L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Overview and basic techniques

Luca Becchetti

"Sapienza" Università di Roma – Rome, Italy

June 18, 2011

I Becchetti

2 Massive data sets

Probability basics

Expectation and variance of discrete variables

5 Concentration of measure

6 Dictionaries and hashing

L. Becchetti

Course overview

Massive dat sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Goals

- Course only provides an overview of a few areas
- Understand problems in handling massive data sets
- Understand basic principles in addressing these issues
- Perform a deeper study of an area of choice among eligible ones
 - Undestand problems
 - Understand basic techniques
 - Understand key results

Exam (2008/2009)

- Written exam
- Answer 2 out of a collection of 10 possible published questions (7.5 points each)
- Answer a few questions about a research paper (25 points)
- Example: explain reference scenario/key results/techniques used/...

L. Becchetti

Course overview

Massive dat sets

- Probability basics
- Expectation and variance of discrete variables
- Concentration of measure
- Dictionaries and hashing

Contents and expected preparation

Topics

- Basic techniques and tools
 - Basic probabilistic tools
 - Brief review of hashing
- Bloom filter A compact database summary
 - Properties and applications
- Oata streaming
 - Applications and computational model
 - Some key results

Your expected preparation

- Good understanding of 1
- Fair understanding of all topics covered in the course
 - Lessons + review of main references
- In-depth knowledge of one topic of choice
 - $\bullet\,$ Main references + teacher's suggested readings

L. Becchetti

Course overview

Massive dat sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

More about the exam

The course

- Elective Course in Computer Networks consists of 3 CFU units
 - CFU: Credito Formativo Universitario
- Students who attend the course may pass the exam for 1 to 4 units
- An exam has to be passed for each chosen unit

Mark

- A mark from 18 to 30 in each unit
- Final mark is average of votes achieved in all chosen units
- Marks received in single units are communicated to the responsible person, Prof. Marchetti-Spaccamela

L. Becchetti

Course overview

Massive dat sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

For this unit...

Evaluation criteria

• Quality of presentation

- How you present the topic, the language used etc.
- The organization of your presentation
- How clear and rigorous is your presentation
- Adequacy of references
- Your understanding of the topic
 - How confident you are with the topic
 - How able you are to discuss your topic critically, to answer questions, to address related topics
 - How well you understand the basic underlying principles
 - Your ability to outline potential or motivating application scenarios behind the topic considered

L. Becchetti

Course overview

Massive	dat
sets	

Probabilit basics

Expectation and variance of discrete variable

Concentration or measure

Dictionaries and hashing

Motivations/1

US	Bbones	[Odlyzko, 2003]	[Ipoque GMBH, 2007]
	year	TB/month	
_	1990	1.0	
	1991	2.0	
	1992	4.4	
	1993	8.3	Protocol Type Distribution
	1994	16.3	Germany, 2007
	1995	?	
	1996	1,500	
	1997	2,500 - 4,000	HTTP, 10.71%
	1998	5,000 - 8,000	Streaming, 8,26%
	1999	10,000 - 16,000	Streaming, 6.26% DDL, 4.57% VoIP/Skype, 0.98%
	2000	20,000 - 35,000	FTP, 0.53% Mail, 0.39%
	2001	40,000 - 70,000	IM, 0.34% -/ Tunnel/Encryption, 0.34% - NNTP, 0.09% -/
	2002 8	0,000 - 140,000	11111 (0.00) //

- Traffic explosion in past years [Muthukrishnan, 2005]
 - 30 billions emails, 1 billions SMS, IMs daily (2005)
 - ≈ 1 billion packets/router x hr

L. Becchetti

Course overview

Massive data sets

- Probability basics
- Expectation and variance of discrete variables
- Concentration o measure
- Dictionaries and hashing

LAN (Shine log) (INTERNET Packet log) CLAN (Control of the second second

Logs

Motivations/2

- SNMP: (Router ID, Interface ID, Timestamp, Bytes sent since last obs.)
- Flow: (Source IP, Dest IP, Start Time, Duration, No. Packets, No. Bytes)
- (Source IP, Dest IP, Src/Dest Port Numbers, Time, No. Bytes)

L. Becchetti

Course overview

Massive data sets

- Probability basics
- Expectation and variance of discrete variables
- Concentration o measure
- Dictionaries and hashing

Database access

- Huge amounts of data
- Large number of retrieve requests per sec.
- DB index in main memory
- May be too large to fit in or for fast access

Motivations/3

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Challenges [Muthukrishnan, 2005]

- $\bullet~1$ link with 2 Gb/s. Say avg packet size is 50 bytes
- Number of pkts/sec = 5 Million
- Time per pkt = 0.2 μ sec (time available for processing)
- If we capture pkt headers per packet: src/dest IP, time, no of bytes, etc. at least 10 bytes
- Space per second is 50 MB. Space per day is 4.5 TB per link
- ISPs have hundreds of links.

