Tradeoff Evaluation

Design Choice

Algorithms to Compare

Invalid Access Prevention

C2PL (Detection)
vs, CB-A {Avoidance)

Write Intention Declaration

CB-R (Synchronous)
vs. O2PL-I (Deferred)

Write Permission Duration

CB-R (Single Transaction)
vs. CUB-A (Until Revoked or Dropped)

Remote Update Action

O2PL-I (Tnvalidation)
vs. O2PL-P (Propagation)

Comparison between C2PL
and CB-A, as both:

e Allow intertransaction
caching

 Don’t use propagation

e Synchronously activate
consistency actions

Tradeoff Evaluation

Design Choice

Algorithms to Compare

Invalid Access Prevention

C2PL (Detection)
vs. CB-A (Avoidance)

Write Intention Declaration

CB-R (Synchronous)
vs, O2PL-I (Delerred)

Write Permission Duration

CB-R (Single Transaction)
vs. CUB-A (Until Revoked or Dropped)

Remote Update Action

O2PL-I (Tnvalidation)
vs. O2PL-P (Propagation)

Comparison between
CB-R (“pessimistic”)
and O2PL-I (“optimistic”),
as both:

 Are avoidance-based
 Are invalidation-based
* Retain write permissions

only until transaction
commit

Tradeoff Evaluation

Design Choice

Algorithms to Compare

Invalid Access Prevention

C2PL (Detection)
vs. CB-A {Avoidance)

Write Intention Declaration

CB-R (Synchronous)
vs, O2PL-I (Delerred)

Write Permission Duration

CB-R (Single Transaction)
vs. CUB-A (Until Revoked or Dropped)

Remote Update Action

O2PL-I (Invalidation)
vs. O2PL-P (Propagation)

Comparison between CB-R
and CB-A as they only
differ for this aspect.

Tradeoff Evaluation

Design Choice

Algorithms to Compare

Invalid Access Prevention

C2PL (Detection)
vs. CB-A {Avoidance)

Write Intention Declaration

CB-R (Synchronous)
vs. O2PL-I (Deferred)

Write Permission Duration

CB-R (Single Transaction)
vs, CB-A (Until Revoked or Dropped)

Remote Update Action

O2PL-I (Tnvalidation)
vs. O2PL-P (Propagation)

Comparison between O2PL
and O2PL-P as they only,
differ for this aspect.

Performance model (i)

u
mmm——- -

. i
Transaction ;
Source I
i i
Concutrency Ci Bufi i i Concurrency Server Lis Buffer
— lent |] Buffer : Other Clicats i Control e y
| il Manag Manager
, Manager Manager |! i Manager ' —
Manag;:}:m — L —; ‘ ‘ ‘ i M, :
...... - : |l_.1"'.“ : : h“"l. :
Tag, '.i"l i - . E LR
Resource Manager t | Network Manager : Resource Manager
i ;
CPU E Network CPU Dicke

Client Model ‘ ‘ ‘ Server Model

Other Clients

Reference System Model

Performance model (i)

Parameter PRIVATE | HOTCOLD | UNIFORM | FEED
TransSize 16 pages 20 pages 20 pages 5 pages
HolBounds pto p+24, p to p+49, | to 50
p=25(n-1)41 | p=350(n-1)+1

ColdBounds 626 1o 1,250 rest of DB all of DB rest of DB
HotAccProb 0.8 0.8 0.8
ColdAccProb 0.2 0.2 1.0 0.2
Hot WriProb 0.2 0.2 1.0/0.0
ColdWriProb 0.0 0.2 0.2 0.0/0.0
PerPagelnsi 30,000 30,000 30,000 30,000
ThinkTime 0 | 0 |

Moderate data High data One producer
contention contention n-consumers

Workload parameter settings for n clients

Private Model

Large Client Cache, (relatively) slow local areanuek.
Emphasis isnainly on message exchange cost, rather than server 1/O

ozeL1 (O ozxrr \/ cBR —+ cBa X c2rL W B2PL

— o -

30

Throughput (TPS)

Msgs sent per commit
[)
=

A— g e A
x| | &l B
EHEE—H8
10
0 1 1 1 1 L 0 1 1 | 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 5: Throughput Figure 6: Messages Sent /Commit

(PRIVATE, 25% Client Cache, Slow Net) (PRIVATE, 25% Client Cache, Slow Net)

LOOSER: Detection

P rlvate M Odel * Again, due to high message overhead:

— one req. per accessed item
— replies are always images in B2PL

« Detection based approaches require more
Tradeoff:Detectionvs optimism!

