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Abstract

We discuss the generalization of the point-to-point (and single-source) shortest path problem to
instances where the shortest path must satisfy a formal language constraint. We describe theoretical and
experimental results on a generalization of Dijkstra’s algorithm to finding regular-language-constrained
shortest paths. This algorithm forms a model for single-source shortest paths and point-to-point problems
that generalizes several previously published algorithms for multimodal shortest path problems.

The experiments include work with two different implementations. One is the original implementation
of the restriction of the problem to linear regular expressions, which formed a part of the TRANSIMS
project at the Los Alamos National Laboratory. The other is a new implementation of the general
regular-language-constrained shortest path algorithm that uses an implicit representation of the product
graph. The second implementation also provides several speed-up techniques which have previously only
been used for standard point-to-point shortest path problems.

Through our experiments, we study the scalability of the algorithm with respect to the network size
as well as with respect to the constraining language complexity. Further, we study the effectiveness of
speed-up techniques such as bidirectional search, shortest path containers, bit-vectors and the multilevel
technique when applied to the multimodal shortest path problems formalized by the regular language
constraints (Some of these are in progress and will be fully described in a more complete version of the
paper.)

1 Introduction

The shortest path problem is one of the most basic and best studied problems in combinatorial optimization.
We describe and discuss some generalizations of the single-source shortest path problem that allow efficient
algorithms and have applications that range from transportation science to databases.

In this extended abstract, we describe results obtained so far and sketch further work planned. Our
specific goals include:

1. We describe a generalization of Dijkstra’s algorithm, intended to solve regular-language constrained
shortest path problems. We discuss two separate implementations, one restricted to a special class
of languages most useful for transportation planning, and built into a module of the TRANSIMS
transportation simulation and analysis system, and the other fully general, and intended primarily to
study the problem, the scalability of the algorithm and its practical applications. Our implementations
can efficiently solve many shortest path problems that arise in transportation applications and that
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can easily be generalized to a time-dependent setting. However, in order to focus on regular-language
constraints, we only very briefly discuss the background of the time-dependent problem, and leave the
details for another paper.

2. We study the applicability of standard speed-up techniques for shortest path algorithms to the formal-
language-constrained setting. For example, we study the benefits of using a goal-directed search in
instances where the vertex-set of the graph is a set of points in a geometric space. We also examine
the benefits of using a bi-directional search in the context of the regular language constraints. We
envision a more comprehensive study, including several other speed-up techniques, and discuss their
applicability.

1.1 Shortest paths

The formulation of a shortest path problem consists of a network, a pair (source, destination) of points in the
network and possibly a starting time. The solution is an algorithm that finds the most efficient route from
the source to the destination leaving the source at the given time. Additional constraints may be imposed,
restricting the set of feasible routes. Once a network is specified, the source-destination pair and the starting
time together form a shortest-path query. We focus on single-source shortest path problems,

In most cases of interest to us, the network is adequately represented by a directed graph G = (V,E)
with a time-dependent cost (delay) function c : E × R+ → R+ that associates with each edge e and each
moment in time t a nonnegative real value c(e, t) called delay denoting the time needed to traverse the edge
e if the traversal is begun at time t. (We use these definitions for generality and to emphasize that all of our
algorithms and implementations can be generalized to the time-dependent case, however, we do not describe
the details of the algorithms, nor discuss any experimental results in this paper.) In the typical shortest
path problem instance, a source s ∈ V and a destination d ∈ V are given as vertices of G, and the start
time t0 as a real number. The problem then consists of finding a route represented by a path) P in G from
the source to the destination in the graph. The delay function provides a natural optimization objective:
find the shortest path from s to d, as measured by the delay function. In other words, given the start time
t0, find the path from s to d whose total delay (sum of delays on the individual edges of the path) is the
smallest possible among all paths that start at the same time t0.

In order to conform with most of the existing literature on shortest path problems, we allow our paths to
repeat vertices, thus effectively using the term to describe what is referred to as a trail in the graph-theoretic
literature. In fact, we allow our “paths” to be walks, that is, they may repeat even edges. However, other
features of the model usually imply that the most efficient paths never repeat edges, making this distinction
artificial. In rare cases where we need to ensure that a certain path does not repeat vertices, we use the term
simple path.

The choice of the cost function provides the formulation above with generality, but even more flexibility
arises from allowing additional restrictions on the feasible set of paths. The focus of most research has
traditionally been the cost function and besides the basic nonnegative cost model [D59], the case where
edge costs are allowed negative values is well solved and there is a rich literature on various formulations of
shortest-path problems with time-dependent costs [OR90]. There has been comparatively much less work
on the other approach to generalization, that is on constraints that restrict the set of feasible paths. There
are reports on studies of multimodal or intermodal shortest paths in transportation science literature, but
these are generally of limited applicability and are usually very simple from an algorithmic standpoint. The
comprehensive paper on the theoretical complexity of such problems is [BJM98].

1.2 Impetus: TRANSIMS

Our initial motivation for studying shortest paths came from the TRANSIMS project at Los Alamos National
Laboratory [TR+95a], and our first implementation formed a module of the larger system for transportation
analysis and simulation.

