
Ranking Abstraction as Companion
to

Predicate Abstraction⋆

Ittai Balaban1, Amir Pnueli12, and Lenore D. Zuck3

1 New York University, New York,{balaban,amir}@cs.nyu.edu
2 Weizmann Institute of Science,

3 University of Illinois at Chicago,lenore@cs.uic.edu

Abstract. Predicate abstraction has become one of the most successfulmethod-
ologies for proving safety properties of programs. Recently, several abstraction
methodologies have been proposed for proving liveness properties. This paper
studies “ranking abstraction” where a program is augmentedby a non-constraining
progress monitor, and further abstracted by predicate-abstraction, to allow for au-
tomatic verification of progress properties. Unlike most liveness methodologies,
the augmentation does not require a complete ranking function that is expected to
decrease with each helpful step. Rather, the inputs are component rankings from
which a complete ranking function may be formed.
The premise of the paper is an analogy between the methods of ranking abstrac-
tion and predicate abstraction, one ingredient of which is refinement: When pred-
icate abstraction fails, one can refine it. When ranking abstraction fails, one must
determine whether the predicate abstraction, or the ranking abstraction, need be
refined. The paper presents strategies for determining which case is at hand.
The other part of the analogy is that of automatically deriving deductive proof
constructs: Predicate abstraction is often used to derive program invariants for
proving safety properties as a boolean combination of the given predicates. De-
ductive proof of progress properties requires well-founded ranking functions in-
stead of invariants. We show how to obtain concrete global ranking functions
from abstract programs.
We demonstrate the various methods on examples with nested loops, including a
bubble sort algorithm on linked lists.

1 Introduction

Predicate abstraction has become one of the most successfulmethodologies for proving
safety properties of programs. However, with no extension it cannot be used to verify
general liveness properties. In this paper, we present a framework, based on predicate
abstraction andranking abstraction, for verification of both safety and progress prop-
erties. Ranking abstraction, introduced in [8], is based onan augmentation of the con-
crete program. The augmentation is parameterized by a set ofwell founded ranking

⋆ This research was supported in part by NSF grant CCR-0205571, ONR grant N00014-99-1-
0131, and SRC grant 2004-TJ-1256.

functions. Based on these, newcompassion(strong fairness) requirements as well as
transitions are generated, all of which are synchronously composed with the program
in a non-constraining manner. Unlike most methodologies, the ranking functions are
not expected to decrease with each transition of the program.

The basic premise presented in this paper is that there is a duality between the
activities that lead to verification of safety properties via predicate abstraction, and those
that lead to verification of progress properties via rankingabstraction. This duality is
expressed through the following components:

• The initial abstraction.Heuristics are applied to choose either an initial set of pred-
icates, or a set of core well founded ranking functions.

• Refinement.A too-coarse initial abstraction leads to spurious abstract counterex-
amples. Depending on the character of the counterexample, either a predicate, or a
ranking, refinement is performed.

• Generation of deductive proof constructs.Predicate abstraction is often used as an
automatic method to generate an inductive invariant as a boolean combination of
the given predicates. Dually, ranking abstraction can be used to generate a global
concrete ranking function that decreases with every step ofthe program, as a lexi-
cographical combination of the core ranking functions.

We demonstrate the use of ranking refinement in order to provetermination of a canoni-
cal program with nested loops and unbounded random assignments, as well as a bubble
sort algorithm on unbounded linked lists. Both examples entail the use of additional
heuristics in order to synthesize core ranking functions.

The framework, as well as all experiments, have been implemented using theTLV

programmable model-checker [1]. The contribution of the paper is as follows: At the
informal, conceptual level, it strives to convince the reader that the duality between in-
variance and progress, present in deductive frameworks, extends to how one approaches
automatic verification of each kind of property. More concretely, it suggests a for-
mal framework, based on two specific abstraction methods forproving both safety and
progress properties. This includes heuristics for choosing separate refinement method-
ologies based on the form of counterexamples, and a method for automatically deriving
a global well founded program ranking function.

The paper is organized as follows: Section 2 describes the computational model
of fair discrete systemsas well as predicate and ranking abstractions. Furthermore, it
motivates the use of ranking abstraction by demonstrating its value, compared to a typ-
ical deductive method. Section 3 formalizes the different notions of abstraction refine-
ment. Section 4 presents a method for extracting the auxiliary constructs necessary for
a deductive proof of a response property from a successful application of the ranking-
abstraction method. These include a set of ranking functions and helpful assertions.
This section deals with the restricted case of sequential programs, which do not assume
any fairness requirements. These restrictions are removedin Section 5 which performs a
similar extraction of auxiliary constructs for the case of asystem representing a concur-
rent program, or any other system with weak fairness requirements. Finally, Section 6
summarizes and concludes.

