
The “Trickle-Down Effect”
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servers
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What is the effect on “downstream” traffic? 

What is the significance of this effect?

How does it impact design choices for components “behind” the caches? 
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A Look at the Miss Stream



What’s Happening? (LRU)
Suppose the cache fills up in R references.

(That’s a property of the trace and the cache size.)

Then a cache miss on object with rank i occurs only if i is 
referenced….

probability pi

…and i has not been referenced in the last R requests.

probability (1 - pi)R

Stack distance

P(a miss is to object i) is qi = pi(1 - pi)R



Miss Stream Probability by Popularity

qi: R = 104, αααα=0.7

IBM 1998 (32 MB)

Moderately popular 
objects now dominate.



Object Hit Ratio by Popularity 
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1998



Effects on server locality



Cache Effectiveness

• Previous work has shown that hit rate 
increases with population size   

• However, single proxy caches have 
practical limits
– Load, network topology, organizational 

constraints

• One technique to scale the client population 
is to have proxy caches cooperate



Cooperative Web Proxy Caching

• Sharing and/or coordination of cache state among 
multiple Web proxy cache nodes

• Effectiveness of proxy cooperation depends on:
♦ Inter-proxy communication distance
♦ Size of client population served

♦ Proxy utilization and load balance
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[Source: Geoff Voelker]



Resolve misses through the parent. 

Hierarchical Caches

INTERNET

clients

origin Web site
(e.g., Torino2006)

clients
clients

Idea: place caches at exchange or 
switching points in the network, and 
cache at each level of the hierarchy.



Content-Sharing Among Peers

INTERNET

clients
clients

clients

Idea: Since siblings are “close” in the network, allow 
them to share their cache contents directly.



Harvest-Style ICP Hierarchies

INTERNET

client
query (probe)

query response

object request

object response

Examples
Harvest [Schwartz96]
Squid (NLANR)
NetApp NetCache

Idea: multicast probes within each 
“family”: pick first hit response or 
wait for all miss responses.



Issues for Cache Hierarchies

– With ICP: query traffic within “families” (size n)
• Inter-sibling ICP traffic (and aggregate overhead) is quadratic with n.

• Query-handling overhead grows linearly with n.

– miss latency
• Object passes through every cache from origin to client: deeper 

hierarchies scale better, but impose higher latencies.

– storage
• A recently-fetched object is replicated at every level of the tree.

– effectiveness
• Interior cache benefits are limited by capacity if objects are not 

likely to live there long (e.g., LRU).



A Multi-Organization Trace
• University of Washington (UW) is a large and diverse 

client population
• Approximately 50K people

• UW client population contains 200 independent campus 
organizations

• Museums of Art and Natural History
• Schools of Medicine, Dentistry, Nursing
• Departments of Computer Science, History, and Music

• A trace of UW is effectively a simultaneous trace of 200 
diverse client organizations
– Key: Tagged clients according to their organization in trace

[Source: Geoff Voelker]



Cooperation Across Organizations

• Treat each UW organization as an independent 
“company”

• Evaluate cooperative caching among these 
organizations

• How much Web document reuse is there among 
these organizations? 
– Place a proxy cache in front of each organization. 

– What is the benefit of cooperative caching among these 
200 proxies?

[Source: Geoff Voelker]



UW Trace Characteristics

Trace UW
Duration 7 days
HTTP objects 18.4 million
HTTP requests 82.8 million
Avg. requests/sec 137
Total Bytes 677 GB
Servers 244,211
Clients 22,984

[Source: Geoff Voelker]



Ideal Hit Rates for UW proxies

• Ideal hit rate - infinite 
storage, ignore 
cacheability, expirations

• Average ideal local 
hit rate:  43%

[Source: Geoff Voelker]



Ideal Hit Rates for UW proxies
• Ideal hit rate - infinite storage, 

ignore cacheability, expirations

• Average ideal local
hit rate:  43%

• Explore benefits of perfect 
cooperation rather than a 
particular algorithm

• Average ideal hit rate increases 
from 43% to 69% with 
cooperative caching

[Source: Geoff Voelker]



Sharing Due to Affiliation

• UW organizational sharing vs. random organizations
• Difference in weighted averages across all orgs is ~5%

[Source: Geoff Voelker]



Cacheable Hit Rates for
UW proxies

• Cacheable hit rate - same 
as ideal, but doesn’t 
ignore cacheability

• Cacheable hit rates are 
much lower than ideal 
(average is 20%)

• Average cacheable hit 
rate increases from 20% 
to 41% with (perfect) 
cooperative caching

[Source: Geoff Voelker]



Scaling Cooperative Caching

• Organizations of this size can benefit significantly from 
cooperative caching

• But…we don’t need cooperative caching to handle the entire 
UW population size
– A single proxy (or small cluster) can handle this entire population!

– No technical reason to use cooperative caching for this 
environment

– In the real world, decisions of proxy placement are often political 
or geographical

• How effective is cooperative caching at scales where a single 
cache cannot be used?

