
Finding Minimal Unsatis¯able Subformulae in
Satis¯ability instances

Renato Bruni and Antonio Sassano

Dipartimento di Informatica e Sistemistica, Universitµa di Roma \La Sapienza", via
Buonarroti 12 - I-00185 Roma, Italy. fbruni, sassanog@dis.uniroma1.it

Abstract. A minimal unsatis¯able subformula (MUS) of a given CNF is
a set of clauses which is unsatis¯able, but becomes satis¯able as soon as we
remove any of its clauses. In practical scenarios it is often useful to know,
in addition to the unsolvability of an instance, which parts of the instance
cause the unsolvability. An approach is here proposed to the problem of
automatic detection of such a subformula, with the double aim of ¯nding
quickly a small-sized one. We make use of an adaptive technique in order to
rapidly select an unsatis¯able subformula which is a good approximation of
a MUS. Hard unsatis¯able instances can be reduced to remarkably smaller
problems, and hence e±ciently solved, through this approach.

1 Introduction

We call minimal unsatis¯able subformula (MUS) of a logic CNF formula a
set of clauses which is unsatis¯able, but becomes satis¯able removing any
of its clauses (see sec. 2). An approach is here proposed to the problem of
automatic detection of a MUS, with the double aim of ¯nding it small, and
of proving unsatis¯ability faster. As for the ¯rst point, in fact, in practical
scenarios it is often useful to know, in addition to the unsolvability of an
instance, which parts of the instance cause the unsolvability. As for the
second point, the task of proving unsatis¯ability usually turns out to be
computationally harder than proving satis¯ability.

We can, roughly speaking, classify the solution methods for the Satis-
¯ability problem in exact and heuristic ones. The proposed procedure is a
complete one. Most of complete methods are branching procedures based
on case splitting. On the contrary, we use a new branching scheme, whose
branching rule consists in trying to satisfy at ¯rst the hardest clauses while
visiting a clause-based branching tree [1] (see sec. 3). Moreover, we use an
Adaptive Core Search in order to rapidly select an unsatis¯able subformula,
which is a good approximation of a MUS (see sec. 4). Small but hard un-
satis¯able instances can be e±ciently solved through this approach. More
important, unsatis¯able subformulae are detected in all problems solved.
Their size is often remarkably smaller than the original formulae.

2

2 Minimal Unsatis¯able Subformulae

Let A be the ground set of the literals ai. De¯ne :al = an+l and :an+l = al.
A ´ fai : ai = ®i for i = 1; : : : ; n ; ai = :®i¡n for i = n+1; : : : ; 2ng

Every clause is a set Cj = fai : i 2 Ij µ I ´ f1; : : : ; 2ngg. A CNF formula

is collection F of sets Cj over A: F = fCj : j = 1; : : : ; mg.
A truth assignment for the logical variable is a set S = fai : ai 2 S)

:ai 62 Sg. It is partial if j S j < n, i.e. some variables are not assigned,
and complete if j S j = n. Given a partial truth assignment S, the set of
possible completion is C(S) = fai : ai 62 S ^ :ai 62 Sg. S satis¯es C if and
only if S \ C 6= Á. S falsi¯es C if and only if C(S) \ C = Á.

A minimal unsatis¯able subformula (MUS) is a collection G µ F of
clauses of the original instance having the following properties:

1. 8 S; 9Cj 2 G such that S \ Cj = Á (unsatis¯able)
2. 8 H ½ G; 9S such that 8 Cj 2 H; S \ Cj 6= Á (every subset is sat.)

Of course, if any subformula is unsatis¯able, the whole problem is. On
the other hand, an unsatis¯able formula always contains a MUS.

There are procedures that, given a set of clauses, recognize whether it
is a MUS or not in polynomial time [3]. The key point is how to select a
MUS. We propose a procedure to rapidly select a good approximation of
a MUS, that means an unsatis¯able set of clauses having almost as few
clauses as the smallest MUS.