—|— CB-A | |>X c2PL H B2PL

— o -

30

Throughput (TPS)

Msgs sent per commit
[)
=

A— g e A
x| | &l B
EHEE—H8
10
0 1 1 1 1 L 0 1 1 1 | 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 5: Throughput Figure 6: Messages Sent /Commit

(PRIVATE, 25% Client Cache, Slow Net) (PRIVATE, 25% Client Cache, Slow Net)

Looser: Synch

Sligthly worse performance in low
contention env

 OZ2PL saves some msgs by batching
write intention declarations at commit
time (no concurrency induced aborts)

Private Model

Tradeoff:
Synchvs Write Intention Timing

oer1 | (O ozerr | \/ cBR —+ cBa X L W B2PL

— o -

Throughput (TPS)
Msgs sent per commit
[)
=

A— g e A
[| 3 -
EHEE—H8
10
o+———T——r——r—r or-—T—7T— 7
0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 5: Throughput Figure 6: Messages Sent /Commit

(PRIVATE, 25% Client Cache, Slow Net) (PRIVATE, 25% Client Cache, Slow Net)

Private Model

Tradeoff:
Singlevs

Throughput (TPS)

Looser: Single Transaction

* With no data contention, CB-A
never callbacks write
permissions:

. . . — Lower message overhead
Write Permission Duration 9

—|— cB-A | X c2PL H B2PL

(PRIVATE, 25% Client Cache, Slow Net)

—a vl e
= 30
2 20
=53 || 3
z HE—H
=~ 10
YT 1 T Il D|'"'|_""|""|""|""|
5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 5: Throughput Figure 6: Messages Sent /Commit

(PRIVATE, 25% Client Cache, Slow Net)

- --Tie!
Private MOdeI . II\Ieo apparent difference in

absence of no read-write /
write-write data conflicts:

Tradeoff: — no remote update ever occurs!
Invalidate vs Propagate

oLt | (O ozerr |\/ cBR —+ cBa X c2rL W B2PL

— o -

30

Throughput (TPS)
Msgs sent per commit
[)
=

A— g e A
[| 3 -
EHEE—H8
10
o+———T——r——r—r or-—T—7T— 7
0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 5: Throughput Figure 6: Messages Sent /Commit

(PRIVATE, 25% Client Cache, Slow Net) (PRIVATE, 25% Client Cache, Slow Net)

Hot-Cold Model

Resultsare similar to the Private Model, with some exceptions
dueto theintroduction of read-write/write-write conflicts.

ozt () ozLr \/ CBR —+ cBa X cr W B2RL

Throughput (TPS)
Msgs sent per commit

0 1 I | L 0 | 1 I | 1

0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 7: Throughput Figure 8: Messages Sent/Commit

(HOTCOLD, 25% Client Cache, Slow Net) (HOTCOLD, 25% Client Cache, Slow Net)

Hot-Cold Model

Tradeoff:Detectionvs

Throughput (TPS)

LOOSER: Detection
High message overhead, but condtant

« Avoidance based approach requires
remote update actions at client holding
copies of updated items:

— reduced scalability

—|— cB-A | | X c2rPL H B2PL

b [
Lh =
P P PR T

—_
o
PR R

Clients

Figure 7: Throughput
(HOTCOLD, 25% Client Cache, Slow Net)

60

.
=
1

[
=]
1

Msgs sent per commit

Clients

Figure 8: Messages Sent/Commit
(HOTCOLD, 25% Client Cache, Slow Net)

H Ot-CO I d M Od el I-_OO\;QJ\/eor;5:Sey|cr)]é::rr1]‘ormance due to higher #msgs:

— reduced difference when clients increase
and the server disk becomes the

bottleneck
Tradeoff: | ~_+ Few aborts due to deferred write
Synchvs Write Intention Timing intention: low data contention level

—|— cB-A X crL H B2PL

Throughput (TPS)
Msgs sent per commit

0 I | 1 0 | 1 I | 1

0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 7: Throughput Figure 8: Messages Sent/Commit

(HOTCOLD, 25% Client Cache, Slow Net) (HOTCOLD, 25% Client Cache, Slow Net)

Looser: Single Transaction
H Ot'CO I d M Od el Few clients, lowest content_iqn level:
— CB-A saves msgs by retaining locks
 As clients increase, so does
contention level:

