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Introduction to Scheduling
• Allocation of system resources relative to the system 

computational load is fundamental to exploit the 
potential power of distributed computations.

A distributed system with no load distribution



Introduction to Scheduling
“ how to distribute (or schedule) the processes among processing elements to 

achieve some performance goal(s), such as minimizing execution time, 
minimizing communication delays, and/or maximizing resource utilization”

• A restatement of the classical problem of job sequencing in production 
management

• A scheduling problem consists of three (logical) components:



Even simple scheduling problem
instances (static) are NP-complete…

• Consider this simple scenario:
– 2 processors, same capacity
– N processes, different execution times, known a-priori (static scheduling)
– No dependencies, no communication cost…
– GOAL: minimize completion time of the processes set.

• If a schedule exists in which the processing loads are equal with 
no unnecessary delay, this is optimal!

• Finding such a schedule maps straightforwardly to the NP-
complete “set-partitioning” problem:
– Given a set of integers A and an integer size s(a), find A’ subset of A s.t.:



…and scheduling problems can be
much more complex than that!

Essentially with additional constraints, 
e.g. :

• Task dependencies:
– Example: parallel programming
– Modelled by Direct Acyclic Graphs 

(DAGs)
• Vertex is a task, its weight representing 

the computational cost
• Arc expresses causal dependency, its 

weight representing the communication
cost

• Meeting task deadlines:
– Example: Real Time Systems
– In this case a feasible scheduling may

even not exist!



A taxonomy of (general purpose) 
scheduling approaches

•a-priori info on the task 
demands is known.
•topology may change, in 
which case a new 
assignment has to be
determined.



A taxonomy of (general purpose) 
scheduling approaches

•based on approximate solving
techniques of the associated
mathematical model (e.g. CSP)
•exploration of the solution
space is stopped when a 
“good” result is found:
•how to evaluate a solution?
•how expensive is it?
•how to prune the solution
space?



A taxonomy of (general purpose) 
scheduling approaches

• rely on rule-of-thumbs that
“should” guide the selection
process towards a near optimal
solution, e.g.:

•optimize the critical-path
•cluster heavy communica-
ting processes
•…



A taxonomy of (general purpose) 
scheduling approaches

• won’t be further
addressed during this
course…
• typically studied in the 
IA context



A taxonomy of (general purpose) 
scheduling approaches

•is the scheduling functionality
residing on a single node or is
distributed among the proces-
sors?



A taxonomy of (general purpose) 
scheduling approaches

•choice clearly affects
autonomy of the 
processors in the 
scheduling decisions
•cooperation has an
inherent cost:

network 
+

processing
OVERHEADS



A taxonomy of (general purpose) 
scheduling approaches

•very rare solutions due to high 
complexity of dynamic scheduling
•typically restrict the dynamicity of 
the system, e.g.:

•known number of processors 
and process resource demands
•unknown number of process
instances

•…and still not tractable.



A taxonomy of (general purpose) 
scheduling approaches

•better performing and simpler: are 
the only ones to be empoyed in 
practice
•we’ll ovierview and evaluate the 
fundamental classes of the proposed
approaches



Orthogonal Classification Attributes

• adaptive vs non  adaptive

• load balancing vs load sharing

• sender-vs receiver-vs symmetrically-initiated

• preemptive vs non preemptive



adaptive vs non  adaptive

• the algorithms and parameters used to implement
the scheduling policy change dynamically adapting
to previous and current system behavior:

– change of the considered system parameters

– enabling/disabling of algorithm subfunctions

– history based choice of the most appropriate scheduler
(distributed) algorithm



load balancing vs load sharing

• The goal of a load-sharing algorithm is to maximize the 
rate at which a distributed system performs work when 
work is available.

• The goal of a load-balancing algorithm is to equalize the 
loads at all resources.

• Both strive to avoid unshared states: not trivial due to the 
time required to migrate tasks, communication latencies…

• load-balancing algorithms can potentially reduce the mean 
and standard deviation of task response times wrt load-
sharing ones, but typically impose higher communication
overheads.



sender-vs receiver-vs symmetrically- initiated

• In a sender-initiated scheduling algorithm, load-
distributing activity is initiated by an overloaded node
(sender) trying to send a task to an underloaded node
(receiver).