Focus is on solutions for real applications

Note: we seek solutions that work in practice \rightarrow easy to implement, require small space, allow fast updates and queries

L. Becchetti

Course overview

Massive dat sets

Probability basics

Expectation and variance of discrete variables

Concentration c measure

Dictionaries and hashing

Events and probability

- Sample space O
- Event: subset E ⊆ O of outcomes that satisfy given condition
- In the example: choose a ball uniformly at random
 - *E* = (A yellow ball is picked)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Axioms of probability

- $\bullet \ \mathcal{F}$ is the set of possible events
 - Example of event: A yellow or a green ball is extracted \rightarrow subset of yellow and green balls

Probability function: any function $\bm{P}:\mathcal{F}\to \mathbb{R}$ Axioms of probability:

- For every $E \in \mathcal{F}$: $0 \leq \mathbf{P}[E] \leq 1$
- **P**[*O*] = 1
- For any set $E_1 \dots, E_n$ of mutually disjoint events $(E_i \cap E_h = \emptyset, \forall i, h)$: $\mathbf{P}[\cup_{i=1}^n E_i] = \sum_{i=1}^n \mathbf{P}[E_i]$

L. Becchetti

Course overview

Massive data

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Some basic facts

For any two events E_1, E_2 :

- $\mathbf{P}[E_1 \cup E_2] = \mathbf{P}[E_1] + \mathbf{P}[E_2] \mathbf{P}[E_1 \cap E_2]$
- Formula above generalizes

In general:

Fact

$$\mathbf{P}[\cup_{i=1}^{n} E_i] \leq \sum_{i=1}^{n} \mathbf{P}[E_i]$$

Conditional probability

Conditional probability that E occurs given that F occurs:

$$\mathsf{P}[E \mid F] = \frac{\mathsf{P}[E \cap F]}{\mathsf{P}[F]}$$

Events E_1, \ldots, E_k are mutually independent if and only if, for every $I \subseteq \{1, \ldots, k\}$: $\mathbf{P}[\cap_{i \in I} E_i] = \prod_{i \in I} \mathbf{P}[E_i]$ For two events E, F this implies: $\mathbf{P}[E | F] = \mathbf{P}[E]$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Q1: Consider a bin with an equal number n/2 of white and black balls. Assume *w* white and *b* black balls have been extracted *with replacement*.

- What is the probability that the next ball extracted is white?
- What does the sample space look like?

Warm up questions

Q2: Answer again the first question if extraction occurs *without* replacement

Q3: *n* bits are transmitted in sequence over a line on which every bit has probability 1/2 of being flipped due to noise, independently of all other bits in the sequence. For k > 0, give an upper bound on the probability that there is a sequence of *at least* $\log_2 n + k$ consecutive inversions (see also exercise 1.11 in [Mitzenmacher and Upfal, 2005])

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Q3: sketch of solution

• Let
$$X_i = 1$$
 if *i*-th bit flipped, 0 otherwise

• Let
$$E_i = (\wedge_{t=i}^{i+\log_2 n+k} X_i = 1)$$

Solution

$$\mathbf{P}[\text{At least } \log_2 n + k \text{ consecutive bits flipped}] = \mathbf{P}[\bigcup_{i=1}^{n-\log_2 n-k} E_i] \le \sum_{i=1}^{n-\log_2 n-k} \mathbf{P}[E_i] = \sum_{i=1}^{n-\log_2 n-k} \mathbf{P}[\wedge_{t=i}^{i+\log_2 n+k} X_i = 1] = (n - \log_2 n - k) \left(\frac{1}{2}\right)^{\log_2 n+k} < \left(\frac{1}{2}\right)^k$$

2nd inequality follows from Fact 1 about the probability of event union, the 4th equality follows from independence of bit flips

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

An often useful theorem

Theorem

Assume $E_1, \ldots E_n$ are mutually disjoint events such that $\bigcup_{i=1}^{n} E_i = O$. Then, considered any event B:

$$\mathbf{P}[B] = \sum_{i=1}^{n} \mathbf{P}[B \cap E_i] = \sum_{i=1}^{n} \mathbf{P}[B \mid E_i] \mathbf{P}[E_i]$$

Law of total probability

You should convince yourself (and prove) that the theorem works What happens if the E_i 's are not disjoint?

