
The “Trickle-Down Effect”

clients
cache

to
servers

flood trickle

What is the effect on “downstream” traffic?

What is the significance of this effect?

How does it impact design choices for components “behind” the caches?

1998 ibm.com
high locality

fit Zipf α= 0.76
skewed: 77 % / 1%

A Look at the Miss Stream

What’s Happening? (LRU)
Suppose the cache fills up in R references.

(That’s a property of the trace and the cache size.)

Then a cache miss on object with rank i occurs only if i is
referenced….

probability pi

…and i has not been referenced in the last R requests.

probability (1 - pi)R

Stack distance

P(a miss is to object i) is qi = pi(1 - pi)R

Miss Stream Probability by Popularity

qi: R = 104, αααα=0.7

IBM 1998 (32 MB)

Moderately popular
objects now dominate.

Object Hit Ratio by Popularity
(2)

IBM
1998

Effects on server locality

Cache Effectiveness

• Previous work has shown that hit rate
increases with population size

• However, single proxy caches have
practical limits
– Load, network topology, organizational

constraints

• One technique to scale the client population
is to have proxy caches cooperate

Cooperative Web Proxy Caching

• Sharing and/or coordination of cache state among
multiple Web proxy cache nodes

• Effectiveness of proxy cooperation depends on:
♦ Inter-proxy communication distance
♦ Size of client population served

♦ Proxy utilization and load balance

Clients

ClientsProxy

Clients

Internet

[Source: Geoff Voelker]

Resolve misses through the parent.

Hierarchical Caches

INTERNET

clients

origin Web site
(e.g., Torino2006)

clients
clients

Idea: place caches at exchange or
switching points in the network, and
cache at each level of the hierarchy.

Content-Sharing Among Peers

INTERNET

clients
clients

clients

Idea: Since siblings are “close” in the network, allow
them to share their cache contents directly.

Harvest-Style ICP Hierarchies

INTERNET

client
query (probe)

query response

object request

object response

Examples
Harvest [Schwartz96]
Squid (NLANR)
NetApp NetCache

Idea: multicast probes within each
“family”: pick first hit response or
wait for all miss responses.

Issues for Cache Hierarchies

– With ICP: query traffic within “families” (size n)
• Inter-sibling ICP traffic (and aggregate overhead) is quadratic with n.

• Query-handling overhead grows linearly with n.

– miss latency
• Object passes through every cache from origin to client: deeper

hierarchies scale better, but impose higher latencies.

– storage
• A recently-fetched object is replicated at every level of the tree.

– effectiveness
• Interior cache benefits are limited by capacity if objects are not

likely to live there long (e.g., LRU).

A Multi-Organization Trace
• University of Washington (UW) is a large and diverse

client population
• Approximately 50K people

• UW client population contains 200 independent campus
organizations

• Museums of Art and Natural History
• Schools of Medicine, Dentistry, Nursing
• Departments of Computer Science, History, and Music

• A trace of UW is effectively a simultaneous trace of 200
diverse client organizations
– Key: Tagged clients according to their organization in trace

[Source: Geoff Voelker]

Cooperation Across Organizations

• Treat each UW organization as an independent
“company”

• Evaluate cooperative caching among these
organizations

• How much Web document reuse is there among
these organizations?
– Place a proxy cache in front of each organization.

– What is the benefit of cooperative caching among these
200 proxies?

[Source: Geoff Voelker]

UW Trace Characteristics

Trace UW
Duration 7 days
HTTP objects 18.4 million
HTTP requests 82.8 million
Avg. requests/sec 137
Total Bytes 677 GB
Servers 244,211
Clients 22,984

[Source: Geoff Voelker]

Ideal Hit Rates for UW proxies

• Ideal hit rate - infinite
storage, ignore
cacheability, expirations

• Average ideal local
hit rate: 43%

[Source: Geoff Voelker]

Ideal Hit Rates for UW proxies
• Ideal hit rate - infinite storage,

ignore cacheability, expirations

• Average ideal local
hit rate: 43%

• Explore benefits of perfect
cooperation rather than a
particular algorithm

• Average ideal hit rate increases
from 43% to 69% with
cooperative caching

[Source: Geoff Voelker]

Sharing Due to Affiliation

• UW organizational sharing vs. random organizations
• Difference in weighted averages across all orgs is ~5%

[Source: Geoff Voelker]

Cacheable Hit Rates for
UW proxies

• Cacheable hit rate - same
as ideal, but doesn’t
ignore cacheability

• Cacheable hit rates are
much lower than ideal
(average is 20%)

• Average cacheable hit
rate increases from 20%
to 41% with (perfect)
cooperative caching

[Source: Geoff Voelker]

Scaling Cooperative Caching

• Organizations of this size can benefit significantly from
cooperative caching

• But…we don’t need cooperative caching to handle the entire
UW population size
– A single proxy (or small cluster) can handle this entire population!

