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Introduction to Scheduling

« Allocation of system resources relative to the system
computational load is fundamental to exploit the
potential power of distributed computations.

Lightly loaded Moderately loaded

Heavily loaded Moderately loaded

A distributed system with no load distribution



Introduction to Scheduling

“how to distribute (or schedule) the processes among processing elements to
achieve some performance goal(s), such as minimizing execution time,
minimizing communication delays, and/or maximizing resource utilization”

» A restatement of the classical problem of job sequencing production
management

» A scheduling problem consists of three (logical) componés:
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Even simple scheduling problem
Instances (static) are NP-complete...

o Consider this simple scenario:
— 2 processors, same capacity
— N processes, different execution times, known a-pstatic scheduling)
— No dependencies, no communication cost...
— GOAL: minimize completion time of the processes set.

* If a schedule exists in which the processing laagsequal with
no unnecessary delay, this is optimal!

* Finding such a schedule maps straightforwardyneoN P-
complete “set-partitioning” problem:
— Given a set of integers A and an integer size s(a) X' subset of A s.t.:

Y s(a) = Y, s(b),
aEA'

bEA-A")



...and scheduling problems can be
much more complex than that!

Essentially with additional constraints,
e.g.:
 Task dependencies:
— Example: parallel programming
— Modelled by Direct Acyclic Graphs

(DAGS)

» Vertex is a task, its weight representi
the computational cost

 Arc expresses causal dependency, it
weight representing the communicati
cost

 Meeting task deadlines:
— Example: Real Time Systems

— In this case a feasible scheduling may
even not exist!
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A taxonomy of (general purpose)
scheduling approaches

*based on approximate solvin
techniques of the associated
mathematical model (e.g. CSI
sexploration of the solution
space is stopped when a
“good” result is found:

*how to evaluate a solution?
*how expensive is it?

*how to prune the solution
Space?
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A taxonomy of (general purpose)

scheduling approaches

e rely on rule-of-thumbs that
“should” guide the selection
process towards a near optima
solution, e.g.:
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A taxonomy of (general purpose)
scheduling approaches

* won't be further
addressed during this
course...

o typically studied in the
|A context




A taxonomy of (general purpose)
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A taxonomy of (general purpose)
scheduling approaches
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A taxonomy of (general purpose)
scheduling approaches
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svery rare solutions due to high
complexity of dynamic scheduling
stypically restrict the dynamicity of
the system, e.g.:

*known number of processors

and process resource deman
sunknown number of process
instances
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e...and still not tractable.




A taxonomy of (general purpose)
scheduling approaches
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Orthogonal Classification Attributes

e adaptiverss non adaptive
e load balancingsload sharing
e sendervsreceiver-s symmetrically-initiated

e preemptivess non preemptive



adaptivevs non adaptive

 the algorithms and parameters used to implement
the scheduling policy change dynamically adapting
to previous and current system behavior:
— change of the considered system parameters

— enabling/disabling of algorithm subfunctions

— history based choice of the most appropriate sdbed
(distributed) algorithm



load balancings load sharing

The goal of doad-sharing algorithmis to maximize the
rate at which a distributed system performs worlkemh
work is available.

The goal of doad-balancing algorithm s to equalize the
loads at all resources.

Both strive to avoidinshared states: not trivial due to the
time required to migrate tasks, communication e ..

|oad-balancing algorithms can potentially reduce the mean
and standard deviation of task response times$oait
sharing ones but typically impose higher communication
overheads.



senderwvs receiver-s symmetrically- initiated

* In a sender-initiated scheduling algorithm, load-
distributing activity is initiated by an overloaded node
(sender) trying to send a task to an underloaded node
(receiver).

* Viceversa, in the receiver-initiated case, a noaé gloes
Idle tries to get tasks from overloaded nodes

* In symmetrically-initiated ones, both idle and bum®des
activate the load distribution mechanisms.



preemptivers non preemptive

Preemptive schedulers require transferring a partially executed
tasks on a different processor.