Tradeoff: — CB-A ends up requiring more
Singlevs Write Permission Duration callbacks than CB-R

v CB-R —|— cB-A | X cPL H B2PL

20-
2R E
2 z
e 154 S
- i i
- 1 ¥
=5 J ="
I =
g 10 —. 2
= g
= Z
] =
5 =
0 I | 1 0 | 1 I | 1
0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients
Figure 7: Throughput Figure 8: Messages Sent/Commit

(HOTCOLD, 25% Client Cache, Slow Net) (HOTCOLD, 25% Client Cache, Slow Net)

Looser: Update Propagation
Much higher data traffic as clients

Hot-Cold Model e

Tradeoff:

Throughput (TPS)

o At 25 clients:
— 13 remote clients need updates
— 120KB vs 43KB per commit

— Many propagations are wasted:
* re-propagated or dropped!

[ozeL1| () ozee| \/ cBR —+ cBa X cr W B2RL

vs Propagate

b [
Lh =
P RPN T T RS T

—_
o
PR R

Msgs sent per commit

0 I | 1 0 | 1 I | 1

0 5 10 15 20 25 0 5 10 15 20 25
Clients # Clients

Figure 7: Throughput Figure 8: Messages Sent/Commit

(HOTCOLD, 25% Client Cache, Slow Net) (HOTCOLD, 25% Client Cache, Slow Net)

Uniform Model

No per-client locality: higher data contention, less benefits from caching

Throughput (TPS)

o
|

=Y
1

O2PL-1

H B2PL

—+ B2 X cmL

=
[y

— 7T
10 15

Clients

T
20 25

Figure 9: Throughput
If_l:N”"'[)H M. 25% Client Cache, Slow Net)

Msgs sent per commit

100 4

80 +

60 4

40 -

LIRS SN ML |
10 15 20

Clients

[
L

Figure 10: Messages Sent/Commit
(UNIFORM, 25% Client Cache, Slow Net)

Uniform Model

Tradeoff:Detectionvs

Throuzhput (TPS)

LOOSER: Detection, but almost tie

Avoidance based approaches require

more msgs as clients increase:

— CB-R/A require expensive callbacks
which are useless in absence of
(temporal) locality

+ cBA [|[X c2r N BZPL"

Clients
Figure 9: Throughput
(I:N”"UH M. 25% Chent Cache, Slow Net)

Msgs sent per commit

100
80
60 +

404 Y2

T
5 20 25

=
= =
ok
=
—
L

Clients

Figure 10: Messages Sent/Commit
(UNIFORM, 25% Client Cache, Slow Net)

Uniform Model LOOSER: Detection, but almost tie

Detection causes lower hit rates,
due to the presence of invalid

| data in the client caches.
Tradeoff:Detectionvs

o2pL1 () opLP v CB-R + ¢B-A || c2pL H B2PL

0.9 4
0.8 4

0.6+

0.5

Client Buffer Hit %
Aborts per Commit

Clients # Clients

Figure 11: Client Hit Rate Figure 12: Aborts/Commit
(l:NH"()H M, 25% Client Cache, Slow Net) (l:N”"()H M, 25% Client Cache, Slow Net)

. Almost a tie....
U n |f0 rm M Od el Tradeoff: cl)ptimism VS pessimism

— O2PL-I/A incurs high abort rates
(40%)
— O2PL-I still performs well due to

Tradeoff; cache hits as transactions re-run: low

_ _ o abort cost!
Synch vs Asynch Write Intention Timing

ﬂ opL1| (O opLp v CB-R + ¢B-A X crL H B2PL

Throughput (TPS)

Aborts per Commit

& Clients

Clients

Figure 9: Throughput

Figure 12: Aborts/Commit
(_l:N”"()H M. 25% Client Cache, Slow Net)

(UNIFORM, 25% Client Cache, Slow Net)

Looser: MultlI-Transaction

" CB-A requires more messages than
U n |f0 rm M Od el CB-R, since we're in a low locality
scenario:
— Retaining write permissions across

Tradeoff: transactions is expensive (due to

: : : . : subsequent callbacks) if data are not
vs Multi-Xaction Write Permission Duration |ikely to be written again locally

+ ¢B-A | X c2r H B2PL

100 4
7 £ 80+
H S 60-
! E
S :
£ 5 404
| =
20+
0 T T T T 1 0 T A AL N L
0) 10 15 20 25 0 3 10 15 20 25
Clients # Clients
Figure 9: Throughput Figure 10: Messages Sent/Commit