[Source: Geoff Voelker]



Hit Rate vs. Client Population
• Curves similar to other 

studies in the area

• Small organizations
– Significant increase in hit rate 

as client population increases

– The reason why cooperative 
caching is effective for UW

• Large organizations
– Marginal increase in hit rate 

as client population increases

[Source: Geoff Voelker]



Transactional Data Caching



Client-Server Database System Architectures

• query-shipping model
– clients send queries (plain SQL text/compiled)
– server sends results set
+ simple: lightweight clients, no change to the server DBMS 

engine
- underutilization of client resources/bottleneck at the server

• data-shipping model
– clients request specific data items
– query processing takes place at the client side
+  data closer to applications (no need for stored proc.)
+  offload of server DBMS
- higher complexity of client DBMS



inter vs intra Transaction Caching

• intra transaction caching
– data is retained within the cache only for the durationof the 

transaction
+ simple: just manage local page buffer and corresponding

locks
- requires access to server DBMS at every transaction

• inter transaction caching
– data is retained within the cache even after termination of 

the transaction that originally shipped in the data.
+  load pressure relief at the server DBMS
- need for consistency management scheme ensuring

serializable view of the database



Reference Architecture



Motivations

• Servers have typically larger capacity than 
singleworkstations…

• but clients have more aggregated capacity!
• Avoiding client/server communication:

– improved latency
– reduce b/w consumption
– allow access to data independently of server 

load: higher performance predictability



Consistency requirements

• Need support for ACID Transactions, 
including serializability…

• we’re in a replicated environment:

“one-copy serializability”
• equivalent to some serial execution on a 

non-replicated database



Availability

• Strong physical and environmental
asymettries between clients and servers:
– Servers usually have more reliable hw

– Clients may frequently (explicitly or not) 
disconnect

• Clients crash or disconnection must not
impact availability of data.



Client Caching:
Dynamic Replication + Second Class Ownership

Dynamic replication
• Page copies a created and destroyed based on runtime

client demands.
• Finite cache capacity : page eviction policy
Second Class Ownership
• (Consistent) replication can hamper availability in 

presence of failures
• Client-cache d pages can be destroyed at any time without

causing the loss of committed updates:
– A server can consider a client “crashed” at any time and 

unilaterally abort any active transaction
– Servers can’t be hijacked by uncooperative (crashed) clients



Cost Factors

• Consistency enforcing algorithms can be much
more complex than those employed for WWW 
objects caching

• Cost Factors:
– Overhead for control actions
– Synchronous vs Asynchronous control actions
– Transaction blocking vs aborts
– Effective client cache utilization

• Note that the impact of these factors is workload-
dependent:
– Need for general-purpose solutions



A Taxonomy of Algorithms
Detection- vs Avoidance-based

Detection-based

• Stale data is allowed to remain 
in client caches, but transactions 
that are allowed to commit have 
not accessed stale data

• Stale data = older than latest 
committed value

• LAZY Approach:
– require transaction validity check

– asynch update notifications (hints)

Avoidance-based

• All cached data is valid (no 
staleness)

• EAGER Approach:
– Invalid data is atomically 

removed from client caches

– Read-one / Write-all, just 
evict any unavailable cache



Taxonomy: 
Detection-based Algorithms

• Stale data is allowed to
remain in client caches, 
but transactions that are 
allowed to commit have
not accessed stale data

• Stale data = older than
latest committed value

• LAZY Approaches:
– require transaction validity

check
– asynch update notifications

(hints)



Taxonomy: 
Detection-based Algorithms

• Simple Clients:
– No strict need for 

server’s callbacks

• Greater dependency
on servers: 
– Overhead



Taxonomy: 
Detection-based Algorithms

Validity Check Initiation
• Once validity is established it’s 

guaranteed for the transaction
duration:
– Until this does not commit/abort, 

no other transaction can commit
updates

– Before committing any
transaction must obtain server 
permission!

• Synch:
– Upon first access to a data item
– No access until validity 

verification
• Asynch:

– No wait for validity verification
• Deferred:

– Even more optimistic!



Taxonomy: 
Detection-based Algorithms

Validity Check Initiation, 
Tradeoffs:

+  Deferring allows bundling 
control operations: 

< overhead

- Late conflict detection can 
cause late abort of one or 
more transactions:
- Possibly requiring duplicate 

work in interactive
environments



Change Notification Hints
• Idea: reducing the abort rate 

by spreading updates

• A transaction can send
notification hints before or 
after commit time:
– If done before & then 

transaction aborts we get 
cascading aborts/unnecessary
aborts at the other clients!