Non preemptive schedulers involve only tasks that have not begun
execution and hence do not require transferringables state

Both policies require that information about tm¥ieonment in
which the task will execute is transferred to temote node,...

...but migrating an executing process is far more complex:
— (generally) expensive, since process state can belgrge:
« virtual memory image, process control block, fil@nters, timers...

— difficult, requires non conventional kernels andeaiadditional difficulties
(shared memory?)

— not always possible, e.g. migrated process mayaws Access to the same
devices



Process migration
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Components of a load distributing algorithm

o transfer policy:

— determines if a node is suitable for partipicating in a
task transfer as a sender (overloaded) or a receiver
(underloaded)

— based on,e.g, local load thresholds, relative unbakn
wrt other nodes...
 selection policy:
— If the node Is a suitable sender, which task shoaild b
sent? Preferably:

* not yet started tasks (to avoid preemption costs)
* small, long-lived, tasks, having minimal locatiorpéadence



Components of a load distributing algorithm

* |ocation policy:
— Who's the ideal transfer “partner”?

 Distributed approach:
— (serial vs multi-cast vs broad-cast) polling
— purely random (it’s very light-weight!)
— history based
— nearest neighbors

» Centralized approach:
— load state collection and coordination role at glsinode
— single point of failure and possible bottleneck



Components of a load distributing algorithm

 Information policy:
— when, what and from where is information about the
states of other nodes in the system to be collected?

— choice of representative load indexes

— load measurement mechanisms with clear trade-off
accurateness vs cost. Three classes:

» Demand-driven

— distributed scheme, when a node becomes a sendeEreiver, it
collects the state of other nodes

— Sender-, receiver- or symmetrically-iniated
» Periodic:

— Both centralized and distributed
« State-change-driven:

— Both centralized and distributed

— Upon certain state changes, a node disseminatsisaie
information



Case Study:
Workstations clusters



System mode|

Fixed set of interconnected general-purpose workstati
(nodes)

Nodes have a-priori knowledge about each other exaste

Fully decentralized task scheduling:
— each node takes part in the scheduling process,
— no central coordinator

Tasks are generated at any node and there’s nora pr
knowledge on the workload



Sender-initiated Algorithms (i)

Basic Idea
An overloaded node (sender) tries to send a task to an uadedaode (receiver)

e Information policy:
— Demand-driven: upon identification of a node agiader, load information from
other nodes is collected

— Among the possible load indexes, we’ll consider only GRidue length
e Transfer policy:
— Threshold based:

e A sender is a node originating a task that matsascal CPU queue length
exceed a threshold T.

» A receiver is a node that, by accepting a giveR,tavould not exceed T.
o Sdection policy:
— For simplicity let’s consider only newly startesbpesses =>not requiring
preemption



Sender-initiated Algorithms (ii)

Location policy:
1. Random:

— No information exchange

— Useless transfer are possible: if an overloaded 1sode
chosen as receiver, re-transfer to an other randala (for
a limited number of times to avoid trashing)

— Despite its simplicity we’ll see that it’s still better tha
nothing...



Sender-initiated Algorithms (iir)

Location policy:
2. Threshold:

Task arrives

Select node

*Nodes are sequentially polled
In random order.

*Note that by the time the task
Is transferred the queue length
may have become > G...

o...in this case, accept the job
anyway — or we may incur
trashing!



Sender-initiated Algorithms (iir)

e Location policy:
3. Shortest:

— Arandom subset of nodes is polled and the one thvé shortest
gueue length is chosen:

» aims at choosing the best receiver node rather thafiirshe
suitable one.

— Quite surprisingly, in practice, despite the addél complexity,
it provides only marginal performance improvement:

“‘LESSON”

MORE DETAILED STATE INFORMATION
DOESNOT NECESRARILY
|MPROVE SYSTEM PERFORMANCE




Sender-initiated Algorithms (iv)

e Anote on the stability of these algorithms:

— Can the proposed algorithms make the system dastab
In case of heavy load?

— In high load scenarios there won't (likely) be ngees!

—  But polling would still keep on, triggered moredan
more frequently as task arrival rate increases....