– No technical reason to use cooperative caching for this
environment

– In the real world, decisions of proxy placement are often political
or geographical

• How effective is cooperative caching at scales where a single
cache cannot be used?

[Source: Geoff Voelker]

Hit Rate vs. Client Population
• Curves similar to other

studies in the area

• Small organizations
– Significant increase in hit rate

as client population increases

– The reason why cooperative
caching is effective for UW

• Large organizations
– Marginal increase in hit rate

as client population increases

[Source: Geoff Voelker]

Transactional Data Caching

Client-Server Database System Architectures

• query-shipping model
– clients send queries (plain SQL text/compiled)
– server sends results set
+ simple: lightweight clients, no change to the server DBMS

engine
- underutilization of client resources/bottleneck at the server

• data-shipping model
– clients request specific data items
– query processing takes place at the client side
+ data closer to applications (no need for stored proc.)
+ offload of server DBMS
- higher complexity of client DBMS

inter vs intra Transaction Caching

• intra transaction caching
– data is retained within the cache only for the durationof the

transaction
+ simple: just manage local page buffer and corresponding

locks
- requires access to server DBMS at every transaction

• inter transaction caching
– data is retained within the cache even after termination of

the transaction that originally shipped in the data.
+ load pressure relief at the server DBMS
- need for consistency management scheme ensuring

serializable view of the database

Reference Architecture

Motivations

• Servers have typically larger capacity than
singleworkstations…

• but clients have more aggregated capacity!
• Avoiding client/server communication:

– improved latency
– reduce b/w consumption
– allow access to data independently of server

load: higher performance predictability

Consistency requirements

• Need support for ACID Transactions,
including serializability…

• we’re in a replicated environment:

“one-copy serializability”
• equivalent to some serial execution on a

non-replicated database

Availability

• Strong physical and environmental
asymettries between clients and servers:
– Servers usually have more reliable hw

– Clients may frequently (explicitly or not)
disconnect

• Clients crash or disconnection must not
impact availability of data.

Client Caching:
Dynamic Replication + Second Class Ownership

Dynamic replication
• Page copies a created and destroyed based on runtime

client demands.
• Finite cache capacity : page eviction policy
Second Class Ownership
• (Consistent) replication can hamper availability in

presence of failures
• Client-cache d pages can be destroyed at any time without

causing the loss of committed updates:
– A server can consider a client “crashed” at any time and

unilaterally abort any active transaction
– Servers can’t be hijacked by uncooperative (crashed) clients

Cost Factors

• Consistency enforcing algorithms can be much
more complex than those employed for WWW
objects caching

• Cost Factors:
– Overhead for control actions
– Synchronous vs Asynchronous control actions
– Transaction blocking vs aborts
– Effective client cache utilization

• Note that the impact of these factors is workload-
dependent:
– Need for general-purpose solutions

A Taxonomy of Algorithms
Detection- vs Avoidance-based

Detection-based

• Stale data is allowed to remain
in client caches, but transactions
that are allowed to commit have
not accessed stale data

• Stale data = older than latest
committed value

• LAZY Approach:
– require transaction validity check

– asynch update notifications (hints)

Avoidance-based

• All cached data is valid (no
staleness)

• EAGER Approach:
– Invalid data is atomically

removed from client caches

– Read-one / Write-all, just
evict any unavailable cache

Taxonomy:
Detection-based Algorithms

• Stale data is allowed to
remain in client caches,
but transactions that are
allowed to commit have
not accessed stale data

• Stale data = older than
latest committed value

• LAZY Approaches:
– require transaction validity

check
– asynch update notifications

(hints)

Taxonomy:
Detection-based Algorithms

• Simple Clients:
– No strict need for

server’s callbacks

• Greater dependency
on servers:
– Overhead

Taxonomy:
Detection-based Algorithms

Validity Check Initiation
• Once validity is established it’s

guaranteed for the transaction
duration:
– Until this does not commit/abort,

no other transaction can commit
updates

– Before committing any
transaction must obtain server
permission!

• Synch:
– Upon first access to a data item
– No access until validity

verification
• Asynch:

– No wait for validity verification
• Deferred:

– Even more optimistic!

Taxonomy:
Detection-based Algorithms

Validity Check Initiation,
Tradeoffs:

+ Deferring allows bundling
control operations:

< overhead

- Late conflict detection can
cause late abort of one or
more transactions:
- Possibly requiring duplicate

work in interactive
environments

Change Notification Hints
• Idea: reducing the abort rate

by spreading updates

• A transaction can send
notification hints before or
after commit time:
– If done before & then

transaction aborts we get
cascading aborts/unnecessary
aborts at the other clients!

