
Tradeoff Evaluation

Comparison between C2PL 
and CB-A, as both: 

• Allow intertransaction 
caching

• Don’t use propagation

• Synchronously activate 
consistency actions



Tradeoff Evaluation

Comparison between 
CB-R (“pessimistic”) 

and O2PL-I (“optimistic”), 
as both:

• Are avoidance-based
• Are invalidation-based
• Retain write permissions 

only until transaction 
commit



Tradeoff Evaluation

Comparison between CB-R 
and CB-A as they only
differ for this aspect.



Tradeoff Evaluation

Comparison between O2PL-I 
and O2PL-P as they only
differ for this aspect.



Performance model (i)

Reference System Model



Performance model (ii)

Workload parameter settings for n clients

Low data 
contention

Moderate data 
contention

High data 
contention

One producer
n-consumers



Private Model
Large Client Cache, (relatively) slow local area network.

Emphasis is mainly on message exchange cost, rather than server I/O



Private Model
LOOSER: Detection
• Again, due to high message overhead:

– one req. per accessed item
– replies are always images in B2PL

• Detection based approaches require more 
optimism!Tradeoff: Detection vs Avoidance



Private Model
Looser: Synch
• Sligthly worse performance in low 

contention env
• O2PL saves some msgs by batching 

write intention declarations at commit 
time (no concurrency induced aborts)Tradeoff: 

Synchvs AsynchWrite Intention Timing



Private Model Looser: Single Transaction
• With no data contention, CB-A 

never callbacks write 
permissions:
– Lower message overheadTradeoff: 

Singlevs Multi-Xaction Write Permission Duration



Private Model --Tie!
• No apparent difference in 

absence of no read-write / 
write-write data conflicts:
– no remote update ever occurs!Tradeoff: 

Invalidate vs Propagate



Hot-Cold Model
Results are similar to the Private Model, with some exceptions

due to the introduction of read-write/write-write conflicts.



Hot-Cold Model
LOOSER: Detection
• High message overhead, but constant!
• Avoidance based approach requires 

remote update actions at client holding 
copies of updated items:

– reduced scalabilityTradeoff: Detection vs Avoidance



Hot-Cold Model
Looser: Synch
• Worse performance due to higher #msgs:

– reduced difference when clients increase 
and the server disk becomes the 
bottleneck

• Few aborts due to deferred write
intention: low data contention level

Tradeoff: 
Synchvs AsynchWrite Intention Timing



Hot-Cold Model
Looser: Single Transaction
• Few clients, lowest contention level:

– CB-A saves msgs by retaining locks
• As clients increase, so does 

contention level:
– CB-A ends up requiring more 

callbacks than CB-R
Tradeoff: 
Singlevs Multi-Xaction Write Permission Duration



Hot-Cold Model
Looser: Update Propagation
• Much higher data traffic as clients 

increase
• At 25 clients:

– 13 remote clients need updates
– 120KB vs 43KB per commit
– Many propagations are wasted:

• re-propagated or dropped!

Tradeoff: 
Invalidatevs Propagate



Uniform Model
No per-client locality: higher data contention, less benefits from caching



Uniform Model
LOOSER: Detection, but almost tie
• Avoidance based approaches require 

more msgs as clients increase:
– CB-R/A require expensive callbacks

which are useless in absence of 
(temporal) localityTradeoff: Detection vs Avoidance



Uniform Model LOOSER: Detection, but almost tie
• Detection causes lower hit rates, 

due to the presence of invalid 
data in the client caches.

Tradeoff: Detection vs Avoidance



Uniform Model
Almost a tie….
Tradeoff: optimism vs pessimism

– O2PL-I/A incurs high abort rates
(40%)

– O2PL-I still performs well due to 
cache hits as transactions re-run: low
abort cost!

Tradeoff: 

Synch vs Asynch Write Intention Timing



Uniform Model
Looser: Multi-Transaction
• CB-A requires more messages than 

CB-R, since we’re in a low locality 
scenario:
– Retaining write permissions across 

transactions is expensive (due to 
subsequent callbacks) if data are not 
likely to be written again locally

Tradeoff: 
Single vs Multi-Xaction Write Permission Duration



Uniform Model Looser: Update Propagation
• Like in previous scenarios 

propagation produces much higher 
data traffic as clients increase

Tradeoff: 
Invalidatevs Propagate



Feed Model
Single writer, many readers: here update propagation pays off:

• increased cache hit rate
• few wasted propagations due to high locality in clients accesses

source
throughput

aggregate 
throughput



Overall considerations

• Detection vs Avoidance:
– considered detection-based approaches are pessimistic

(on access detection) only:
• This keeps the abort-rate low, but strongly increases the 

message traffic & dependence on server
• Anyway, message traffic is roughly independent on the number

of clients
• More optimism (deferred validity check initiation, e.g. at 

commit time) would have:
– Consistenly reduced the exchanged messages
– Increased the abort rate in high contention
– It can be shown [Adya95] that in low contention scenarios

optimistic detection based approaches outperform avoidance
based approaches



Overall considerations

• Detection vs Avoidance:
– A noteworthy side-effect of detection based 

algorithms is that, allowing invalid pages in 
client caches, they typically achieve lower hit 
rates:

• “Effective” cache size is reduced by invalid pages in 
detection based alg.

• Avoidance-based ones avoid caching invalid pages
and end up in high contention scenarios with more 
empty (i.e. usable) slots.



Overall considerations

• Write Intention Declaration (O2PL vs CB):
– Pessimism vs Optimism tradeoff in avoidance based

algorithms

– No sharing:
• same performance

– Limited sharing:
• Optimism wins: less msgs thanks to batching at commit

– Higher sharing & contention:
• Optimistic approaches lead to high transaction abort rates:

– which may be unacceptable in interactive applications

– in the simulation abort cost is rather low (cache hit upon restart)



Overall considerations

• Write Permission Duration:
– High contention levels + low locality make unworthy

retaining write permission across transactions:
• Such an effort pays off only in case a page is more likely to be

written locally than read remotely!

• Remote Update Action:
– Update propagations can lead to high resource wastage 

and is highly sensitive to the contention level

– Invalidation seems the best choice in the majority of 
cases

– Adaptive approaches were also proposed.



Overall considerations

• There’s no winning solution for all the 
possible workload scenarios:
– Reduced contention levels make “optimistic”

approaches more attractive in general, but…

– at higher contention levels too much
“optimism” translates into high abort rates!

– General purpose DBMS must provide good
performance in allthe workload scenarios:

• Need for robust solutions!



Granularity of Consistency Actions

• Consistency actions (callbacks/lockings) can take 
place either for each accessed row/object or at the 
page level:
– Page granularity:

+ reduced message overhed in case of spacial locality
- false conflicts may be detected

– Object granularity:
• Exactly the opposite!

– Adaptive solutions:
• Normally use page granularity
• If a read-write conflict is detected, switch to objectgranularity



What we did not cover…

• Geographically distributed transactional cache 
schemes:
– Performance study was focused on LAN 

environments…
– What if network latencies get predominant and highly

variant?
– What if we need to scale to thousands of clients?

• e.g. edge server performing caching of data originally hosted at
the origin site DBMS

Open Research Questions