Related Work

The body of work most comparable to ours is [6], where Cook, Podelski, and Ry-
balchenko present a framework for verifying termination, that formalizes duel refine-
ments – of transition predicate abstraction and of transition invariants. Transition in-
variants can be described as composite transition relations of a program that has been
augmented with a ranking function, and assume the role of ranking functions in our
framework. Comparable to our work, the algorithm in [6], when presented with an ab-
stract counterexample, analyzes the cause of its “spuriousness”, and refines either the
predicate abstraction or the transition invariant. While our framework is inherently ap-
plicable to systems with (weak and strong) fairness constraints, the framework in [6]
lacks any notion of fairness. Therefore it must be extended in order to support concur-
rent programs. Furthermore in this work we show how to extract deductive proofs of
progress for sequential programs and a wide class of concurrent programs.

Dams, Gerth, and Grumberg [7] point out the duality between verification of safety
and progress of programs. Like us, they aim to lift this duality to provide tools for
proving progress properties, whose functionality is analogous to similar tools used for
safety. Specifically, they propose a heuristic for discovering ranking functions from a
program’s text. In contrast, we concentrate on an analogy with predicate abstraction,
a particular method for safety. Our approach is broader, however, in that we suggest a
general framework for safety and progress properties whereeach of the activities in a
verification process has an instantiation with respect to each of the dualities.

In [12] Podelski and Rybalchenko present a method for synthesis of linear ranking
functions. The method is complete for unnested loops, and isembedded successfully in
a broader framework for proving liveness properties [11], as well as in [6]. This method
is one of several candidates that can be embedded in our framework, when ranking
refinement is called for.

The topic of refinement of state abstraction, specifically predicate abstraction, has
been widely studied. A number of existing works in this area are [5, 3], and [4].

2 The Formal Framework

In this section we present our computational model, as well as the methods of predicate
abstraction and ranking abstraction.

2.1 Fair Discrete Systems

As our computational model, we take afair discrete system(FDS) D : 〈V,Θ, ρ,J , C〉,
where

• V — A set ofsystem variables. A stateof D provides a type-consistent interpre-
tation of the variablesV . For a states and a system variablev ∈ V , we denote by
s[v] the value assigned tov by the states. LetΣ denote the set of all states overV .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — Thetransition relation: An assertion, relating the valuesV of the vari-
ables in states ∈ Σ to the valuesV ′ in anD-successor states′ ∈ Σ. We assume
that every state has aρ-successor.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set ofcompassion (strong fairness)requirements: Each compassion require-
ment is a pair〈p, q〉 of state assertions; A computation should include either only
finitely manyp-states, or infinitely manyq-states.

For an assertionψ, we say thats ∈ Σ is aψ-state ifs |= ψ.
A run of anFDSD is a possibly infinite sequence of statesσ : s0, s1, . . . satisfying

the requirements:

• Initiality — s0 is initial, i.e.,s0 |= Θ.
• Consecution— For eachℓ = 0, 1, . . ., the statesℓ+1 is anD-successor ofsℓ. That

is, 〈sℓ, sℓ+1〉 |= ρ(V, V ′) where, for eachv ∈ V , we interpretv assℓ[v] andv′ as
sℓ+1[v].

A computationof D is an infinite run that satisfies

• Justice— for everyJ ∈ J , σ contains infinitely many occurrences ofJ-states.
• Compassion– for every〈p, q〉 ∈ C, eitherσ contains only finitely many occurrences

of p-states, orσ contains infinitely many occurrences ofq-states.

Since we focus here on termination properties of sequentialprograms, we define a state
s to be terminal if it has itself as the only successor. Justice assumptions ensure that,
if possible, a computation takes non-idle steps, i.e. stepsleading from a states to a
successor different froms. Extending the framework to general, possibly concurrent,
systems requires distinction betweendeadlockstates andterminalstates. The extension
is straightforward, and for simplicity of exposition we ignore this distinction here. An
FDS is defined to beterminatingif every computation contains (eventually reaches) a
terminal state. To simplify the treatment of sequential programs, we assume that a state
s that has a successors′ 6= s cannot also have itself as a successor. This guarantees
progress without the need for explicit fairness requirements. In particular it implies that
idling steps are only possible from terminal states.

Once we move to concurrent programs, where fairness requirements play a signifi-
cant role, we will remove this assumption.