3 The Branching scheme

In order to reduce backtracks, it's better to start assignment satisfying the
more di±cult clauses [1], i.e. those which have the fewest satisfying truth
assignments, or, in other words, represent the more constraining relations.
The point is how to ¯nd hardest clauses. An a priori parameter is the length:
unit clauses are universally recognized to be hard, and the procedure of unit
propagation, universally performed, satis¯es them at ¯rst.

Our evaluation of clause hardness is based on the history of the search,
and keeps improving throughout the computation. We say that a clause Cj
is visited when we make a truth assignment aimed at satisfying Cj, and
that Cj cause a failure either when an empty clause is generated due to
truth assignment made on Cj, or when Cj itself becomes empty. Visiting
Cj many times shows that Cj is di±cult, and failing on it shows even more
clearly that Cj is di±cult. Counting visits and failures requires a very little
overhead. Therefore, we use the following branching rule:

3

1. Perform all unit resolutions.
2. When no unit clauses are present, make a truth assignment satisfying

the clause Cmax which maximizes our clause hardness measure ' (vj is
the number of visits, fj the number of failures, p a parameter giving
the penalty considered for failures, and lj the length of the clause).

'(Cj) = (vj + pfj) = lj

To satisfy Cmax, we add to the partial solution S a literal al 2 C(S) such
that al 2 Cmax. If we need to backtrack, the next assignment is not just
:al, because it does not satisfy Cmax. Instead, we add another literal ak 2
Cmax \ C(S) [1]. If Cmax \ C(S) becomes empty, we obviously backtrack

αa ∨ αb ∨ ¬ αc ∨ ¬ αdCmax

αa = T
αb = T
αa = F

αc = F
αa = F
αb = F

αd = F
αa = F
αb = F
αc = T

Fig. 1. Example of Cmax with the consistent branching possibilities.

again to the truth assignments made to satisfy the previous clause, until we
have another choice. This is a complete scheme, because, if a satisfying truth
assignment exists, it will be reached, and, if the search tree is completely
explored, the instance is unsatis¯able.

4 Adaptive Core Search

By applying the above branching scheme, and ' to evaluate clauses hard-
ness, we develop the following procedure of Adaptive Core Search.

0. (Preprocessing) Perform p branching iterations using just shortest clause
rule (This gives initial values to '). If instance is already solved, Stop.

1. (Base) Select an initial collection of hardest clauses whose cardinality
is proportional to cardinality of F :
C1 = fCj : Cj 2 F ; '(Cj) ¸ '(Ck) 8 Ck 2 F ; jCj = cjFj; c < 1g
This is our ¯rst core, i.e. candidate to be a MUS. Remaining clauses
form another collection O1 = F n C1.

4

k. (Iteration) Perform h branching iteration on Ck, ignoring Ok. Obtain
one of the following:

{ Ck is unsatis¯able) F is unsatis¯able, then Stop.

{ no answer after h iteration) Re-start from (Base) selecting a new
set of hardest clauses (allowed only a ¯nite number t of times, in
order to ensure termination: after t times, h is increased).

{ Ck is satis¯ed by solution Sk) Test Sk on Ok. One of the following:

- 8 Cj 2 Ok; Sk \ Cj 6= Á) F is satis¯ed, then Stop.
- 9 Cj 2 Ok; j C(Sk) \ Cj = Á. Call this collection of falsi¯ed

clauses Nk. Add them to the core, obtaining Ck+1 = Ck [Nk,
delete the partial solution Sk, and apply again (Iteration).

- 9 Cj 2 Ok; j Sk \ Cj = Á and 6 9 Cj 2 Ok; j C(Sk) \ Cj = Á Try
to extend the partial solution Sk to F putting Ck+1 = F and
apply again (Iteration).

The main idea is that we select the clauses that resulted hard during the
branching phase, and try to solve them as if they were our entire instance. If
they really are an unsatis¯able instance, we have done. If, after h branching
iterations we cannot solve them, this means that our instance is still too
big, and it must be reduced more. Finally, if we ¯nd a satisfying solution
for the core, we try to extend it to the rest of the clauses. If some clauses
are falsi¯ed, they are di±cult (together with the clauses of the core), and
therefore they should be added to the core.