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Discrete random variables

Definition (Random variable)

Random variable on a sample space O:

 $X: O \to \mathbb{R}$

X is *discrete* if it can only take on a finite or countably infinite set of values

Independence

X, Y independent if and only if $\mathbf{P}[(X = x) \cap (Y = y)] = \mathbf{P}[X = x] \mathbf{P}[Y = y] \text{ for all possible}$ values x, y X₁,...,X_k mutually independent if and only if, for every $I \subseteq \{1,...,k\}$ and values $x_i, i \in I$: $\mathbf{P}[\cap_{i \in I}^k (X_i = x_i)] = \prod_{i \in I}^k \mathbf{P}[X_i = x_i]$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Expectation of discrete random variables

Definition (Expectation)

Random variable X on a sample space O.

$$\mathbf{E}[X] = \sum_{i} i \mathbf{P}[X=i],$$

where i varies over all possible values in the range of X

Theorem (Linearity of expectation)

For any finite collection X_1, \ldots, X_k of discrete random variables:

$$\mathsf{E}\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} \mathsf{E}[X_i]$$

Note: this result holds always.

Example

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

A: Assume we toss a fair coin *n* times. Let *X* denote the number of heads. Determine E[X].

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example

A: Assume we toss a fair coin *n* times. Let *X* denote the number of heads. Determine $\mathbf{E}[X]$. We define binary variables X_1, \ldots, X_n , with $X_i = 1$ if the *i*-th coin toss gave head, 0 otherwise. We obviously have:

$$X = \sum_{i=1}^{n} X_i$$

Hence:

$$\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} \mathbf{P}[X_i = 1] = \frac{n}{2}$$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration or measure

Dictionaries and hashing

Bernoulli variable and binomial distribution

Assume an experiment succeeds with probability p and fails with probability 1 - p. The following is *Bernoulli indicator* variable:

 $Y = \begin{cases} 1, \text{ The experiment succeeds} \\ 0, \text{ Otherwise} \end{cases}$

Of course:
$$\mathbf{E}[Y] = \mathbf{P}[Y = 1] = p$$
 (prove)

Binomial distribution

Consider n independent trials of the experiment and let X denote the number of successes. Then X follows the *binomial* distribution:

$$\mathbf{P}[X=i] = \binom{n}{i} p^i (1-p)^{n-i}$$

Q4: prove the claim above. Prove that E[X] = np

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Geometric distribution

Consider the number Z of independent trials until the first success of the experiment. *Prove* that X follows a *geometric* distribution with parameter p, i.e.:

$$\mathbf{P}[Z=i] = (1-p)^{i-1}p.$$

Expectation

Q5: prove that $\mathbf{E}[Z] = \frac{1}{p}$. **Hint.** Use the following result:

Lemma

Assume Z is a **discrete** random variable that takes on only **non-negative** values:

$$\mathsf{E}[Z] = \sum_{i=1}^{\infty} \mathsf{P}[Z \ge i]$$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Conditional expectation

Definition

Assume X and Y are discrete random variables.

$$\mathbf{E}[X \mid Y = i] = \sum_{j} j \mathbf{P}[X = j \mid Y = i],$$

where j varies in the range of X.

The following holds:

Lemma

$$\mathbf{E}[X] = \sum_{i} \mathbf{E}[X \mid Y = i] \mathbf{P}[Y = i],$$

where i varies over the range of Y.

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Variance and more...

Definition

If X is a random variable

$$\operatorname{var}\left[X\right] = \operatorname{\mathsf{E}}\left[(X - \operatorname{\mathsf{E}}[X])^2\right].$$

 $\sigma(X) = \sqrt{\operatorname{var}[X]}$ is the standard deviation of X.