— the algorithm overhead can become higher and higher
eventually overcoming the service capacity of the
system, causing system instability.



Recelver-initiated Algorithms (1)

Basic Idea

An underloaded node (sender) tries to get a task to amhoaksd
node (receiver)

 Information policy:
— Demand-driven
o Transfer policy:
— Threshold based
« Sdlection policy:

— In this case let’s consider also preemption based adgpeeasince task
migration is asynchronous wrt task generation as we’ll.see



Recelver-initiated Algorithms (i)

 Location policy:

— Threshold based

Task departure
at

CQueue »_Yes
Salact node > Poll
i randomly node

Transfer
task to

*Problem if no sender is
found, the receiver resources
are not employed till next
local task creation:

*Not good in case of
heterogenously loaded nodes,
where polls may even miss
loaded nodes!!

*Remedy poll anyway after a
given timeout



Recelver-initiated Algorithms (i)

e A drawback:

— In receiver-initiated algorithms, the polling ssavthen a node
becomes a receiver.

— However, these polls seldom arrive at senders ftest mew
tasks have arrived at the senders but before thesshask
begun executing:

o after creation but before assignment of first quantumicer

— Most task transfers are preemptive!
— Possible work-around:

e resource reservation for the next arriving task strader.
e poor performances due to increased resource under-tithza



Symmetrically initiated algorithms

e both senders and receivers initiate load-distributing
activities for task transfers.

e they come with both pros and cons of the two
algorithms families:

— Pros:
« At low loads, senders will likely find receivers

« At high loads, receivers will likely find senders

— Cons:
* As in sender-initiated strategy, polling at high systeadk may
compromise stability
« As in receiver-initiated strategy, Preemption is needed



Adaptive algorithms

A stable symmetrically-initiated adaptive algorithm

Observation:

 Indiscriminate polling by the sender's negotiation
component can lead to instability.

Basic idea:

 Make nodes keep track of relative load states dmdaing
high loads, stop uselessly polling nodes that aowk to
be overloaded



A stable symmetrically-initiated
adaptive algorithm (i)

Each node keeps a list reflecting its knowledge of tiheiot
nodes load state. Three possible states:

Overloaded / Underloaded / OK
|nformation policy: Demand-driven
Slection policy:any

[ Load Level

Transfer policy: T1 Overloaded/sender
— Based on two thresholds: T1, T2T2 OK

Underloaded/receiver

\

Location policy:
— Two behaviors according to the process state:
« Sender vs Receiver



A stable symmetrically-initiated
adaptive algorithm (i)

Initially all nodes are set in the receivers’ list.

Sender-iniated behavior
—  The sender polls the receivers’ list head.

—  The receiver puts the polling node at the sendehédadand sends out
his current state

— If the polled nodes says it's a receiver, the sendfeasthe job. Else,
remove the node from the receiver’s list, insert emgtbnder/OK list
head, and poll an other receiver until:

1. Areceiveris found
2. No receiver is found after a given number ofstrie
3. The receiver list gets empty.

 If noreceiver is found the task is locally exeszli{but later
may be still possibly preemptively transferred)




A stable symmetrically-initiated
adaptive algorithm (iii)

Receiver-iniated behavior

— Receiver polls nodes to obtain tasks in the followingeord
. Head to tail in the senders list, most accurdie finst

. Tail to head in the ok list, after a longer tinis imore likely it has become a
sender

. Tail to head in the receiver list, idem
— If the polled node is a sender it transfer a task afainms the counter-part of
its state aftethe transfer; else it sets the polling node in theivecdist head.

— Upon receipt of the poll reply, the polled node =aried in the head of the list
reflecting its load state.