• Viceversa, in the receiver-initiated case, a node that goes
idle tries to get tasks from overloaded nodes

• In symmetrically-initiated ones, both idle and busy nodes
activate the load distribution mechanisms.



preemptive vs non preemptive

• Preemptive schedulers require transferring a partially executed
tasks on a different processor.

• Non preemptive schedulers involve only tasks that have not begun 
execution and hence do not require transferring the task's state

• Both policies require that information about the environment in 
which the task will execute is transferred to the remote node,…

• …but migrating an executing process is far more complex:
– (generally) expensive, since process state can be quite large:

• virtual memory image,  process control block, file pointers, timers…
– difficult, requires non conventional kernels and raises additional difficulties 

(shared memory?)
– not always possible, e.g. migrated process may not have access to the same

devices



Process migration



Components of a load distributing algorithm

• transfer policy: 
– determines if a node is suitable for partipicating in a 

task transfer as a sender (overloaded) or a receiver
(underloaded)

– based on,e.g, local load thresholds, relative unbalances
wrt other nodes…

• selection policy:
– if the node is a suitable sender, which task should be

sent? Preferably:
• not yet started tasks (to avoid preemption costs)
• small, long-lived, tasks, having minimal location-dependence



Components of a load distributing algorithm

• location policy: 
– Who’s the ideal transfer “partner”?

• Distributed approach:
– (serial vs multi-cast vs broad-cast)  polling

– purely random (it’s very light-weight!)

– history based

– nearest neighbors

• Centralized approach:
– load state collection and coordination role at a single node

– single point of failure and possible bottleneck



Components of a load distributing algorithm

• information policy:
– when, what and from where is information about the 

states of other nodes in the system to be collected?
– choice of representative load indexes
– load measurement mechanisms with clear trade-off

accurateness vs cost. Three classes:
• Demand-driven 

– distributed scheme, when a node becomes a sender or receiver, it
collects the state of other nodes

– Sender-, receiver- or symmetrically-iniated
• Periodic:

– Both centralized and distributed
• State-change-driven:

– Both centralized and distributed
– Upon certain state changes, a node disseminates its state 

information



Case Study:
Workstations clusters



System model

• Fixed set of interconnected general-purpose workstations
(nodes)

• Nodes have a-priori knowledge about each other existence

• Fully decentralized task scheduling:
– each node takes part in the scheduling process, 
– no central coordinator

• Tasks are generated at any node and there’s no a priori 
knowledge on the workload



Sender-initiated Algorithms (i)

Basic Idea: 
An overloaded node (sender) tries to send a task to an underloaded node (receiver)

• Information policy:
– Demand-driven: upon identification of a node as a sender, load information from 

other nodes is collected
– Among the possible load indexes, we’ll consider only CPU queue length

• Transfer policy: 
– Threshold based:

• A sender is a node originating a task that makes its local CPU queue length 
exceed a threshold T.

• A receiver is a node that, by accepting a given task, would not exceed T.

• Selection policy:
– For simplicity let’s consider only newly started processes =>not requiring 

preemption



Sender-initiated Algorithms (ii)

• Location policy:
1. Random:

– No information exchange

– Useless transfer are possible: if an overloaded node is 
chosen as receiver, re-transfer to an other random node (for 
a limited number of times to avoid trashing)

– Despite its simplicity we’ll see that it’s still better than
nothing…



Sender-initiated Algorithms (iii)

• Location policy:
2. Threshold:

•Nodes are sequentially polled
in random order.

•Note that by the time the task 
is transferred the queue length 
may have become > G…

•…in this case, accept the job 
anyway – or we may incur 
trashing!



Sender-initiated Algorithms (iii)

• Location policy:
3. Shortest:

– A random subset of nodes is polled and the one with the shortest
queue length is chosen: 
» aims at choosing the best receiver node rather than the first 

suitable one.
– Quite surprisingly, in practice, despite the additional complexity, 

it provides only marginal performance improvement:

“LESSON”

MORE DETAILED STATE INFORMATION
DOES NOT NECESSARILY 

IMPROVE SYSTEM PERFORMANCE



Sender-initiated Algorithms (iv)
• A note on the stability of these algorithms:

– Can the proposed algorithms make the system unstable 
in case of heavy load?