Ranking A well-founded domain is a pair(W ,≻) such thatW is a set and≻ is a
partial order overW that admits no infinite≻-decreasing chains. Aranking functionis
a function mapping program states to some well-founded domain.

An assertion that, like a transition relation, refers to both unprimed and primed
copies of the system variables is called abi-assertion. A bi-assertionβ(V, V ′) is called
well founded over assertionp if there does not exist an infinite sequence of states
s0, s1, . . . , such thats0 |= p and〈si, si+1〉 |= β, for every i ≥ 0. If p = 1 (true),
then we say simply thatβ is well founded.

In order to prove thatβ is well founded overp, it is sufficient to find an auxiliary
assertionϕ and a well-founded rankingδ, such that

p→ ϕ and ϕ(V) ∧ β(V, V ′) → ϕ(V ′) ∧ δ(V) ≻ δ(V ′)

In this case, we say that the well-founded rankingδ proves the well-foundedness ofβ
overp.

Termination of anFDS corresponding to a sequential program is often proved by
finding a well-founded rankingδ such thatδ decreases on every non-idle step. We refer
to such a ranking function asadequate for(proving)termination. With appropriate as-
sumptions on theFDS (e.g., countable non-determinism), every terminating (sequential)
FDS has such well founded ranking.

The same method can also be applied to prove more general progress properties
such asp =⇒ 1 q over sequential programs. To handle this case, we define a state
to bepending(with respect top, q) if it is reachable by aq-free path from a reachable
p-state. Then, we should find a well-founded rankingδ such thatδ decreases on every
non-idle step that departs from a pending state.

2.2 Predicate Abstraction

The material here is a summary of [8] and [2]. We fix anFDS D = 〈V,Θ, ρ,J , C〉
whose set of states isΣ. We consider a set ofabstract variablesVA = {u1, . . . , un}
that range over finite domains. Anabstract stateis an interpretation that assigns to each
variableui a value in the domain ofui. We denote byΣA the (finite) set of all abstract
states. Anabstraction mappingis presented by a set of equalities

α
E

: u1 = E1(V), . . . , un = En(V),

where eachEi is an expression overV ranging over the domain ofui. The abstraction
α

E
induces a semantic mappingα

E
: Σ 7→ ΣA, from the states ofD to the set of

abstract states.
Usually, most of the abstract variables are boolean, and then the corresponding ex-

pressionsEi are predicates overV . This is why this type of abstraction is often referred
to aspredicate abstraction. The abstraction mappingα

E
can be expressed succinctly

by:
VA = E(V)

Throughout the rest of the paper, when there is no ambiguity,we shall refer toα
E

simply asα. For an assertionp(V), we define itsα-abstraction (with some overloading
of notation) by:

α(p) : ∃V.(VA = E(V) ∧ p(V))

The semantics ofα(p) is ‖α(p)‖ : {α(s) | s ∈ ‖p‖}. Note that‖α(p)‖ is, in general,
an over-approximation – an abstract stateS is in ‖α(p)‖ iff there existssome concrete
p-state that is abstracted intoS. A bi-assertionβ(V, V ′) is abstracted by:

α2(p) : ∃V, V ′.(VA = E(V) ∧ V ′
A = E(V ′) ∧ β(V, V ′))

The abstractionα is said to beprecise with respect to the assertionp if α(¬p) = ¬α(p),
implying that we cannot have ap-state and a(¬p)-state both being abstracted into the
same abstract state. For a temporal formulaψ in positive normal form (where negation is

applied only to state assertions),ψα is the formula obtained by replacing every maximal
state sub-formulap in ψ byα(p).

In all cases discussed in this paper, we assume that the considered abstractions are
precise with respect to the assertions appearing within thesystem definition and the
property specification, and all temporal specifications of properties are given in positive
normal form. Hence, we can restrict to the over-approximation semantics.

The abstraction ofD byα is the system

Dα = 〈VA, α(Θ), α2(ρ),
⋃

J∈J

α(J),
⋃

(p,q)∈C

〈α(p), α(q)〉 〉

An abstractionα is calledidle preservingif wheneversa 6= sb, wheresb is aρ-successor
of sa, thenα(sa) 6= α(sb). Thus, the abstractionα does not generate new idling steps.
In this paper we restrict our attention to idle-preserving abstractions. This is justified by
the fact that all of ourFDS’s are derived from programs, and all considered abstractions
preserve the values of the program counters.

The soundness of predicate abstraction is derived from [8]:

Theorem 1. For a systemD, abstractionα, and a temporal formulaψ:

Dα |= ψα =⇒ D |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete system sat-
isfies the concrete property.