The following holds:

Lemma

If X_1, \ldots, X_k are mutually independent random variables:

$$\mathsf{E}\left[\prod_{i=1}^{k} X_{i}\right] = \prod_{i=1}^{k} \mathsf{E}[X_{i}]$$

Q6: prove the lemma for k = 2.

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Example

Assume we observe a binary string S of variable length. In particular, the length of the string falls in the range $\{1, \ldots, n\}$ with uniform probability, while for any particular string length, every bit is 1 or 0 with equal probability, *independently* of the others. What is the average number of 1's observed?

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Example

Assume we observe a binary string S of variable length. In particular, the length of the string falls in the range $\{1, \ldots, n\}$ with uniform probability, while for any particular string length, every bit is 1 or 0 with equal probability, *independently* of the others. What is the average number of 1's observed? **Sol.:** we apply Lemma 8. More in detail, let *L* denote the random variable that gives the length of the string. For any fixed value *k* of *L*, We define binary variables X_1, \ldots, X_k , where X_i is equal to the *i*-th bit of the string. If *Y* denotes the number of 1's in S have:

$$\mathbf{E}[Y | L = k] = \sum_{i=1}^{k} \mathbf{P}[X_i = 1 | L = k] = \frac{k}{2}.$$

Applying Lemma 8:

$$\mathbf{E}[Y] = \sum_{L=1}^{n} \mathbf{E}[Y \mid L = k] \mathbf{P}[L = k] = \frac{1}{n} \sum_{k=1}^{n} \frac{k}{2} = \frac{n+1}{4}.$$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Concentration of measure

"Concentration of measure refers to the phenomenon that a function of a large number of random variables tends to concentrate its values in a relatively narrow range (under certain conditions of smoothness of the function and under certain conditions on the dependence amongst the set of random variables)" [Dubhashi and Panconesi, 2009].

In this lecture

- General but weaker results (Markov's and Chebyshev's inequality)
- Strong results for the sum of independent random variables in [0, 1] (Chernoff bound)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Markov's and Chebyshev's inequalities

Theorem (Markov's inequality)

Let X denote a random variable that assumes only non-negative values. Then, for every a > 0:

$$\mathsf{P}[X \ge a] \le \frac{\mathsf{E}[X]}{a}.$$

Theorem (Chebyshev's inequality)

Let X denote a random variable. Then, for every a > 0:

$$\mathsf{P}[|X - \mathsf{E}[X]| \ge \mathsf{a}] \le \frac{\mathsf{var}[X]}{\mathsf{a}^2}$$

L. Becchetti

Course overview

- Massive data sets
- Probability basics
- Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

- Markov inequality applies to *non-negative* variables, while Chebyshev's to any variable
- Chebyshev's inequality often stronger, but you need at least upper bound on variance (not always trivial to estimate)

Example (Markov)

Markov vs Chebyshev

Consider *n* independent flips of a fair coin. Use Markov's and Chebyshev's inequalities to give bound on the probability of obtaining more than 3n/4 heads.

L. Becchetti

Course overview

- Massive data
- Probability basics
- Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

• Markov inequality applies to *non-negative* variables, while Chebyshev's to any variable

• Chebyshev's inequality often stronger, but you need at least upper bound on variance (not always trivial to estimate)

Example (Markov)

Markov vs Chebyshev

Consider *n* independent flips of a fair coin. Use Markov's and Chebyshev's inequalities to give bound on the probability of obtaining more than 3n/4 heads.

Sol.: Let $X_i = 1$ if *i*-th coin toss gives heads 0 otherwise and let $X = \sum_{i=1}^{n} X_i$. Of course, $\mathbf{E}[x] = n/2$. Applying Markov's inequality thus gives:

$$\mathbf{P}\left[X > \frac{3}{4}n\right] \le \frac{n/2}{3n/4} = \frac{2}{3}.$$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/2

Example (Chebyshev)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/2

Example (Chebyshev)

We need the variance of X in order to apply Chebyshev's inequality. We have:

$$\mathbf{var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^{2}] = \mathbf{E}\left[\left(\sum_{i=1}^{n} \left(X_{i} - \frac{1}{2}\right)\right)^{2}\right]$$
$$= \sum_{i=1}^{n} \mathbf{E}\left[\left(X_{i} - \frac{1}{2}\right)^{2}\right] + 2\sum_{i=1}^{n-1} \sum_{h=i+1}^{n} \mathbf{E}\left[\left(X_{i} - \frac{1}{2}\right)\left(X_{h} - \frac{1}{2}\right)\right]$$
$$= \sum_{i=1}^{n} \mathbf{var}[X_{i}] = \frac{n}{4},$$

where last equality follows since i) the X_i are mutually independent, ii) $\mathbf{E}[X_i] = 1/2$ for every *i* and iii) $\mathbf{var}[X_i] = 1/4$ for every *i*.