TRANSIMS was a multi-year project at the Los Alamos National Laboratory funded by the Department
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of Transportation and by the Environmental Protection Agency, with the purpose of developing new models
and methods for studying transportation planning questions, such as the economic and social impact of
building new roads in a large metropolitan area. Besides the documentation cited above, we refer the
reader to the web-site http://ndssl.vbi.vt.edu/transims.html for more extensive descriptions of the
TRANSIMS project and its successors. TRANSIMS conceptually decomposes the transportation planning
task into three time scales. First, a large time-scale associated with land use and demographic distribution as
a characterization of travelers. In this phase, demographic information is used to create activities for travelers.
Activity information typically consists of requests that travelers be at a certain location at a specified time
and they include information on travel modes available to the traveler. Second, an intermediate time-scale
consists of planning routes and trip-chains to satisfy the activity requests. This is the focus of our work and
the TRANSIMS module responsible for this computation is called the route planner. Finally, a very short
time-scale is associated with the actual execution of trip plans in the network. This is done by a simulation
that moves cellular automata corresponding to the travelers through a very detailed representation of the
urban transportation network.

The basic purpose of the route planner is to use the activity information generated earlier from demo-
graphic data to determine the optimal mode choices and travel routes for each individual traveler. The
routes need to be computed for a large number of travelers (in the Portland case study 5–10 million trips).
After planning, the routes are executed by a module that places the travelers (in vehicles and on foot) in
the network and simulates the actual behavior of drivers and pedestrians. We refer to this module as the
microsimulation. In order to remove the forward causality artificially introduced by this design, and with
the goal of bringing the system to a “relaxed” state, TRANSIMS uses a feedback mechanism: the link
delays observed in the microsimulation are used by the route planner to repeatedly re-plan a fraction of the
travelers.

Clearly, this mechanism requires a high computational throughput from the planner. The high level of
detail in planning and the efficiency demand are both important design goals; methods to achieve reasonable
performance are well known if only one of the goals needs to be satisfied. Here, we propose a framework that
uses two independent extensions of the basic shortest path problem to cope with these design requirements
simultaneously.

Besides the the simple single-source shortest path problem, our implementations address the general-
ization to regular-language-constrained shortest paths [BJM98] and the generalization to graphs with time-
dependent edge-delays with a first-in-first-out assumption. While several authors have studied special cases
of the problem that we can solve (such as traffic-light networks or special cases of the regular language
constraint), these studies are somewhat isolated and largely independent of a larger real-life system or ap-
plication. As far as we are aware, ours was the first implementation scalable to problems with hundreds of
thousands of vertices that could solve shortest-path problems with both formal language constraints and
time-dependence.

1.3 Formal language constraints

We now motivate and introduce the model that allows solving shortest path problems with regular language
constraints. Consider an urban road network with streets differentiated by their purpose and capacity into
highway segments, primary and secondary arterials and local (residential) streets. Suppose now that we are
asked to find a shortest path from point s to point d in the network that uses at most one highway segment,
that is, a path that avoids on- and off-ramps. A similar case is represented for example by asking for a travel
route for a pedestrian who is prepared to take a bus but not to transfer between multiple bus routes.

A somewhat simpler example is that of mode restrictions. A pedestrian bridge cannot be used by cars so
we must take care not to route cars across it. Similarly, we should not use highways as parts of the routes
planned for pedestrians or bicyclists. In order not to have to update the network for every single routing
question, we annotate the network with information needed to deal with these problems.

All the problems described above can be solved by a single general algorithm. In order to see how, assign
to each edge and/or vertex of the network a label ℓ ∈ Σ. We refer to the finite set Σ as the label alphabet.
We call such labels modes and say that the labeled network is multimodal. By concatenation, the labeling
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extends to paths in the network. The label of a path determines whether or not the path is feasible.
The problem of finding a shortest path subject to a formal-language constraint is the following: given an

edge-weighted directed graph, a language L ⊆ Σ∗ over the alphabet Σ, a source node s and a destination
node d, find a shortest path p from s to d whose label belongs to L. (Here, of course, the cost or length
of the path is measured as the sum of costs of edges belonging to the path.) This problem is solvable in
polynomial time.

Regular languages as models for constrained shortest-path problems were first suggested by Romeuf [Rom88]
and applications to database queries were described by Yannakakis [Ya90] and by Mendelzon and Wood [MW95].
We give a concise description of this algorithm in Section 2.1, but for more details on algorithmic and
complexity-theoretical results we refer to Barrett, Jacob and Marathe [BJM98].

1.4 Time dependence

In some applications, the cost or delay of traversing an edge may vary as a function of time. This is one
of the important algorithmic problems in transportation science and has been studied extensively [Ch97a,
Ch97b, ZM95, ZM92, ZM93]. However, unless some restrictive assumptions are made, time-dependence
of delays causes the shortest path problem to become NP-hard [OR90]. A natural restriction that avoids
NP-hardness is that the traffic on each link obey the first-in-first-out rule. Our model uses piecewise-linear
traversal functions and is a natural implementation of this assumption. This model has been rediscovered
independently at least once more —by Sung et al. [SB+00]—but the full power of this model for various
problems arising in transportation science has in our opinion not been previously realized. We argue that this
class of functions is (1) adequate for modeling time-dependent edge lengths in rapidly changing conditions on
roadways and (2) flexible enough to describe more complicated scenarios such as scheduled transit and time-
window constraints but also (3) allows computationally efficient algorithms. For example, a prototypical
question is that of finding the shortest route for a traveler in a public transportation system. To find this
route we must consider the bus and train schedules. Several general versions of this problem can be solved
efficiently in our framework, but we leave the detailed study of the time-dependent problem for another
occasion.