– So it’s typically done after 
commit…

Taxonomy: 
Detection-based Algorithms



Remote Update Action
• Propagation:

– Update installation at remote 
site

• Invalidation:
– Page eviction at remote site

• Dynamic:
– Adapt between two depending 

on perceived workload

Taxonomy: 
Detection-based Algorithms



Taxonomy: 
Avoidance-based Algorithms

• All cached data is
valid (no staleness)

• Eager approach:
– Invalid data is 

atomically removed 
from client caches

– Read-one / Write-all, 
just evict any
unavailable cache



Taxonomy: 
Avoidance-based Algorithms

• More complex client 
caches (e.g., fully-fledge 
lock manager) vs reduced
reliance on server

• More information on the 
server:
– ROWA, requires ability to

track location of page 
copies:

• Broadcast-based
– good performance
– low scalability

• Directory-based
– higher overhead
– higher scalability



Taxonomy: 
Avoidance-based Algorithms

Write Intention Declaration
• Reads are alway valid (ROWA)

– Interactions with server only for
pages retrievals and updates

– Upon page retrieval, the server 
implicitly guarantees it will inform
the client if the page becomes
invalid

• If a transaction wishes to update
a cached page copy the server 
must be informed:
– Write permission must be

explicitly granted
– Once a write permission is

granted, data can be updated
without contacting the server



Taxonomy: 
Avoidance-based Algorithms

Write Intention Declaration
• Write permissions are similar to

write locks, but:
– Are granted to a client site not to a 

single transaction
– Doesn’t obey two-phase constraint.

• Such algorithms require costly
interactions with remote clients to
grant write permissions!

• Three level of optimism:
– Synch, pessimistic
– At commit time (unless page has to

be evicted before), optimistic
– Asynch, in the middle…



Taxonomy: 
Avoidance-based Algorithms

Write Permission Duration
• How long should the write 

permission be retained for?
– Single Transaction: 

• all page update intentions 
must be declared

– Across transaction 
boundaries:

• Until the page is evicted
from the cache (due to the 
replacement algorithm)

• Untill the server does not
drop the permission due to
consistency actions



Taxonomy: 
Avoidance-based Algorithms

Remote Conflict Priority

• What if the page is
currently being used by
a remote client?
– Wait until transaction

completes:
• Priority to readers

– Preempt (abort) remote 
transaction:

• Priority to writers



Taxonomy: 
Avoidance-based Algorithms

Remote Update Action
• Similar to Detection-based 

but with a remarkable 
difference:
– Remote update actions must

be completed before the local
transaction commits for the 
ROWA scheme:

• Two-phase commit (2PC) is
required for propagation

• No need for 2PC when using
invalidation



Server-based Two Phase Locking
(S2PL)

• Detection based with synch page validation upon
initial access

• Based on primary-copy replication scheme:
– Before commit, a transaction must first access a 

designated (primary) copty of any page it reads or 
writes:

• Reads must have the same value
• Writes must be installed at the primary copy

• Variants:
– Caching 2PL
– Basic 2PL



Caching 2PL (C2PL)

• “check-on-access” policy
• Page copies are tagged with a version identifier
• Page lock requests are synch. sent to the server (along with

version ids if already in cache):
– Centralized strict 2PL Lock Management & Deadlock

Management
– Upon read-lock request, a valid page is returned if necessary
– Inter-transaction caching enabled

• Basic 2PL:
– Just like C2PL, but only intra-transaction caching:

• cached pages are purged upon transaction termination



Callback Locking
(CB)

• Avoidance-based, synchronous write intention declaration:
– Local cached pages are always valid
– No additional consistency controls upon commit

• Clients issue page requests upon cache miss:
– Server returns a valid copy only if no other client has write 

permission granted

• Need for server tracking of remote page copies:
– Clients inform server of eviction using piggybacks:

• Server has a conservative view of cached pages

• Clients have a local lock manager:
– Never wait for read lock and  wait for write lock onlyif no write

permission



Callback Locking
(CB)

• Write permission request management:
– Server issues callback requests to other clients holding a copy

• Callbacks are treated as write lock request at the client side 
+ the page is evicted from the buffer (invalidation)

• To simplify recovery, updated pages are sent to the server 
upon commit.

• Two variants:
– Callback-Read:

• Write permissions granted for a single transaction
• Server blocks read requests till the end of the writing transacion, if any

– Callback-All:
• Write permissions must be explicitly revoked from the server
• Server issues downgrade requests if a client has write permission and 

an other client performs a read request



Optimistic Two Phase Locking
(O2PL)

• Avoidance-based, commit deferred write intention
declaration

• Clients have a local lock manager:
– No locks are acquired at the server during transaction 

execution

• Transaction tentatively update pages in their local
cache (unless they have to be evicted)

• At commit time, updated pages are sent to the 
server



Optimistic Two Phase Locking
(O2PL)

• The server acquire write locks on such pages and sends a 
message to each client holding a page copy

• Remote clients in their turn acquire exclusive locks on their local 
page copies and update/invalidate them:
– In case pages are updated we need an extra round (2PC):

• After the server collects write lock acks (=2PC vote msgs) from ALLthe 
clients, it actually sends the updates.

• Upon receipt of the updates the client installs them and releases the lock

• Centralized deadlock detection, based on periodic collection of 
local wait-for graphs