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/3

Example (Chebyshev cont.)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/3

Example (Chebyshev cont.)

Now, from Chebyshev's inequality:

$$\mathbf{P}\left[X \ge \frac{3}{4}n\right] \le \mathbf{P}\left[|X - \mathbf{E}[X]| \ge \frac{n}{4}\right] \le \frac{\mathsf{var}\left[X\right]}{(n/4)^2} = \frac{4}{n}$$

Observe the following:

- This result is much stronger than previous one
- We implicitely proved a special case of a general result:

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/3

Example (Chebyshev cont.)

Now, from Chebyshev's inequality:

$$\mathbf{P}\left[X \ge \frac{3}{4}n\right] \le \mathbf{P}\left[|X - \mathbf{E}[X]| \ge \frac{n}{4}\right] \le \frac{\operatorname{var}\left[X\right]}{(n/4)^2} = \frac{4}{n}.$$

Observe the following:

- This result is much stronger than previous one
- We implicitely proved a special case of a general result:

Theorem (Variance of the sum of independent variables)

If X_1, \ldots, X_n are mutually independent random variables:

$$\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]=\sum_{i=1}\operatorname{var}\left[X_{i}\right].$$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Poisson trials

Definition

 X_1, \ldots, X_n form a sequence of Poisson trials if they are binary and mutually independent, so that $\mathbf{P}[X_i = 1] = p_i$, $0 < p_i \leq 1$.

Note the difference with Bernoulli trials: these are the special case of Poisson trials when $p_i = p$, for every *i*. In the next slides:

- We assume a sequence X_1, \ldots, X_n of independent Poisson trials
- In particular: $\mathbf{P}[X_i = 1] = p_i$

•
$$X = \sum_{i=1}^{n} X_i$$
 and $\mu = \mathbf{E}[X]$.

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Chernoff bound(s)

A set of powerful concentration bounds. Hold for the sum or linear combination of Poisson trials.

Theorem (Chernoff bound (upper tail)[Mitzenmacher and Upfal, 2005])

Assume X_1, \ldots, X_n form a sequence of independent Poisson trials, so that $\mathbf{P}[X_i = 1] = p_i$, $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then:

For
$$\delta > 0$$
: $\mathbf{P}[X \ge (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$ (1)

For
$$0 < \delta \leq 1$$
: $\mathbf{P}[X \geq (1+\delta)\mu] \leq e^{-\frac{\delta^2}{3}\mu}$ (2)

For any
$$t \ge 6\mu$$
: $\mathbf{P}[X \ge t] \le 2^{-t}$ (3)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Chernoff bound(s)/cont.

Theorem (Chernoff bound (lower tail)[Mitzenmacher and Upfal, 2005])

Under the same assumptions, for $0 < \delta < 1$:

$$\mathsf{P}[X \le (1-\delta)\mu] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \tag{4}$$

For
$$0 < \delta \le 1$$
: $\mathbf{P}[X \le (1 - \delta)\mu] \le e^{-\frac{\delta^2}{2}\mu}$ (5)

- (2) and (5) most used in practice
- Many different versions of the bound exist for different scenarios, also addressing the issue of (limited) dependence [Mitzenmacher and Upfal, 2005, Dubhashi and Panconesi, 2009]

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Sketch of proof for Chernoff bounds