2 Algorithms

Here we describe the algorithms and our implementations in some detail. We skim over material that has
been published earlier and focus on the new contributions.

2.1 Regular language constraints

Barrett, Jacob and Marathe [BJM98] give polynomial-time algorithms for shortest path problems with
regular and context-free language constraints. For completeness, we summarize those of their results that
are relevant to this paper.

2.1.1 Problem definition

The regular language constrained shortest path problem, or REG-ShP, is defined as follows [BJM98].
Given a labeled weighted graph G = (V,E,w), a source s, destination d, and a regular language L, find

a shortest (not necessarily simple) s-d path p = e1e2 · · · ek in G such that ℓ(p) ∈ L. Here ℓ(p) is the string
defined as the concatenation ℓ(e1)ℓ(e2) · · · ℓ(ek) of the labels of the edges of p.

This problem definition is not complete until we specify how L is encoded as input to the algorithm.
By Kleene’s theorem, we may represent a regular language by a deterministic or nondeterministic finite
automaton. To allow a concise representation of a larger class of languages, we specify the regular language
L by providing to the algorithm a nondeterministic finite automaton (NFA) that accepts L.

In other words, the input to an algorithm for REG-ShP consists of
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ALGORITHM RE-CONSTRAINED SHORTEST PATHS:

• Input: NFA A = (Q,Σ, δ, q0, F ), a directed labeled weighted graph G, source s and destination d.

• 1. Construct G × A. The length of each edge in the product graph is chosen to be equal to the
corresponding edge in G.

2. Find a shortest path in G × A that joins (s, s0), to some vertex of the form (d, f), where f ∈ F .

3. Let p∗ be the path found in the previous step.

• Output: The path in G corresponding to p∗.

Figure 1: The general regular expression case.

1. a representation of the labeled weighted graph G,

2. indices of or pointers to the two distinguished vertices s and d of G, and

3. a labeled directed graph A that represents the state diagram of an NFA that accepts L.

2.1.2 Product graphs and language constraints

Consider the directed graph defined as the direct product of the underlying (labeled, weighted) graph G and
the state diagram A of the NFA M . To specify A more precisely, we write A = (Q,Σ, δ, q0, F ), where Q is
the vertex set of A (the state set of M), Σ the alphabet over which the labels are defined, δ the transition
function of M that defined the edge set of A, q0 the start vertex of A, and F the set of final vertices of A.
The product G × A is defined to have as vertex set the set of ordered pairs {(v, q) | v ∈ V (G), q ∈ V (A)}
and the edge set {(e, t) | e ∈ E(G), t ∈ E(A), ℓ(e) = ℓ(t)}. Given an edge (e, t) in the product graph, its
weight is defined to be exactly the weight w(e).

The following theorem unifies all the algorithms we present for the general and special cases of REG-ShP,
as well as many of the algorithms from the literature.

Theorem 2.1. The problem REG-ShP is equivalent to finding a shortest path in the product G × A of the
underlying graph G and the state diagram A of an NFA M that accepts L, among all those paths in G × A
that

1. start at (s, q0), where q0 is the start state of A,

2. end at a vertex of the form (d, f), where f ∈ F is a final state of A.

In order to prove the theorem, one need only observe that there is a one-to-one correspondence between
paths in G × A that start at (s, q0) and end at some vertex of the form (d, f) with f ∈ F , and paths in G
whose labels belong to L. For a full proof, please refer to Barrett et al. [BJM98].

The discussion of this section now implies that an algorithm for REG-ShP may be specified as follows.

2.1.3 Implicit product graph representation

In this section we explain how to implement the algorithm of Figure 1 without computing an explicit
representation of the product graph G×A. The main benefit of such an implementation is the reduction in the
required storage space from Θ(|G||A|) to Θ(|G|+ |A|), where |G| and |A| denote the amount of space required
to store a representation of the graph G and A, respectively. (It is true Dijkstra’s algorithm may in the worst
case examine all of the vertices of the product graph, and in such a case the heap storage required during the
execution of the algorithm may be comparable to the storage required for the explicit representation of the
product graph. However, such instances are rare.) At the same time, the time complexity of the algorithm
does not increase by more than a constant factor.
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The basic step in Dijkstra’s algorithm is always the same: select the vertex closest to the set of already
explored vertices, and add it to the set. This is made efficient by maintaining a priority queue of vertices on
the “fringe” of the explored set, keyed by their distances from the origin. Then in each step we can extract
the minimum-key element from this set. Once the minimum-key element is added to the set of explored
vertices, we iterate through its neighbors and add them all to the priority queue. If a neighbor is already
in the queue, its key may be decreased at this point. To do all this, it is sufficient that we be able to
efficiently list the neighbors of any given vertex. Thus we do not need to maintain an explicit description of
the product graph, but only enough information to iterate through the neighbors of any given vertex. We
keep both basic graphs (the network and the NFA state diagram) stored as adjacency lists. The adjacency
lists are arranged so that the neighbors of each vertex are sorted according to the labels of the edges joining
the vertex to them. The priority queue still contains vertices of the product graph (they may be represented
using a pair data structure, or by integer identifiers created by hashing the identifier pairs that represent
the graph vertex and the NFA state). This is the only place where storage comparable to that needed for
the full product graph may be required in the unlikely situation that most of the vertices of the product
graph are examined. When the algorithm needs to examine all the neighbors of a vertex (v, q) (where v is a
network vertex and q a state of the NFA), we do as follows:

for all α ∈ Σ do
for all q′ reachable from q by a transition labeled α do

for all v′ reachable from v by an edge labeled α do
Insert the pair (v′, q′) into the priority queue.

end for
end for

end for

This innermost loop adds exactly the neighbors of q in the product graph G × A to the priority queue.
All of these would be considered in the explicit case as well. We claim that all the flow control operations
can be implemented in constant time, and thus the overhead is asymptotically negligible. (We present a
detailed experimental analysis in the full version of the paper.)