– In high load scenarios there won’t (likely) be receivers!

– But polling would still keep on, triggered more and 
more frequently as task arrival rate increases….

– the algorithm overhead can become higher and higher, 
eventually overcoming the service capacity of the 
system, causing system instability.



Receiver-initiated Algorithms (i)

Basic Idea: 

An underloaded node (sender) tries to get a task to an overloaded
node (receiver)

• Information policy:
– Demand-driven

• Transfer policy: 
– Threshold based

• Selection policy:
– In this case let’s consider also preemption based approaches, since task 

migration is asynchronous wrt task generation as we’ll see….



Receiver-initiated Algorithms (ii)

• Location policy: 
– Threshold based

•Problem: if no sender is
found, the receiver resources
are not employed till next
local task creation:

•Not good in case of 
heterogenously loaded nodes, 
where polls may even miss 
loaded nodes!!

•Remedy: poll anyway after a 
given timeout



Receiver-initiated Algorithms (iii)

• A drawback: 
– In receiver-initiated algorithms, the polling starts when a node

becomes a receiver. 

– However, these polls seldom arrive at senders just after new 
tasks have arrived at the senders but before these tasks have
begun executing:

• after creation but before assignment of first quantum service.

– Most task transfers are preemptive!

– Possible work-around: 
• resource reservation for the next arriving task at a sender.

• poor performances due to increased resource under-utilization…



Symmetrically initiated algorithms

• both senders and receivers initiate load-distributing
activities for task transfers.

• they come with both pros and cons of the two
algorithms families:
– Pros:

• At low loads, senders will likely find receivers

• At high loads, receivers will likely find senders

– Cons:
• As in sender-initiated strategy, polling at high system loads may

compromise stability

• As in receiver-initiated strategy, Preemption is needed.



Adaptive algorithms

A stable symmetrically-initiated adaptive algorithm

Observation:
• Indiscriminate polling by the sender's negotiation 

component can lead to instability.

Basic idea: 
• Make nodes keep track of relative load states and, during 

high loads, stop uselessly polling nodes that are known to 
be overloaded



A stable symmetrically-initiated
adaptive algorithm (i)

Each node keeps a list reflecting its knowledge of the other
nodes load state. Three possible states:

Overloaded / Underloaded / OK
• Information policy:Demand-driven
• Selection policy:any

• Transfer policy:
– Based on two thresholds: T1, T2 

• Location policy:
– Two behaviors according to the process state:

• Sender vs Receiver

Underloaded/receiver

OK

Overloaded/senderT1

T2

Load Level



A stable symmetrically-initiated
adaptive algorithm (ii)

Initially all nodes are set in the receivers’ list.

Sender-iniated behavior:
– The sender polls the receivers’ list head.

– The receiver puts the polling node at the sender list head, and sends out 
his current state

– If the polled nodes says it’s a receiver, the send transfers the job. Else, 
remove the node from the receiver’s list, insert in the sender/OK list 
head,  and poll an other receiver until:

1. A receiver is found

2. No receiver is found after a given number of tries

3. The receiver list gets empty.

• If no receiver is found the task is locally executed (but later 
may be still possibly preemptively transferred)



A stable symmetrically-initiated
adaptive algorithm (iii)

Receiver-iniated behavior:
– Receiver polls nodes to obtain tasks in the following order:

• Head to tail in the senders list, most accurate info first
• Tail to head in the ok list, after a longer time it’s more likely it has become  a 

sender
• Tail to head in the receiver list, idem

– If the polled node is a sender it transfer a task and informs the counter-part of 
its state afterthe transfer; else it sets the polling node in the receiver list head.

– Upon receipt of the poll reply, the polled node is inserted in the head of the list 
reflecting its load state.