2.3 Ranking Abstraction

State abstraction often does not suffice to verify progress properties. We considerrank-
ing abstraction, a method of augmenting the concrete program in a non-constraining
manner, in order to measure progress of program transitions, with respect to a ranking
function. Once a program is augmented, a conventional stateabstraction can be used
to preserve the ability to monitor progress in the abstract system. This method was
introduced in [8].

Ranking abstraction allows us to get away with finding a set ofpossible ingredients
for ranking functions, without having to design a comprehensive single ranking function
which is usually required in deductive verification of termination. This is accomplished
by means of augmenting the system with several non-constraining monitors, and pred-
icates abstracting the resulting system.

Fix some systemD : 〈V,Θ, ρ,J , C〉 and some well-founded domain(W ,≻), and
let δ be some ranking function over the domain. Letdecbe a fresh variable (not inV).
Theaugmentation ofD byδ, writtenD+δ, is the system

D+δ : 〈V ∪ {dec}, Θ, ρ ∧ ρδ,J , C ∪ {(dec> 0, dec< 0)}〉

where the conjunctρδ is defined by:

ρδ : dec′ =






1 δ ≻ δ′

0 δ = δ′

−1 otherwise

Thus,D+δ behaves exactly likeD and, in addition, keeps track of whetherδ decreases,
remains the same, or otherwise. The new compassion requirement captures the restric-
tion thatδ cannot decrease infinitely often without increasing infinitely often, which
follows immediately from the well-foundedness ofW . For the pervasive case thatδ
ranges over the naturals, we can expressρδ asdec′ = sign(δ − δ′).

Since augmentation does not constrain the behavior ofD, any property overV is
valid overD iff it is valid over D+δ. In order to verify a liveness property ofD, the
augmentationD+δ can be predicate abstracted and checked for satisfiability of the ab-
stracted property. Note that we do not require thatδ decreases on every (non-idle) step.
As demonstrated below, it suffices to haveδ capture some of the behavioral aspects of
a “comprehensive” ranking function.

Example 1 (Nested Loops).Consider program NESTED-LOOPS in Fig. 1(a). In this
program, the statements “x := ?” and “y := ?,” in lines 0 and 1 respectively, denote
random assignments of arbitrary positive integers to variablesx andy. An initial attempt
to prove termination of this program is to define the ranking functionδy = y. The
augmentationD+δy is shown in Fig. 1(b). Note that statements that in the original
program assign values toy, are now replaced with a simultaneous assignment toboth
y and the augmentation variabledecy. In the case of control statements such aswhile,
the augmentation is not displayed explicitly. However, it is implicitly assumed that the
assignmentdecy := 0 is executed in parallel with any of these statements. Note that
the assignments todecy have been optimized in some of the statements, replacing the
expressionsign(y− y′) by its values which are known to be1 and0 at the execution of
statements 4 and 5, respectively.

x, y : natural init x = 0, y = 0


0 : x := ?
1 : while x > 0 do


2 : y := ?
3 : while y > 0 do[
4 : y := y − 1

]

5 : x := x− 1




6 :




(a) Program NESTED-LOOPS

x, y : natural init x = 0, y = 0
decy : {−1, 0, 1}
compassion(decy > 0, decy < 0)



0 : (x,decy) := (?, 0)
1. while x > 0 do


2 : (y, decy) := (?, sign(y − y′))
3 : while y > 0 do[
4 : (y, decy) := (y − 1, 1)

]

5 : (x, decy) := (x− 1, 0)




6 :




(b) Program AUGMENTED-NESTED-LOOPS

Fig. 1.Program NESTED-LOOPSand its augmented version

While this augmentation is not sufficient to prove program termination, it can be
used to prove termination of the inner loop (lines 3, 4).

Consider the abstraction:

α : Π = π, X = (x > 0), Y = (y > 0), Decy = decy

whereΠ is the abstract program counter. The resulting abstract program is presented in
Fig. 2. Note thatα introduces nondeterministic assignments to bothX andY (lines 4
and 5). It is now possible to verify, e.g. by model-checking,the termination of the inner
loop.

Deductive verification of termination of the inner loop consisting of statements 3
and 4, requires the use of the adequate ranking function2y + (π = 3) (where the
boolean expression(π = 3) evaluates to 1 on states in whichπ equals3) or the
function 〈y, π = 3〉 ranging over lexicographic pairs. However, supplying the model
checker with the “ingredient rank”y suffices for the application of the ranking abstrac-
tion method. Obviously, to obtain the termination of the complete program, we’d need
to also consider the variablex.