2.1.4 Linear regular expressions

In this section, we describe a specialization of the algorithm for language-constrained shortest paths to
a smaller class of regular languages. This special class includes many languages that arise naturally in
transportation planning problems. In addition to representing the graph implicitly, as in the previous
section, this specialization includes several other optimizations, resulting in a very efficient algorithm for
general shortest path problems in transportation planning applications. This is the algorithm that was first
implemented in TRANSIMS in 1998, and the contents of this section are based on a previous paper [BB+02].

First, let us review some standard notation: w+ denotes one or more repetitions of a word (string) w,
x+y denotes either x or y, Σ typically denotes the alphabet, that is the set of all available symbols. A linear
(or simple-path regular expression has the form x+

1 x+

2 · · ·x+

k
, where xi ∈ Σ for all i.

Note that if R1, R2, . . . Rk are linear regular expressions, then the expression R1 + · · · + Rk can also be
easily handled by finding the best path for each Ri and then choosing the best one. We call such expressions
rooted paths regular, since the automata graphs form a set of simple paths joined at the root.

2.1.5 The algorithm (linear regular expressions)

We represent the linear expression x+

1 · · ·x+

k
by the string x1 · · ·xk.

The special structure of linear regular expressions allows further optimization. The important observation
is the following. Consider a valid source-destination path p and a vertex u ∈ p. Suppose the initial part of p
from s to u is labeled by the word w = x1 · · ·xi and denote the next vertex on p after u by v. Then there are
only two possible labels for the edge uv ∈ p: either xi or xi+1. Thus we can run Dijkstra’s algorithm in the
following way: for each vertex that we examined keep the last label observed on the shortest path used to
reach this vertex (and possibly more than one). When iterating through the neighbors of the current vertex,
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consider only those reachable by edges of the current label, or by edges of the next label in the expression. As
long as we keep adjacency lists arranged by label, it will be easy to skip irrelevant ranges and the overhead
incurred as opposed to ordinary Dijkstra’s algorithm will be very small.

More precisely, let R = x+

1 · · ·x+

k
be the given regular expression. We run Dijkstra’s shortest-path

algorithm on G, with the following changes: each vertex is referred to by the pair consisting of its name in
G and an integer 0 ≤ a ≤ |R| − 1 denoting the “location” of the product vertex within R.

When the algorithm begins, a = 0 and the only “explored” vertex is (s, 0). In each subsequent exploration
step of Dijkstra’s algorithm, we have a “current” product vertex (v, a), where v is a vertex of G and a is the
index of a label in R. As for neighbors, we consider an edge e = vw of G that leaves the current vertex v, if
and only if the label of e is the current state R[a] or the “next” state R[a+1]: l(e) = R[a] or l(e) = R[a+1].
When an edge e = vw with l(e) = R[a + 1] is explored, then the vertex reached will be stored in the priority
queue as (w, a + 1). Otherwise the vertex reached is (w, a). The algorithm halts when it reaches the vertex
(d, |R| − 1).

Theorem 2.2. The algorithm described above computes the shortest R-constrained path in G (with nonneg-
ative edge-weights) in time O(T (|R||G|)), where T (n) denotes the running time of a shortest-path algorithm
on a graph with n nodes.

The running time of the algorithm is O(|G|+ |R|+H log(H)), where |G|, |R| and H denote the encoding
sizes of the graph and the regular expression, and the maximum size of the heap, respectively. The algorithm
yields significant savings in time. First, we do not need to construct the product explicitly (which takes
O(|G| · |R|) time). Second, the heap rarely grows very large. In fact, it appears that the running time of the
algorithm is more a function of the path length rather than the size of the graph. We discuss this further in
the section on experimental results.

2.2 Regular language speed-up techniques

In the following few subsections, we indicate some approaches to further improvement of the algorithm for
either the general or the linear expression case. Most speed-up techniques that work for the general Dijkstra-
type algorithms are directly applicable here: for a correctness argument it usually suffices to consider the
product graph. Indeed, on the product graph, any source-destination shortest path results in a regular
language-constrained shortest path for the original graph. Thus we only need to correctly “project” the
improvement applied to Dijkstra’s algorithm to get an improvement for the language-constrained version.

Our discussion here is brief because this work is still very much in progress and the full paper will contain
more detail, including experimental results.

2.2.1 Bidirectional search

Dijkstra’s algorithm in a point-to-point application typically runs faster when implemented so that the search
is done simultaneously forward from the source and backward from the destination. In reasonably regular
distributions of vertices in two dimensions, the improvement is clear: the forward search will explore roughly
k2 vertices to find a k-link shortest path, while the forward and backward searches are likely to meet when
each has explored roughly (k/2)2 vertices, thus indicating an expected halving of the number of explored
vertices.

As long as the priority queue is used to store both the graph vertex and the NFA state, and the termination
rule is defined carefully, we can use this to improve the performance. See also [JMN99].