– Polling stops in case:
1. A sender is found
2. No sender is found after a given number of tries

• If no receiver is found the task is locally executed (but later may be still 
possibly preemptively transferred)



A stable symmetrically-initiated
adaptive algorithm (iv)

At high loads:
– There will be no (or few) idle nodes:

• Likely failure of sender-initiated pollings => cleaning of receivers 
list => no more sender-initiated pollings 

• Only receiver-initiated load-sharing activities are carried on

At low loads:
– There will be no (or few) overutilized nodes:

• Likely failure of received-initiated pollings => wastage of 
resources due to polling is not an issue as extra processing capacity
is available at low loads

• Received-initiated pollings by updating receivers list increase
probability of successfully completing a sender-iniated polling



A sender-initiated adaptive
algorithm (i)

Observation: 

Previous solution requires task preemption, 
which may not always be feasible or desirable.

Basic Idea:
Avoid receiver-initiated task tranfers, while still

preventing unneeded sender-initiated

pollings at high loads.



A sender-initiated adaptive
algorithm (ii)

• Each node maintains a list to keep track of which list it
belongs to (OK, senders, receivers) at any other node.

• When a sender polls a node, the latter updates its local list, 
putting the sender node in the sender list. The same does the 
polling node.

• During receiver-initiated protocol only the nodes that are mis-
informed about the receiver load state are informed. No task 
transfer takes places at this phase.



Performance Evaluation

• System settings:
– 40 processors on local network.
– both preemptive and non preemptive task selection 

policies were considered
– comparison with:

• a system composed of 40 independent machines with no load 
distribution(M/M/1) 

• an ideal system of 40 machines performing perfect load 
distributing with no overhead (M/M/K)

– Single Threshold
– Small fixed poll limit =5



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

•No load distribution (M/M/1) and 
•No overhead, perfect load distribution
(M/M/40) 
represent the (hopefully) worst and best 
performance achievable by a dynamic
scheduling algorithm



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

Even the simplest random
location policy provides

remarkable benefits wrt no 
load distribution!



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

But using slightly more intelligent
algorithms we can gain a lot:
Threshold location policy pays off!



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

•As well as Receiver initiated schemes, 
despite process migration overheads (at 
least in the considered settings)!



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

Sender-initiated vs Receiver-initiated
LOW -LOAD

•At low loads sender-initiated  rapidly finds 
receivers, whilst receiver-initiated is unlikely to 
find senders!



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

Sender-initiated vs Receiver-initiated
HIGH-LOAD

• At high loads sender-initiated pollings
unlikely find receivers, whilst receiver-initiated
pollings are highly likely to find senders:

•sender-initiated policies destabilize the 
system and are outperfomed!



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

Symmetrically-initiated

• Better than receiver-initiated policies at low
loads but still destabilizing at high loads due to
usage of sender-initiated policy.



Performance Evaluation: 
Homogenous workload

• Same task arrival rate at 
each node

Adaptive Algorithms
• Stable symmetrical shows best performances
• Stable sender-initiated does:

• better than other sender-initiated schemes 
(especially at high loads),
• better than receiver-initiated schemes at 
low loads, worse at higher loads, but does
not rely on process migration



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!

Receiver-initiated

• Worst performance:
• difficult to find a sender if only a subset 
of nodes generate tasks!



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!

Sender-initiated with Threshold loc. pol.

• Slightly better performance:
• but still random pollings result in 
resource wastage leading to saturation..



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!

Stable Sender-initiated

• Becomes unstable at higher het. levels:
• more effective polling strategy, but not
relying preemption it reduces its ability to
promptly offload overloaded nodes.



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!

Symmetrically initiated

• Better performance:
• increased task transfer rate wrt previous
policies, still unstable due to ineffective
(sender-initiated) polling.



Performance Evaluation: 
Heterogeneous workload

• Overall System Load: 85%
• X axis: #nodes generating 

workloads:
– Lower values mean higher 

heterogeneity

• M/M/1, not shown, saturates at 
33 nodes.

• In these settings busy nodes
must quickly transfer tasks to
idle nodes, not to get
overwhelmed!

Stable Symmetrically initiated

• Best performance:
• which even improve at higher heter. 
levels, as state lists accurate reflecting
system conditions:

• unchanging senders lists containing
only busy nodes
• receiver lists at sender-side are 
rapidly updated thanks to receiver-
iniateted policy