X,Y : {0, 1} init Y = 0, X = 0
Decy : {−1, 0, 1}
compassion(Decy > 0,Decy < 0)



0 : (X,Decy) := (1, 0)
1 : while X do


2 : (Y,Decy) := (1, {−1, 0, 1})
3 : while Y do[
4 : (Y,Decy) := ({0, 1}, 1)

]

5 : (X,Decy) := ({0, 1}, 0)




6 :




Fig. 2. Program ABSTRACT-AUGMENTED-NESTED-LOOPS

In a dual way to the computation of an abstraction of a concrete assertion, we can
concretize an abstract assertion. LetΦ be an abstract assertion. Theconcretization ofΦ,
denoted byα−1(Φ), is defined as

α−1(Φ) : ∃VA.(VA = E(V) ∧ Φ(VA))

For example, consider the abstract assertionΦ : Π = 3 ∧ X = 1 ∧ Y = 0. Its
concretization is given byα−1(Φ) : π = 3 ∧ x > 0 ∧ y = 0.

As shown in Example 1, it is sometimes necessary to include severalδ’s in order
to obtain a termination proof, by considering simultaneousaugmentations by a set of
ranking functions. Aranking coreis a set of ranking functions. LetR be the ranking
core{δ1, . . . , δk}. The augmentationD+R is the system

D+R : (D+δ1)+{δ2, . . . , δk}

Just like the case of predicate abstraction, we lose nothing(except efficiency) by
adding potentially redundant rankings. The main advantagehere over direct use of
ranking functions within deductive verification is that onemay contribute as many ele-
mentary ranking functions as one wishes. It is then left to a model-checker to sort out
their interaction and relevance. To illustrate this, consider a full deductive proof of ter-
mination of program NESTED-LOOPS. Due to the unbounded nondeterminism of the

random assignments, a deductive termination proof is necessarily based on a ranking
function over lexicographic tuples, an example of which is the following:

〈(π = 0), 4x+ 3(π = 1) + 2(π = 2) + (π ∈ {3, 4}), 2y+ (π = 3)〉

With ranking abstraction, however, one need only provide the well-founded ranking
coreR = {x, y}.

To abbreviate the notation, we will writeDR,α as shorthand for(D+R)α. Note that,
when we perform ranking abstraction w.r.t a coreR : δ1, . . . , δk, we use an abstraction
mapping that extendsα by the additional definitions:

Dec1 = dec1, . . . , Deck = deck.

Since augmentation induced by the ranking coreR does not constrain the behavior of
the originalFDSD, it follows that everyσ : s0, s1, . . . , a computation ofD, gives rise to
σ̃ : s̃0, s̃1, . . . , a computation ofD+R agreeing withσ on all variable except for theDec
variables associated withR. The computatioñσ can be abstracted intoσα : S0, S1, . . . ,

a computation ofDR,α, such thatSi = α(s̃i), for all i ≥ 0. Thus, the set of compu-
tations ofD is, modulo augmentation and abstraction, a subset of the computations
of DR,α. By arguments similar to the ones used in the proof of Theorem1, we can
establish the soundness of the ranking abstraction method ([8]).

Theorem 2. For a systemD, abstractionα, ranking coreR, and a temporal formula
ψ:

DR,α |= ψα =⇒ D |= ψ

Thus, if a ranking-abstracted system satisfies an abstract property, then the concrete
system satisfies the concrete property.
Ranking abstraction is more powerful than predicate abstraction, because we can also
establish for it the following claim of completeness ([8]):

Theorem 3. The method of ranking abstraction is complete. Namely, for every system
D and temporal formulaψ, such thatD |= ψ, there exist an abstractionα and ranking
coreR such thatDR,α |= ψα.

3 Abstraction Refinement

In this section we will show that, similarly to predicate abstraction, ranking abstraction
also possesses a counterexample guided refinement process.Assume that, wishing to
check thatD |= ψ, we model checkedDR,α |= ψα and obtained an abstract coun-
terexampleσα. There are two possibilities. Either there exists a concrete computation
σ, such thatσα is the abstraction ofσ, orσα cannot be concretized. In the first case,σ

is a true counterexample, implying thatψ is not valid overD. In the second case, this
means that our abstraction is too coarse and needs to be refined.

The process of counterexample guided refinement has to distinguish between these
two cases, and in the case of a spurious counterexample, to utilize the failure to con-
cretize in order to refine the two abstraction components:α andR. Note that the sit-
uation here is more complex than simple predicate abstraction, because the refinement
may call for a refinement ofα or ofR, or of both.