The above algorithm is a complete one, and solves, in average case,
smaller subproblems at the nodes of the search tree, hence operations per-
formed, such like unit propagation, work only on current core Ck.

5 Computational results

Columns labeled 'branch', 'ACS sel', 'ACS sol', 'ACS tot' respectively are
the running times for the branching procedure only (without Adaptive
core Search), core selection, core solving, and total times of Adaptive Core
Search. ncore and mcore are the number of variables and clauses appearing
in the unsatis¯able subformula selected.

The test problems (all unsatis¯able) are from the DIMACS. Four of
them were used in the test set of the Second DIMACS Implementation
Challenge [2]. Our running times on them are compared with those of the
four faster complete algorithms of that challenge (C-sat , 2cl , TabuS and
BRR). Times are normalized according to the DIMACS benchmark dfmax,
in order to compare them in a machine-independent way.

5

6 Conclusions

An approach is here proposed to the problem of automatic detection of
a MUS, with the double aim of ¯nding a small-sized one, and of proving
unsatis¯ability faster. In particular, we present a clause based tree search
paradigm for Satis¯ability testing, a new heuristic to identify hard clauses,
that are the clauses most likely to appear in a MUS, and the complete
algorithm for approximating a Minimal Unsatis¯able Subformula.

Smaller unsatis¯able subformulae are detected in all the solved unsatis-
¯able instances. These can be remarkably smaller then the original formula,
and give an approximation of a MUS in extremely short times.

C sat 2cl Tabu BRR br. ACS ACS ACS
Problem n m sol S sel sol tot ncore mcore

aim-100-1 6-no-1 100 160 U 1.09 0.17 0.03 0.20 43 48

aim-100-1 6-no-2 100 160 U 0.67 0.54 0.39 0.93 46 54

aim-100-1 6-no-3 100 160 U 3.91 0.62 0.73 1.35 51 57

aim-100-1 6-no-4 100 160 U 0.52 0.61 0.35 0.96 43 48

aim-100-2 0-no-1 100 200 U 52.19 19.77 409.50 5.78 0.03 0.03 0.01 0.04 18 19

aim-100-2 0-no-2 100 200 U 14.63 11.00 258.58 0.57 0.38 0.05 0.04 0.09 37 40

aim-100-2 0-no-3 100 200 U 56.21 6.53 201.15 2.95 0.12 0.04 0.01 0.05 25 27

aim-100-2 0-no-4 100 200 U 0.05 11.66 392.23 4.80 0.11 0.04 0.01 0.05 26 32

Average (on last 4) 30.82 12.50 320.15 3.52 0.16 0.04 0.02 0.06

Problem n m literals sol branch ACS sel ACS sol ACS tot ncore mcore

aim-200-1 6-no-1 200 320 959 U 5.02 0.12 0.09 0.21 52 55

aim-200-1 6-no-2 200 320 959 U >600 14.04 32.31 46.35 76 87

aim-200-1 6-no-3 200 320 958 U >600 10.80 35.87 46.67 73 86

aim-200-1 6-no-4 200 320 960 U 5.81 0.09 0.10 0.19 45 48

aim-200-2 0-no-1 200 400 1199 U 15.53 0.20 0.27 0.47 49 55

aim-200-2 0-no-2 200 400 1199 U 3.87 0.17 0.18 0.35 46 50

aim-200-2 0-no-3 200 400 1198 U 1.04 0.05 0.12 0.17 35 37

aim-200-2 0-no-4 200 400 1197 U 0.70 0.16 0.02 0.18 36 42

Table 1. Results of C-SAT, 2cl(limited resolution), DPL with Tabu Search, B-reduction
and ACS on the aim series: 3-SAT arti¯cially generated problems. Times are normalized
according to dfmax results, as if they were obtained on our same machine.

References
1. J.N. Hooker and V. Vinay. Branching Rules for Satis¯ability. Journal of Automated
Reasoning, 15:359{383, 1995.

2. D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satis¯ability, vol-
ume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 1996.

3. O. Kullmann. An application of matroid theory to the SAT Problem. ECCC TR00-
018, Feb. 2000.