– So it’s typically done after
commit…

Taxonomy:
Detection-based Algorithms

Remote Update Action
• Propagation:

– Update installation at remote
site

• Invalidation:
– Page eviction at remote site

• Dynamic:
– Adapt between two depending

on perceived workload

Taxonomy:
Detection-based Algorithms

Taxonomy:
Avoidance-based Algorithms

• All cached data is
valid (no staleness)

• Eager approach:
– Invalid data is

atomically removed
from client caches

– Read-one / Write-all,
just evict any
unavailable cache

Taxonomy:
Avoidance-based Algorithms

• More complex client
caches (e.g., fully-fledge
lock manager) vs reduced
reliance on server

• More information on the
server:
– ROWA, requires ability to

track location of page
copies:

• Broadcast-based
– good performance
– low scalability

• Directory-based
– higher overhead
– higher scalability

Taxonomy:
Avoidance-based Algorithms

Write Intention Declaration
• Reads are alway valid (ROWA)

– Interactions with server only for
pages retrievals and updates

– Upon page retrieval, the server
implicitly guarantees it will inform
the client if the page becomes
invalid

• If a transaction wishes to update
a cached page copy the server
must be informed:
– Write permission must be

explicitly granted
– Once a write permission is

granted, data can be updated
without contacting the server

Taxonomy:
Avoidance-based Algorithms

Write Intention Declaration
• Write permissions are similar to

write locks, but:
– Are granted to a client site not to a

single transaction
– Doesn’t obey two-phase constraint.

• Such algorithms require costly
interactions with remote clients to
grant write permissions!

• Three level of optimism:
– Synch, pessimistic
– At commit time (unless page has to

be evicted before), optimistic
– Asynch, in the middle…

Taxonomy:
Avoidance-based Algorithms

Write Permission Duration
• How long should the write

permission be retained for?
– Single Transaction:

• all page update intentions
must be declared

– Across transaction
boundaries:

• Until the page is evicted
from the cache (due to the
replacement algorithm)

• Untill the server does not
drop the permission due to
consistency actions

Taxonomy:
Avoidance-based Algorithms

Remote Conflict Priority

• What if the page is
currently being used by
a remote client?
– Wait until transaction

completes:
• Priority to readers

– Preempt (abort) remote
transaction:

• Priority to writers

Taxonomy:
Avoidance-based Algorithms

Remote Update Action
• Similar to Detection-based

but with a remarkable
difference:
– Remote update actions must

be completed before the local
transaction commits for the
ROWA scheme:

• Two-phase commit (2PC) is
required for propagation

• No need for 2PC when using
invalidation

Server-based Two Phase Locking
(S2PL)

• Detection based with synch page validation upon
initial access

• Based on primary-copy replication scheme:
– Before commit, a transaction must first access a

designated (primary) copty of any page it reads or
writes:

• Reads must have the same value
• Writes must be installed at the primary copy

• Variants:
– Caching 2PL
– Basic 2PL

Caching 2PL (C2PL)

• “check-on-access” policy
• Page copies are tagged with a version identifier
• Page lock requests are synch. sent to the server (along with

version ids if already in cache):
– Centralized strict 2PL Lock Management & Deadlock

Management
– Upon read-lock request, a valid page is returned if necessary
– Inter-transaction caching enabled

• Basic 2PL:
– Just like C2PL, but only intra-transaction caching:

• cached pages are purged upon transaction termination

Callback Locking
(CB)

• Avoidance-based, synchronous write intention declaration:
– Local cached pages are always valid
– No additional consistency controls upon commit

• Clients issue page requests upon cache miss:
– Server returns a valid copy only if no other client has write

permission granted

• Need for server tracking of remote page copies:
– Clients inform server of eviction using piggybacks:

• Server has a conservative view of cached pages

• Clients have a local lock manager:
– Never wait for read lock and wait for write lock onlyif no write

permission

Callback Locking
(CB)

• Write permission request management:
– Server issues callback requests to other clients holding a copy

• Callbacks are treated as write lock request at the client side
+ the page is evicted from the buffer (invalidation)

• To simplify recovery, updated pages are sent to the server
upon commit.

• Two variants:
– Callback-Read:

• Write permissions granted for a single transaction
• Server blocks read requests till the end of the writing transacion, if any

– Callback-All:
• Write permissions must be explicitly revoked from the server
• Server issues downgrade requests if a client has write permission and

an other client performs a read request

Optimistic Two Phase Locking
(O2PL)

• Avoidance-based, commit deferred write intention
declaration

• Clients have a local lock manager:
– No locks are acquired at the server during transaction

execution

• Transaction tentatively update pages in their local
cache (unless they have to be evicted)

• At commit time, updated pages are sent to the
server

Optimistic Two Phase Locking
(O2PL)

• The server acquire write locks on such pages and sends a
message to each client holding a page copy

• Remote clients in their turn acquire exclusive locks on their local
page copies and update/invalidate them:
– In case pages are updated we need an extra round (2PC):

• After the server collects write lock acks (=2PC vote msgs) from ALLthe
clients, it actually sends the updates.

• Upon receipt of the updates the client installs them and releases the lock

• Centralized deadlock detection, based on periodic collection of
local wait-for graphs