2.2.2 Shortest-path containers

With the shortest-path containers approach [WW03], we determine in a preprocessing step for each edge
e = (u, v) the set of those nodes S that are reachable from u via e on a shortest path. Provided that a node
embedding is given, each edge is assigned a geometric container (e.g., a bounding rectangle) containing S.
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Figure 2: Refined shortest-paths containers: edge (u, v) has two associated containers, one for each of the
labels (c and w) of outgoing edges of v.

During the search phase, an edge e being scanned can be discarded if the destination node d does not lie
within the container associated with e.

We can apply the very same procedure also in the linear-language constraint case. For correctness, it
suffices to verify that no edge forming part of a constrained shortest path is pruned: if we prune an edge e,
then we know that there is no shortest path to d via e (with whatever labeling).

In the unimodal case, performance of the search phase is determined by the tradeoff between the complex-
ity of the shortest-path containers (and hence running time for processing them) and their quality (depending
on their shape, shortest-path containers may contain more or less false positives, i.e., nodes included in one
container that do not lie on a shortest path with respect to the edge in question). In an experimental
study [WW03], bounding rectangles turned out to yield best performance in general.

In the multimodal case, it may additionally occur that starting from a given edge, there is actually a
shortest path to d but such that the current constraint is not fulfilled, which may damp the performance
factor of the unimodal shortest-path containers.

We therefore suggest the following refinement. For each edge e = (u, v), instead of one, several shortest-
path containers may be computed, classified by the labels of the outgoing edges of v. For an illustration
see Figure 2. During the search phase, one need respect only containers whose belonging subsequent label
matches the constraint. This process could also be iterated in the sense that different containers are used
depending on the labeling of any number of subsequent edges.

2.2.3 Bit-vectors

The general idea behind bit-vectors [MS+05] is similar to that of shortest-path containers: the input graph
is divided up into multiple regions such that each node is attributed to exactly one of them. Each edge e is
annotated with bit-vectors indicating for each region if any node of that region can be reached on a shortest
path via e. Moreover, a recursive version of this approach is described in the same paper. Implementation
of multimodal bit-vectors can hence be done similarly to shortest-path containers.

2.2.4 Multi-level technique

The multi-level technique relies on a preprocessing step where a decomposition of the input graph into several
levels, induced by subsets—or selections—of the graph’s node set, is computed and the graph is augmented
with additional edges (cf. [HSW06]). There are two variants: basic multi-level graphs, where between nodes
of the same selection new edges, so-called level edges, are introduced, and extended multi-level graphs, which
additionally have so-called upward and downward edges, passing between certain nodes selected at different
levels. New edges are assigned the length of a shortest path between the two nodes in the original graph. To
find a shortest path between given nodes s and d, it suffices to examine a subgraph of the multi-level graph.

This technique can be extended to the linear-language-constraint case as follows. We assume that in
practical settings, only a small number of constraints occur. Instead of one shortest-path length, assign each
new edge the length of a constrained shortest path (or ∞ if there is no such path), for each subword—in the
following also called chunk—of any constraint respected in our scenario. The subgraphs on which an actual
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s-d-search takes place are the same in both the uni- and the multimodal cases.
During the search phase, proceed as follows: let w = x+

1 · · ·x+

k
be the constraint, and for each touched

node keep the chunk of w that “has led” to that node. Let further be u the node being scanned by Dijkstra’s
algorithm, and assume that the portion x+

1 · · ·x+

i
has been processed for u, so x∗

i
· · ·x+

k
is the remaining

subword to be considered. For each edge being scanned, pick as its length the shortest one from amongst all
those associated with the chunks x+

i
, x+

i
x+

i+1
, . . . , x+

i
· · ·x+

k
and x+

i+1
, x+

i+1
x+

i+2
, . . . , x+

i+1
· · ·x+

k
.

To summarize, with the multi-level model, new-added edges correspond to paths in the input graph;
thus, the graph is just enriched with consistent information. For the multimodal case, this does still hold.
However, for an actual gain in performance one has to ensure that enough additional information is provided:
for the algorithm to be able to exploit precomputed long-distance edges independently of a given constraint,
keep, for two specific nodes, not only one single shortest path but many shortest paths, subject to any
constraint arising in our setting.

We now want to briefly outline a correctness proof. What we have to show is that a constrained shortest
path in the subgraph used for computation is a constrained shortest path in the whole graph: (i) By [SWZ02],
the subgraph contains all edges (genuine edges and new edges, where the latter correspond to subpaths in
the original graph) such that a shortest s-d-path can be found. (ii) Each new edge e = (u, v) being scanned
is labeled correctly: from amongst all lengths of paths between u and v subject to any portion of constraint
to be processed yet we pick the minimal one.

2.2.5 A∗ search (Sedgewick-Vitter heuristic)

If we do not insist on exact shortest paths, a very simple trick to speed up the algorithm by a great deal,
is Sedgewick-Vitter [SV86] heuristic originally proposed for Euclidean shortest paths. The speedup results
from a bias introduced in the search, which expands the set of examined vertices in the direction of the
source-destination vector.

To ensure optimal shortest paths are found, one need only require that the Euclidean distance between
any two nodes is a valid lower bound on the actual shortest distance between these nodes. This is typically
the case for road networks; the link distance between two nodes in a road network often accounts for curves,
bridges, etc. and is at least the Euclidean distance between the two nodes.