Consider the upper tail. The proof uses Markov's inequality in a very smart way. In particular, considered any s > 0:

$$\begin{aligned} \mathbf{P}[X \ge (1+\delta)\mu] &= \mathbf{P}\Big[e^{sX} \ge e^{s(1+\delta)\mu}\Big] \le \frac{\mathbf{E}\big[e^{sX}\big]}{e^{s(1+\delta)\mu}} \\ &= \frac{\prod_{i=1}^{n} \mathbf{E}\big[e^{sX_i}\big]}{e^{s(1+\delta)\mu}} = \frac{\prod_{i=1}^{n}(1+p_i(e^s-1))}{e^{s(1+\delta)\mu}} \le \frac{\prod_{i=1}^{n} e^{p_i(e^s-1)}}{e^{s(1+\delta)\mu}} \\ &= \frac{e^{(e^s-1)\mu}}{e^{s(1+\delta)\mu}}. \end{aligned}$$

- Second inequality follows from Markov's inequality, third equality from independence of the X_i 's, fourth inequality since $1 + x \le e^x$
- Bounds follow by appropriately choosing *s* (i.e., optimizing w.r.t. *s*)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example: coin flips

X (no. heads) the sum of independent Poisson trials (Bernoulli trials in this case), with $\mathbf{E}[X] = n/2$. We apply bound (2) with $\delta = 1/2$ to get:

$$\mathbf{P}\left[X \ge \frac{3}{4}n\right] = \mathbf{P}[X \ge (1+\delta)\mathbf{E}[X]] \le e^{-\frac{n}{12}}$$

Remarks

- Useful if *n* large enough
- Observe that $\mathbf{P}[X \ge 3n/4]$
 - $\leq 2/3$ (Markov)
 - $\leq 4/n$ (Chebyshev)
 - $\leq e^{-\frac{n}{12}}$ (Chernoff)
- Concentration results at the basis of statistics

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

A dynamic set S of objects from a discrete universe U, on which (at least) the following operations are possible:

- Item insertion
- Item deletion
- Set memberhisp: decide whether item $x \in S$

Typically, it is assumed that each item in S is *uniquely* identified by a *key*. Let obj(k) be item with key k:

Operations

Dictionaries

insert(x, S): insert item x
delete(k, S): delete obj(k)
retrieve(k, S): retrieve obj(k)

This is a minimal set of operations. Any database implements a (greatly augmented) dictionary

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Hash functions

- Often used to implement insert, delete and retrieve in a dictionary

- In general, a hash function $h: U \to [n]$ maps elements of some discrete universe U onto integers belonging to some range $[n] = \{0, 1, \ldots, n-1\}$. Typically, |U| >> n. Ideally, the mapping should be uniform. We assume without loss of generality that U is some subset of the integers (why can we state this?)

L. Becchetti

Course overview

Massive data

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Hash functions/2

Mapping should look "random" \rightarrow If *m* items are mapped, then every $i \in [n]$ should be the image of $\approx m/n$ items.

- E.g.: if $U = \{0, \dots, m-1\}$ consider $h(x) = x \mod p$, with p a suitable prime.
- Problem: this works if items from U appear at random \rightarrow often many correlations present
- **Q7a:** create an adversarial sequence that maps all elements of the sequence onto the same *i*
- Main question in many applications: mitigate the impact of adversarial sequences
- Q7b: Assume n ≤ m items chosen u.a.r. from U are inserted into a hash table of size p, using the hash function h(x) = x mod p, with p a suitable prime. What is the expected number of items hashed to the same location of the hash table?

L. Becchetti

Course overview

Massive data sets

- Probability basics
- Expectation and variance of discrete variables
- Concentration of measure

Dictionaries and hashing

Randomizing the hash function

Use a randomly generated hash function to map items to integers.

Idea: even if correlations present, items are mapped randomly. Ideal behaviour

- For each x ∈ U, P[h(x) = j] = 1/n, for every j = 1,..., n
- The values h(x) are independent

Caveats

- This does not mean that every evaluation of h(x) yields a different random mapping, but only that h(x) is equally likely to take any value in $[0, \ldots, n-1]$
- Not easy to design an "ideal" hash function (many truly random bits necessary)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Families of universal hash functions

We assume we have a suitably defined family \mathcal{F} of hash functions, such that every member of $h \in \mathcal{F}$ is a function $h: U \rightarrow [n]$.