3.1 Abstract Runs and Their Concretizations

LetD : 〈V,Θ, ρ,J , C〉 be a system,P be a predicate base,α be the abstraction mapping
∃V.VA = P(V), andα−1 beα’s inverse, i.e., the mapping∃VA.VA = P(V), which
we fix for the duration of this section. We refer to runs ofD andDR,α asconcrete
andabstractruns, respectively. In this section, we assume that, unlessexplicitly stated
otherwise, all runs are finite. For a runξ : s0, . . . , sm, we denote by|ξ| = m thelength
of ξ.

Consider an abstract runΞ : S0, . . . , Sm. A concrete runξ : s0, . . . , sm is called a
concretization ofΞ if α(si) = Si, for all i ∈ [0..m]. Rather then considering a single
state concretization of the abstract runΞ, we may wish to derive a characterization of
all possible concretizations ofΞ. This may be captured by a sequenceϕ0, . . . , ϕm of
assertions overV . We thus define thesymbolic concretization ofΞ (with respect toD)
to be the sequenceγ(Ξ) : ϕ0, . . . , ϕm of concrete assertions inductively as follows:

ϕi :

{
Θ ∧ α−1(S0) i = 0
(ϕi−1 1 ρ) ∧ α−1(Si) i ∈ [1..m]

whereϕ 1 ρ is the assertion characterizing the states that areρ-successors of aϕ-state.
We sometimes refer toϕi asγ(Ξ)[i], or simplyγ[i] if Ξ is understood from the

context.

Example 2.Recall program NESTED-LOOPSof Fig. 1(a), and consider the abstraction
and ranking core of Example 1, that is:

α : X = (x > 0), Y = (y > 0), Decy = decy

R : {δ1 = y}

The abstract system is shown in Fig. 2. Consider an abstract runΞ : S0, . . . , S6 of the
system, where

S0 : 〈Π :0, X :0, Y :0, Decy:0〉 S1 : 〈Π :1, X :1, Y :0, Decy:0〉
S2 : 〈Π :2, X :1, Y :0, Decy:0〉 S3 : 〈Π :3, X :1, Y :1, Decy: − 1〉
S4 : 〈Π :4, X :1, Y :1, Decy:0〉 S5 : 〈Π :3, X :1, Y :0, Decy:1〉
S6 : 〈Π :5, X :1, Y :0, Decy:0〉

The symbolic concretization ofΞ isϕ0, . . . ϕ6 where:

ϕ0 : π = 0 ∧ x = 0 ∧ y = 0 ∧ decy = 0
ϕ1 : π = 1 ∧ x > 0 ∧ y = 0 ∧ decy = 0
ϕ2 : π = 2 ∧ x > 0 ∧ y = 0 ∧ decy = 0
ϕ3 : π = 3 ∧ x > 0 ∧ y > 0 ∧ decy = −1
ϕ4 : π = 4 ∧ x > 0 ∧ y > 0 ∧ decy = 0
ϕ5 : π = 5 ∧ x > 0 ∧ y = 0 ∧ decy = 1
ϕ6 : π = 6 ∧ x > 0 ∧ y = 0 ∧ decy = 0

The following claim establishes the relation between symbolic concretizations of
abstract runs and concrete runs:

Claim 1 (Feasibility).For every abstract runΞ, m ∈ [0..|Ξ|], and concrete states, s
satisfiesγ[m] iff there exists a concrete runs0, . . . , sm = s that is a concretization of
Ξ[0..m].

Proof. Assume thats |= γ[m]. Proceeding fromm down to 0, we will construct a
sequence of statess = sm, sm−1, . . . , s0, such that, for eachi = 0, . . . ,m, Ξ[i] =
α(si) andsi |= γ[i], s0 is initial, and, for eachi ∈ [0..m− 1], si+1 is aρ-successor of
si.

For everyi ∈ [1..m] assume that we already constructedsi, such thatsi |= γ[i].
The fact thatsi satisfiesγ[i] = (γ[i− 1] 1 ρ) ∧ α−1(Ξ[i]) implies thatΞ[i] = α(si)
and that there exists a statesi−1 which is aρ-predecessor ofsi and satisfiesγ[i− 1].

For i = 0, the fact thats0 |= γ[0] = α−1(S0) ∧ Θ implies thats0 is an initial state
such thatS0 = α(s0).

Thus, the state sequenceξ : s0, . . . , sm = s is a concretization ofΞ[0..m].
In the other direction the claim is straightforward. ⊓⊔

A corollary of Claim 1 is that an abstract runΞ[1..m] can be concretized iffγ(Ξ)[m]
is satisfiable.