— Polling stops in case:
1. A senderis found
2. No sender is found after a given number of tries

. If no receiver is found the task is locally execuiledt later may be still
possibly preemptively transferred)



A stable symmetrically-initiated
adaptive algorithm (iv)

At high loads:

— There will be no (or few) idle nodes:

o Likely failure of sender-initiated pollings => claag of receivers
list => no more sender-initiated pollings

* Only receiver-initiated load-sharing activities aagried on

At low loads:

— There will be no (or few) overutilized nodes:

o Likely failure of received-initiated pollings => wtage of
resources due to polling is not an issue as extra processuagity
IS available at low loads

 Received-initiated pollings by updating receivers lstrease
probability of successfully completing a sender-iniatetlipg



A sender-initiated adaptive
algorithm (1)

Observation:

Previous solution requires task preemption,
which may not always be feasible or desirable.

Basic ldea:

Avoid recelver-initiated task tranfers, while still
preventing unneeded sender-initiated

pollings at high loads.



A sender-initiated adaptive
algorithm (ii)

Each node maintains a list to keep track of which tist |
belongs to (OK, senders, receivers) at any other node.

When a sender polls a node, the latter updatdscis list,
putting the sender node in the sender list. Theesdoes the
polling node.

During receiver-initiated protocol only the nodbat are mis-
Informed about the receiver load state are informgxtask
transfer takes places at this phase.



Performance Evaluation

e System settings:
— 40 processors on local network.

— both preemptive and non preemptive task selection
policies were considered

— comparison with:

» a system composed of 40 independent machines witbadio |
distribution(M/M/1)

« an ideal system of 40 machines performing perfect loa
distributing with no overhead (M/M/K)

— Single Threshold
— Small fixed poll limit =5



Performance Evaluation:
Homogenous workload

e Same task arrival rate at
each node

*No load distribution (M/M/1) and

*No overhead, perfect load distribution
(M/M/40)

represent the (hopefully) worst and best
performance achievable by a dynamic
scheduling algorithm

Mean response time
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Performance Evaluation:
Homogenous workload
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f I « Same task arrival rate at
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: ¢ Even the simplest random
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remarkable benefits wrt no

load distribution!
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Performance Evaluation:
Homogenous workload

?_ .
f I « Same task arrival rate at

i i each node

-
j
1 ;
E v But using slightly more intelligent
2 algorithms we can gain a lot:
Threshold location policy pays off]
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Performance Evaluation:
Homogenous workload

e Same task arrival rate at
each node

"

*As well as Receiver initiated schemes,
despite process migration overheads (at
least in the considered settings)!

Mean response time
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Performance Evaluation:
Homogenous workload

e Same task arrival rate at

-
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Performance Evaluation:
Homogenous workload

e Same task arrival rate at
each node

Sender-initiated vs Receiver-initiated
HIGH-LOAD
At high loads sender-initiated pollings
unlikely find receivers, whilst receiver-initiate
pollings are highly likely to find senders:
ssender-initiated policies destabilize the
system and are outperfomed!
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Performance Evaluation:
Homogenous workload

e Same task arrival rate at
each node

==l

Symmetrically-initiated

 Better than receiver-initiated policies at low
p loads but still destabilizing at high loads due |
4 o usage of sender-initiated policy.

Mean response time
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Performance Evaluation:
Homogenous workload

e Same task arrival rate at

;\ each node
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 Stable symmetrical shows best performances
 Stable sender-initiated does:

Mean response time
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p * better than other sender-initiated schemes
_____ u‘/ (especially at high loads),
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L ' 3 S SR low loads, worse at higher loads, but doés
not rely on process migration
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Mean response time

Performance Evaluation:
Heterogeneous workload
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Mean response time

Performance Evaluation:
Heterogeneous workload

* Overall System Load: 85%
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Mean response time

Performance Evaluation:
Heterogeneous workload

* Overall System Load: 85%
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Mean response time

Performance Evaluation:
Heterogeneous workload

* Overall System Load: 85%
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Mean response time

Performance Evaluation:
Heterogeneous workload

* Overall System Load: 85%
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Mean response time

Performance Evaluation:
Heterogeneous workload

* Overall System Load: 85%
o X axis: #nodes generating

Stable Symmetrically initiated

» Best performance:
* which even improve at higher heter. |5t
levels, as state lists accurate reflecting

__ system conditions:
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