Moreover in the context of TRANSIMS, we need to find fastest paths, i.e. the cost function used to
calculate shortest paths is the time taken to traverse the link. Such calculations need an upper bound on the
maximum allowable speed. To adequately account for all these inaccuracies, we determine an appropriate
lower bound factor between Euclidean distance and assumed delay on a link in a preprocessing step.

Because street networks are not always dense and regular due to natural and man-made obstacles and also
because our delays are not constant, the paths produced using SV are not strictly optimal. In experiments
we show how varying the amount of the bias affects the running time and quality of paths, and find a useful
tradeoff.

3 Applications of our framework

We give just a couple of examples to illustrate types of problems solvable in our framework. There are
many more problems that can be easily solved, including variants of turn complexity, counting constraints,
k-similar path problems etc.

3.1 Applications of regular language constraints

3.1.1 Multimodal plans

In a simple multimodal network the edge-labels denote modes of travel allowed on the link. For example,
streets may be labeled “c” for car travel, sidewalks and pedestrian bridges “w” for walk, segments of transit
lines (buses, rail) “b” and “r”, respectively (or, in a simpler model, lumped together under “t” for transit).
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Consider routing a traveler who doesn’t own a car and takes a bus to the destination. Suppose transfers
are undesirable. The traveler will use some walk links, then one or more bus links and finally again some
walk links.

In order to find a shortest path for this traveler, the following network suffices. Let there be a vertex
for every intersection and every transit stop. For every street block passable to pedestrians (that is, with
a sidewalk) between two intersections, add a bidirectional link labeled “w”. For every bus line, add a
unidirectional link between every consecutive pair of stops and label it “b”. Make sure that in order to
transfer between buses, a walk link must be used. Now the goal is to find a shortest path between the
traveler’s origin and destination whose label is of the form w . . . wb . . . bw . . . w.

3.1.2 Trip chaining

Given a sequence of activities that can be performed at different locations, find the shortest path that allows
the traveler to perform the activities in the given order. To solve the problem, we create new, “virtual”
loop links at every possible activity location. We label these links according to the activity that can be
performed there. For an activity sequence ABC . . . we would consider the regular expression TATBTCT . . .
where T denotes a regular expression that allows (arbitrary or restricted) travel in the network. Note that
this does not solve the traveling salesman problem (TSP) problem in polynomial time—there we would have
to consider all possible n! orderings of n activities to find an optimal solution. On the other hand, if the
number of activities n is small, enumerating the n! sequences might be feasible.

4 Experimental study sketch

This section is still in a preliminary state. Some of the results described were reported in a previous
paper [BB+02]. However, we expect the main strength of our full paper to be the comparison between
that early special-case implementation (from TRANSIMS), and the new fully general code described above,
together with several speed-ups. Our experiments test the following theses:

1. For all but largest instances of the shortest-path problem, Dijkstra’s algorithm, even with relatively
simple data structures such as the standard binary heap, can be quite efficient as the basis for an
implementation when modern speed-up techniques are used.

2. As the intuition behind most speed-up techniques is geometric, they tend to work well in graphs
structured like typical road networks, which are reasonably “regular” and almost hierarchical. Even
with regular-language constraints, we get product graphs of almost-geometric road networks and simple
NFAs may have a “layered” structure that retains enough geometry to allow goal-oriented speed-up
techniques to work well. However, the usefulness of geometric techniques is reduced for more restrictive
expressions, which may require the shortest path to “wiggle around” and not appear very efficient
geometrically.

4.1 Early experiments with the TRANSIMS router

These experiments were run on a multi-modal transportation network representing the full road network
and a full copmlement of scheduled transit in the city of Portland, OR.

To generate test instances (shortest-path queries), the Portland traffic network was divided into approxi-
mately 1200 traffic analysis zones (TAZs). From these a distance matrix was created by using the Euclidean
distance between centers of TAZ pairs. Source and destination TAZs were selected from this matrix so that
the distance between the source and destination ranged from 1000 to 50000 meters (±10%) in increments of
500 meters, with 50 trips of each size selected. For each TAZ pair, starting and ending points were randomly
selected from the given TAZ, producing 5000 trips.

The TRANSIMS shortest path implementation allowed testing of our algorithm on real transportation
networks in multimodal situations. In order to anchor theoretical research in realistic problems, TRANSIMS
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uses Case studies (see [CS97] for details). The other case studies run for the TRANSIMS project included
Dallas/Fort Worth (1997), with an early incomplete implementation of the code) and Chicago (2003).

In the basic Portland network, there are a total of 475 264 external nodes and 650 994 external links.
The internal network adds nodes to many links to represent parking locations and includes copies of many
links with different labels— for street segments that have sidewalks and allow pedestrian traffic, as well as
a scheduled transit network laid on top of the existing road network. The network thus grows to over three
million edges
Measured quantities. We base our results on measurements and counts of the following quantities:
cpu: running time used for finding the shortest path (no i/o), nodes: number of nodes on the path found
by the algorithm, hadd: number of nodes added to the heap during the execution, max: maximum size of
the heap during the execution, touched: total number of nodes touched (a node may be counted multiple
times here), unique: number of unique nodes touched, edist: Euclidean (straight line) distance between
the origin and destination, time: time to traverse the path found by the algorithm,

In addition, each observation can be categorized according to its mode (walk, auto, transit, light rail,
park-and-ride, bus), overdo factor (strength of bias when/if using the Sedgewick-Vitter heuristic—0 (none),
0.15, 0.25, 0.5), delay (for car trips— free-speed link delays, or those produced by feedback from the mi-
crosimulation after 7 or 24 iterations).

edist
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Figure 3: Plots of Euclidean origin-destination distance, trip duration, running time and total number of
nodes added to the heap. The linear relation between the running time and the number of nodes added to
the heap during the execution is obvious from the plot and also very clear from the algorithm statement (as
long as the time for individual heap operations does not vary too much). We do not consider the Euclidean
distance further in this extended abstract.