The assertionγ(Ξ)[i] characterizes all the states that can appear at positioni of a
concretization of the abstract runΞ. We will generalize this notion by defining a bi-
assertionβi,j(Ξ), for 0 ≤ i ≤ j ≤ |Ξ|, such that〈sa, sb〉 |= βi,j iff there exists
ξ : s0, . . . , s|Ξ|, such thatsi = sa andsj = sb. This bi-assertion will be used when
attempting to concretize “abstract cycles” that are obtained in counterexamples. The
generic presentation of the bi-assertion isβi,j(V0, V) (rather thanβi,j(V, V

′)), where
V0 is a fresh copy of the system variables, and records the values of variables at statesi.

LetΞ = S0, . . . , Sm be an abstract run. The bi-assertionβi,j(Ξ) is defined induc-
tively, for all j, i ≤ j ≤ m by:

βi,j =

{
V = V0 ∧ α−1(Si) j = i

(βi,j−1 1 ρ) ∧ α−1(Sj) j > i

In this definition,V = V0 is an abbreviation for
∧

x∈V (x = x0), which states equal-
ity between allV -variables and their correspondingV0-counterparts. The expression
βi,j−1 1 ρ stands for

∃Ṽ : (βi,j−1(V0, Ṽ) ∧ ρ(Ṽ , V))

Note in particular that this expression preserves the values of theV0-variables from
βi,j−1 to βi,j .

Example 3.Continuing Example 2, we computeβ1,1, . . . , β1,6 as follows:

β1,1 : init ∧ π = π0 ∧ x = x0 ∧ y = y0 ∧ decy = dec0y
β1,2 : init ∧ π = 2 ∧ x = x0 ∧ y = y0 ∧ decy = 0
β1,3 : init ∧ π = 3 ∧ x = x0 ∧ y > 0 ∧ decy = −1
β1,4 : init ∧ π = 4 ∧ x = x0 ∧ y > 0 ∧ decy = 0
β1,5 : init ∧ π = 3 ∧ x = x0 ∧ y = 0 ∧ decy = 1
β1,6 : init ∧ π = 5 ∧ x = x0 ∧ y = 0 ∧ decy = 0

whereinit : π0 = 1 ∧ x0 > 0 ∧ y0 = 0 ∧ dec0y = 0.

3.2 Counterexample Guided Abstraction Refinement

The verification (or refutation) of a progress propertyψ over anFDS begins with a
(possibly empty) user-provided initial rankingR and a predicate abstractionP . Fol-
lowing [13], initially P is chosen to be the set of atomic state formulas occurring in
ρ, Θ, J , C and the concrete formulaψ, excluding formulas that refer to control and
primed variables.

Letψα be the formulaα(ψ). We start by model checking the validity ofα(ψ) over
DR,α. If ψα is valid then we can conclude thatS |= ψ. Otherwise, a counterexample is
found in the form of a computation ofDR,α that does not satisfyψα. If such a compu-
tation exists then a standard model checker will return a counterexample that is finitely
represented as a “lasso” – an abstract run of the formΞ1;Ξ

ω
2 whereΞ1 : S0, . . . , Sk−1

is a finite abstract run, andΞ2 : Sk, . . . , Sm−1 is a finite sequence of consecutive ab-
stract states. As in the case of predicate abstraction refinement, we first attempt to con-
cretize the counterexampleΞ : S0, . . . , Sk, . . . , Sm−1, Sm = Sk. Namely, we compute
γ(Ξ) : ϕ0, . . . , ϕm andβk,m(Ξ). The following may occur:

Case 1. The counterexampleΞ cannot be concretized.
This case is identified by observing thatϕm = γ[m] is unsatisfiable. This is a typical
scenario in state abstraction refinement – the abstraction is too coarse, and should be
refined so as to eliminate the spurious counterexample. One can apply any of the known
predicate refinement techniques, e.g., [5, 3, 4]. For all following cases, we may assume
thatϕm is satisfiable.

Case 2. The concretization of the counterexample contains acycle compatible with
Ξ2 — the property is not valid.
This case is identified by observing thatϕk(V)∧βk,m(V, V) is satisfiable. This implies
that there exists a states such thats |= ϕk and〈s, s〉 |= βk,m, and therefore, there exists
a state concretization ofΞ of the formξ : s0, . . . , sk, . . . , sm = sk = s. It follows that
the infinite concrete runs0, . . . , sk−1(sk, . . . , sm−1)

ω is a computation ofD which
violatesψ. We conclude thatψ is notD-valid.

