from U are
inserted into a hash table of size p, using the hash
function h(x) = x mod p, with p a suitable prime.
What is the expected number of items hashed to the
same location of the hash table?



»#  Randomizing the hash function
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Use a randomly generated hash function to map items to
integers.

Idea: even if correlations present, items are mapped
randomly. Ideal behaviour

@ For each x € U, P[h(x) = j] = 1/n, for every

j=1...,n
Dictionaries and @ The values h(x) are independent
hashing
Caveats

@ This does not mean that every evaluation of h(x) yields a
different random mapping, but only that h(x) is equally
likely to take any value in [0,...,n — 1]

@ Not easy to design an “ideal” hash function (many truly
random bits necessary)
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We assume we have a suitably defined family F of hash
functions, such that every member of h € F is a function
h:U—[n].

Definition
F is a 2-universal hash family if, for any h(-) chosen uniformly
at random from F and for every x,y € U we have:

Dictionaries and
hashing

PIh(x) = h(y)] < -

@ Definitions generalizes to k-universality
[Mitzenmacher and Upfal, 2005, Section 13.3]

@ Problem: define “compact” universal hash families
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Dictionaries and
hashing

A 2-universal family

Assume U = [m] and assume the range of the hash functions
we use is [n], where m > n (typically, m >> n). We consider
the family F defined by h,p(x) = ((ax + b) mod p) mod n,
where ae {1,...,p—1}, b€ {0,...,p} and p is a prime
p=m.

How to choose u.a.r. from F

For a given p: Simply choose a u.a.r. from {1,...,p— 1} and
b u.a.r. from {0,...,p}



F is a 2-universal hash family. In particular, if a, b are chosen
uniformly at random:

Phas(x) = 1] = %,VX e U,ieln]

1
Plhap(x) = hap(y)] < ;,Vx,y e U.




Consider a hash table implemented as follows:
@ An array A of lists of size n
@ h: U — [n], mapping each object in U onto a position of
A
@ A; is the list of objects hashed to position i (collisions
solved by concatenation)

h(x)

Hash table using concatenation A
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Example/cont.
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Case 1

Assume that h(-) is selected uniformly at random from an
“ideal” family, so that:

1. Plh(x) =il=1 vxe U,i€[n]

2. Vk,x1,...,xx € U, Vy1,...,yx € [n]:

k
1
Dictionaries and P [ﬂ( ] H P[h X’ ’ a n

hashing

Q8

Consider the insertion of the m elements of U and denote by
S; the size of list A;. Prove the following: for 0 < e < 1

P[Ei:5i>(1+e)%} <1

n

whenever m = Q(e%n In n) (Use Chernoff bound)
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Example/cont.
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Case 2

Assume that h(-) is selected uniformly at random from a
2-universal hash family

Q9

Prove that the following, much weaker result holds:

hDai::‘i;')‘lr:ries and P [E” : 5[. > m\/§] < 1
n 2

Hints:
© Define Xj = 1 iff items j and kK mapped onto same array
position and let X = ZJ'":_ll > h—j+1 Xjk the total
number of collisions.

@ Note that, if the maximum number of items mapped to
the same position in Ais Y, then X > (g)
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Dictionaries and
hashing
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