We defer the analysis of distinctions between various modes of transportation, a more detailed multimodal
study, and the time-dependent delay case to the full version of the paper.

4.2 Varying the Sedgewick-Vitter bias

We next take a look at the results obtained by setting different values of the bias parameter (overdo) in
the Sedgewick-Vitter heuristic. To summarize briefly, it appears that a value of more than 0.15 is not very
useful, as it gives only a marginal improvement in the running time, whereas the path quality continues to
decrease. However, the speed-up between 0 and 0.15 is quite impressive.

The reason why the running time can be expected to be linear in the length of the path produced when
running the Sedgewick-Vitter heuristic is precisely because of the bias: instead of performing the depth-
first-search and expanding equally in all directions (where the number of nodes examined for example in
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Figure 4: Running time and path delay plotted against the number of nodes on the path produces by the
algorithm for four different values of overdo parameter (0,0.15,0.25,0.5). The “strange” horn-shape with
overdo= 0 appears because the boundary of the network restricts the number of available vertices to be
explored. One important thing to notice is that the running time appears linear in the other three plots.
In fact, at first it appears constant, but a linear fit shows it just has a very low slope, as is to be expected.
However, the quality of the paths output continues to decay with increased overdo.

a grid would be proportional to the square of the path length), the search expands primarily in the single
direction towards the destination. Note that this is a stronger claim than the theoretical result applicable to
graphs with Euclidean distance functions, which says that the running time is linear in the size of the graph.
However, there are some caveats we should be aware of. By studying the plot for overdo= 0.15 (bottom
right in Figure 4), we see that only the lower envelope of the data set is a straight line. The upper envelope
is not. These points correspond to the cases where the bias led the algorithm astray, for example where the
geometrically direct route led to the river bank, hoping to get across but not finding a bridge in the vicinity.

An interesting phenomenon is the similarity of running times with the bias set to 0.15, 0.25 and 0.5.
The average running times are practically equal, and a formal analysis of variance shows that we should not
reject the hypothesis of equality of the running times with the bias at 0.15 and 0.25.

4.3 Experiments with more general constraints

4.4 Dijkstra’s algorithm and simple regular expressions

We ran Dijkstra’s algorithm (in both the standard and bi-directional version) to find shortest paths between
pairs of points selected randomly from opposite quarters of the Phoenix metropolitan region street network
(Figure 5). We randomly selected 30 source-destination pairs, each source from a region in the northwestern
corner, and each destination from a region in the southeastern corner of the map. For each pair, we ran our
algorithm, while constraining the set of feasible paths by using several different regular expressions. In what
follows, we use symbols a1, a2, a3 and a4 to represent four different road classes specified in the TIGER/LINE
data from which we derived the graph. These are:

1. limited-access highways (e.g. interstates—blue),

2. unlimited-access primary roads (e.g. state or county highways—red),

3. secondary roads and connectors—green, and

4. local, neighborhood and rural roads—not drawn to avoid clutter.

The expressions we used in this set of tests were:
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Figure 5: The Phoenix metropolitan area. Roughly 140000 vertices and 360000 edges. Blue, red and green
represent limited-access highways, primary roads without limited access, and secondary and connecting
roads, respectively. The local streets (a majority of all edges in the graph) are not drawn, but only edges,
in order to reduce clutter. On the right, the northwest and southeast regions are marked in black. The
source-destination pairs for some of our experiments are selected from these two regions.

1. (a1 ∪ a2 ∪ a3 ∪ a4)
∗, that is, any sequence of links.

2. a∗

4(a1 ∪ a2 ∪ a3)
∗a∗

4, that is any sequence of links that contains at most one contiguous subsequence of
highway links.

3. a∗

4, that is, only local streets.

The running time in seconds as a function of the shortest path length in the number of edges shown in
Figure 6.

We compared the performance of the straightforward generalization of Dijkstra’s algorithm to the language-
constrained case to the performance of a bidirectional version. Intuitively, the bidirectional version will
examine only about half of the vertices before finding a source-destination path. In our experiments, this
improvement can be observed, although the bidirectional algorithm usually examines somewhat more than
half of the vertices that the standard Dijkstra does. The information on the number of vertices touched by
the two algorithms is given in Table 7. Unfortunately, currently the running time of our bidirectional variant
is not consistently much better than that of the standard algorithm. We believe that this can be improved
by fine-tuning our implementation.

4.4.1 More complex expressions

Here, we describe experiments on a smaller network, but with more complex constraints. For this purpose,
we selected a subset of the Phoenix metropolitan area street network corresponding roughly to the City of
Tempe, and consisting of about 8000 vertices and about 20000 edges 8.

We use r, b and g, respectively, to represent the links drawn in red, blue and grey in the figure above. We
sampled uniformly 100 sources and, independently, 100 destinations from the vertex set, and ran shortest
path queries for these inputs.

The constraints we used in this set of tests were:

1. (r ∪ b ∪ g)∗, that is, no restriction on the path.

2. (g ∪ r(b ∪ g) ∪ b(r ∪ g))∗, that is, no consecutive red or blue links (and no paths end in red or blue).