Definition

 \mathcal{F} is a 2-universal hash family if, for any $h(\cdot)$ chosen *uniformly at random* from \mathcal{F} and for every $x, y \in U$ we have:

$$\mathbf{P}[h(x)=h(y)]\leq \frac{1}{n}$$

- Definitions generalizes to *k*-universality [Mitzenmacher and Upfal, 2005, Section 13.3]
- Problem: define "compact" universal hash families

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

Assume U = [m] and assume the range of the hash functions we use is [n], where $m \ge n$ (typically, m >> n). We consider the family \mathcal{F} defined by $h_{ab}(x) = ((ax + b) \mod p) \mod n$, where $a \in \{1, \ldots, p-1\}$, $b \in \{0, \ldots, p\}$ and p is a prime $p \ge m$.

How to choose u.a.r. from \mathcal{F}

A 2-universal family

For a given p: Simply choose a u.a.r. from $\{1, \ldots, p-1\}$ and b u.a.r. from $\{0, \ldots, p\}$

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration o measure

Dictionaries and hashing

A 2-universal family/cont.

Theorem ([Carter and Wegman, 1979, Mitzenmacher and Upfal, 2005])

 \mathcal{F} is a 2-universal hash family. In particular, if a, b are chosen uniformly at random:

$$\mathbf{P}[h_{ab}(x) = i] = \frac{1}{n}, \forall x \in U, i \in [n].$$
$$\mathbf{P}[h_{ab}(x) = h_{ab}(y)] \le \frac{1}{n}, \forall x, y \in U.$$

L. Becchetti

Course overview

Massive data

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example: hash tables

Consider a hash table implemented as follows:

- An array A of lists of size n
- $h: U \rightarrow [n]$, mapping each object in U onto a position of A
- *A_i* is the list of objects hashed to position *i* (collisions solved by concatenation)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/cont.

Case 1

Assume that $h(\cdot)$ is selected uniformly at random from an "ideal" family, so that:

1.
$$\mathbf{P}[h(x) = i] = \frac{1}{n}, \forall x \in U, i \in [n]$$

2. $\forall k, x_1, \dots, x_k \in U, \forall y_1, \dots, y_k \in [n]$

$$\mathbf{P}\left[\bigcap_{i=1}^{k}(h(x_i)=y_i)\right] = \prod_{i=1}^{k}\mathbf{P}[h(x_i)=y_i] = \frac{1}{n^k}$$

Q8

Consider the insertion of the *m* elements of *U* and denote by S_i the size of list A_i . Prove the following: for $0 < \epsilon < 1$

$$\mathbf{P}\Big[\exists i: S_i > (1+\epsilon)\frac{m}{n}\Big] \leq \frac{1}{n},$$

whenever $m = \Omega(\frac{1}{\epsilon^2}n \ln n)$ (Use Chernoff bound)

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Example/cont.

Case 2

Assume that $h(\cdot)$ is selected uniformly at random from a 2-universal hash family

Q9

Prove that the following, much weaker result holds:

$$\mathbf{P}\left[\exists i: S_i \geq m\sqrt{\frac{2}{n}}\right] \leq \frac{1}{2}.$$

Hints:

- Define X_{jk} = 1 iff items j and k mapped onto same array position and let X = ∑_{j=1}^{m-1} ∑_{k=j+1}^m X_{jk} the total number of collisions.
- ② Note that, if the maximum number of items mapped to the same position in A is Y, then X ≥ $\binom{Y}{2}$

L. Becchetti

Course overview

Massive dat sets

Probability basics

Expectation and variance of discrete variables

Concentration of measure

Dictionaries and hashing

Carter, J. L. and Wegman, M. N. (1979). Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143–154.

Dubhashi, D. and Panconesi, A. (2009). Concentration of Measure for the Analysis of Randomized Algorithms.

Cambridge University Press.

```
Ipoque GMBH, G. (2007).
```

Internet study 2007. URL: http://www.ipoque.com/.

Mitzenmacher, M. and Upfal, E. (2005).

Probability and Computing : Randomized Algorithms and Probabilistic Analysis.

Cambridge University Press.

Ē

Muthukrishnan, S. (2005).

Data stream algorithms. URL: http://www.cs.rutgers.edu/~muthu/str05.html.

L. Becchetti

Course overview

Massive data sets

Probability basics

Expectation and variance of discrete variables

Concentration or measure

Dictionaries and hashing

📄 Odlyzko, A. M. (2003).

Internet traffic growth: sources and implications.

In Proc. of SPIE conference on Optical Transmission Systems and Equipment for WDM Networking, pages 1–15.