(UNIFORM, 25% Client Cache, Slow Net}) (UNIFORM, 25% Client Cache, Slow Net)

Uniform Model !egser edate Propagaior

Like in previous scenarios
propagation produces much higher
data traffic as clients increase

Tradeoff:
vs Propagate

[o2pr-1| | o2pL-P V CB-R + cB-A X cpL H B2PL

100
80
60 +

404 Y2

Throuzhput (TPS)
Msgs sent per commit

20+
0 T T T L 1 0 T A AL N L
0) 10 15 20 25 0 3 10 15 20 25
Clients # Clients
Figure 9: Throughput Figure 10: Messages Sent/Commit

(UNIFORM, 25% Client Cache, Slow Net}) (UNIFORM, 25% Client Cache, Slow Net)

Feed Model

Single writer, many readers. here update propagation pays off:
e increased cache hit rate
o few wasted propagations due to high locality in clients accesses

Fhroughput (1 PS)

aggregat
1 throughput 2. 009-
- £ Joo—wb—wo-—0o
100 S
2 07
£ 06- E’E/E__,_E‘r g—tl
=05+
[] 02PLI &
50 - O O2PL-P Source . 0.4 - EDEPL—I
— Readers throughputz o3- ©- 02PL-P
- —- Writer -_-= PE
1S o 01
t:*l-”“- 0.0 94— R I)
0 5 10 15 20 25 0 5 10 15 20 25
Clients % Clients
Figure 13: Throughput Figure 14: Client Cache Hit % (Readers only)

(FEED, 25% Client Cache, Slow Net) (FEED, 25% Client Cache, Slow Net)

Overall considerations

e Detection vs Avoidance:

— considered detection-based approaches are pessimistic
(on access detection) only:

* This keeps the abort-rate low, but strongly increases the
message traffic & dependence on server

* Anyway, message traffic is roughly independent on thalmer
of clients

* More optimism (deferred validity check initiatiogg. at
commit time) would have:
— Consistenly reduced the exchanged messages
— Increased the abort rate in high contention

— It can be shown [Adya95] that in low contention scerario
optimistic detection based approaches outperform anomla
based approaches

Overall considerations

e Detection vs Avoidance:

— A noteworthy side-effect of detection based
algorithms is that, allowing invalid pages in
client caches, they typically achieve lower hit
rates:

» “Effective” cache size is reduced by invalid pages in
detection based alg.

« Avoidance-based ones avoid caching invalid pages
and end up in high contention scenarios with more
empty (i.e. usable) slots.

Overall considerations

« Write Intention Declaration (O2PL vs CB):

— Pessimism vs Optimism tradeoff in avoidance based
algorithms
— No sharing:
e Same performance
— Limited sharing:
e Optimism wins: less msgs thanks to batching at commit

— Higher sharing & contention:

« Optimistic approaches lead to high transaction aborsrate
— which may be unacceptable in interactive appresi
— in the simulation abort cost is rather low (cabhaipon restart)

Overall considerations

e Write Permission Duration:

— High contention levels + low locality make unworthy
retaining write permission across transactions:

e Such an effort pays off only in case a page is more\likebe
written locally than read remotely!

 Remote Update Action:

— Update propagations can lead to high resourceagast
and is highly sensitive to the contention level

— Invalidation seems the best choice in the majoffity o
cases

— Adaptive approaches were also proposed.

Overall considerations

 There’s no winning solution for all the
possible workload scenarios:

— Reduced contention levels make “optimistic”
approaches more attractive in general, but...

— at higher contention levels too much
“optimism” translates into high abort rates!

— General purpose DBMS must provide good
performance in allhe workload scenarios:

 Need for robust solutioths

Granularity of Consistency Actions

* Consistency actions (callbacks/lockings) can take
place either for each accessed row/object or at the
page level:

— Page granularity:
+ reduced message overhed in case of spacial locality
- false conflicts may be detected

— Object granularity:
» Exactly the opposite!
— Adaptive solutions:

 Normally use page granularity
 |f a read-write conflict is detected, switch to objgcanularity

What we did not cover...

* Geographically distributed transactional cache
schemes:

— Performance study was focused on LAN
environments...

— What if network latencies get predominant and highly
variant?

— What if we need to scale to thousands of clients?

e e.g. edge server performing caching of data oriyiim@sted at
the origin site DBMS

Open Research Questions