3. (g ∪ b)∗r(g ∪ b)∗, that is, any path containing at most one red link.

4. (g ∪ r)∗b(g ∪ r)∗, that is, any path containing at most one blue link.
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Figure 6: Running time as a function of shortest path length for three different expressions (expression 1
from above in black “X”s, expression 2 in red “4”s and expression 3 in blue “0”s). It appears that more
complex an expression, the steeper is the dependence the of the running time on the length of the path found.
Intuitively, this may follow from the fact that more complex expressions lead to a larger product graph. Since
the edges that link different states of the NFA correspond to edges crossing between different copies of the
network in the product graph, more complicated expressions also increase the geometric dimension of the
graph and require larger neighborhoods to be explored during the search for the destination.

5. The constraints imposed by the NFAs of Figure 10.

The summary of the results for our experiments on the Tempe network is shown in Table 9. The numbers
reported are the averages for the number of vertices touched by the algorithm (normally a good indicator
of the running time, as seen in the data from TRANSIMS runs above), the length of the found shortest
path in the number of edges, and the total running time itself in seconds. For the fifth expression, many
of the queries resulted in no feasible path found. Therefore the average path length reported in the table
is computed only over the queries that returned a feasible path. For the running time and the number
of vertices touched, it seemed reasonable to report the average over the whole set, including the infeasible
queries.

5 Conclusion

We have run preliminary experiments to study the performance of the formal-language constrained shortest
path algorithm for various regular languages. We have also done basic comparisons between the running
time of the basic Dijkstra’s algorithm and the bidirectional version. The next steps we will undertake are to
implement further speed-up techniques, such as the goal-directed search, shortest-path containers, bit-vectors
and the multilevel technique. In a more complete version of the paper we will discuss further experiments
that focus on the following issues.

• Comparisons in accuracy between different speed-up techniques when applied to multi-modal routing
problems (some techniques will not yield exact shortest paths in certain settings).

• Comparisons between performance on explicit and implicit product graph representations.

• Scalability study for larger networks (the full US road network as provided by the Challenge participants
contains road class information, which allows multimodal queries).
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Instance all streets local streets one highway
Dijkstra bidirectional Dijkstra bidirectional Dijkstra bidirectional

1 136542 88714 132497 114040 231800 179049
2 124012 68450 136625 136649 272250 145058
3 101660 69425 114243 105807 158154 129738
4 102266 78502 114349 111342 165826 155419
5 86823 69375 106894 106802 140397 130830
6 90178 71383 105828 106804 137504 129580
7 136032 56725 133684 103748 237232 100175
8 120407 81738 118217 117659 190558 154325
9 78184 71924 102264 109694 112581 113749
10 88717 73510 102017 101554 139772 136730
11 104179 71052 104787 107110 163954 142742
12 71180 65680 98381 110828 108897 109133
13 91827 54181 104689 87851 141629 103872
14 126184 84515 126270 117553 167442 117507
15 64313 44266 89006 89618 102315 77890
16 80820 62166 109395 103963 125248 107446
17 126851 69106 127217 111788 206305 136686
18 138942 91644 134041 120924 243756 179138
19 77016 49781 94264 90900 119121 90978
20 115461 65597 119664 105111 181444 124820
21 107692 71941 114613 110735 145747 116941
22 115198 52736 121503 87446 184754 96989
23 133335 75296 132813 120352 200493 120718
24 128420 73994 127705 96358 156178 119894
25 74246 50398 93751 95987 116180 93601
26 68716 61306 96064 105179 109666 101849
27 139936 84494 134980 110492 267995 177760
28 132100 68875 132215 112295 216030 125327
29 86037 71879 112114 110810 132009 127194
30 85847 58420 106437 100830 133691 110736

Mean 104437.4 68569.1 114884.2 107007.6 166964.3 125195.8

Figure 7: The number of vertices touched by the two algorithms for three different NFAs in Phoenix.
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Figure 8: A part of the Phoenix Metro street network containing the city of Tempe. Roughly 8000 vertices
and 20000 edges. Blue and red labels were assigned by an arbitrary decision to links directed almost due
east-west (red) or almost due north-south (blue). A few exceptions are left over from the original labeling
by road class. The visible squares form the basic development unit, and are almost exactly one mile by one
mile in real life.

Expression and algorithm Vertices touched Path length Time NFA vertices NFA edges

(r ∪ b cupg)∗ 1 3

Dijkstra 3935.65 50.34 0.4244626
bidirectional 2612.98 50.34 0.3311927

(g ∪ r)∗b(g ∪ r)∗ 2 5

Dijkstra 6658.56 59.38 0.7077589
bidirectional 4446.63 59.38 0.5598001

(g ∪ b)∗r(g ∪ b)∗ 2 5

Dijkstra 6226.12 58.63 0.6654075
bidirectional 5307.41 58.63 0.6724628

(g ∪ r(b ∪ g) ∪ b(r ∪ g))∗ 3 7

Dijkstra 5687.46 60.51 0.577886
bidirectional 5833.75 60.51 0.7233237

(g ∪ rbg)∗(λ ∪ r ∪ rb) 3 4

Dijkstra 1734.69 57.54∗ 0.1726844
bidirectional 3928.78 57.54∗ 0.4745679

Figure 9: Summary of results for five different expressions on a smaller graph (Tempe). The last constraint
resulted in many infeasible source-destination pairs, and so we report the average path length over the subset
of feasible queries.
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