Case 3. The infinite abstract runΞ1;Ξ
ω
2 cannot be concretized — the abstract coun-

terexample is spurious; perform ranking refinement.
This case is identified by observing that the bi-assertionβk,m is well-founded over
ϕk. Obviously, ifΞ1;Ξ

ω
2 could be concretized by the infinite concrete runs0, s1, . . . ,

then we would have had an infinite state sequence, namelysk, sk+L, sk+2L, . . . , where
L = m− k, such thatsk |= ϕk andβk,m holds between any two consecutive states in
this sequence. This would have contradicted the fact thatβk,m is well-founded overϕk.
We conclude that the counterexample is spurious.

This case is a typical scenario in ranking abstraction refinement – the ranking is too
coarse, and should be refined to eliminate the spurious counterexample. The ranking
core is refined by adding to it a well-founded ranking that proves the well-foundedness
of βk,m overϕk.

A number of methods have been proposed to synthesize such functions from well-
founded relations, among them in [12, 7]. In Subsection 3.3 we present an additional
heuristic for the domain of unbounded linked lists.

Case 4. The infinite abstract runΞ1;Ξ
ω
2 can be concretized — the property is not

valid.
This case can be identified by observing that the bi-assertion βk,m is not well-founded
overϕk. From the fact thatβk,m is not well-founded, we can infer the existence of an
infinite sequencesk, sk+L, sk+2L, This sequence can be enriched by filling in the
missing states to form a concretization ofΞ1;Ξ

ω
2 that is a computation ofD violating

the propertyψ.
In this case we can declare the propertyψ to be invalid over the concrete program.

The process is described in Fig. 3.

CEGAR(D, ψ,P ,R)


1. let DA = DR,α;
2. let ψA = ψα;
3. if DA |= ψA then

4. return “success”
else


5. let C = S0 · · ·Sk−1(Sk · · ·Sm−1)
ω be a computation ofDA such thatC |= ¬ψA;

6. let Ξ = S0, . . . , Sk, . . . , Sm−1, Sm = Sk;
7.Computeγ(Ξ) : ϕ0, . . . , ϕm, andβk,m(Ξ);
8. if (∃i : 0 ≤ i ≤ m : ¬sat(ϕi)) then — — Case 1[

9. let P ′ be a predicate refinement ofP induced by the failure to concretizeΞ;
10. return CEGAR(D, ψ,P ′,R);

11. else ifsat(ϕk(V) ∧ βk,m(V, V)) then — — Case 2[
12. let ξ : s0, . . . , sk, . . . , sm = sk be the concrete run concretizingΞ;
13.Return “Property not valid. Counterexample:ξ” ;

14. else if(βk,m is well-founded overϕk) then — — Case 3[
15. let δ be a well-founded ranking proving the well-foundedness ofβk,m overϕk;
16. return CEGAR(D, ψ, P,R∪ {δ});

17. else return “Property not valid. Counterexample:sk, sk+L, sk+2L, . . .” ;
— — Case 4

Fig. 3. CounterExample Guided Abstraction Refinement algorithm

Lines 1 and 2 abstract the system and the property respectively with respect to the
ranking coreR and the predicate baseP . Line 3 (model-)checks whether the abstract
property holds over the abstract program. If so, the algorithm returns “success” (line
4). Else, a finitely-representable counterexample is produced (by a model checker) in
line 5, from which we construct the “lasso”Ξ : S0, . . . , Sm−1, Sm = Sk at line 6.
Line 7 computes the symbolic concretizationγ(Ξ) and the bi-assertionβk,m(Ξ). Line

8 checks whether the symbolic concretization is satisfiable. If it is not satisfiable (Case
1), then predicate refinement is applied (line 9) and the algorithm is re-started with the
augmented predicate base (line 10).

If the symbolic concretization is satisfiable, then we checkin line 11 whetherϕk(V)∧
βk,m(V, V) is satisfiable. If it is satisfiable (Case 2) then we can construct a concrete
lassoξ : s0, . . . , sk, . . . , sm−1, sm = sk concretizingΞ that is therefore a concrete
counterexample.

If the above two tests were answered negatively, we check in line 14 whether the
bi-assertionβk,m(Ξ) is well-founded overϕk. If it is (Case 3) then we know that the
abstract counterexample is spurious. In line 15, we attemptto construct a well-founded
rankingδ which proves the well-foundedness overϕk of βk,m(Ξ). If we succeed to
identify such aδ then it is added to the ranking core as a refinement, and we reiterate
the algorithm with the extended ranking core. This step is the least constructive in the
algorithm, and the best that can be offered is a set of heuristics for finding a well-
founded ranking that can prove the well-foundedness of a given bi-assertion.

Finally, if all preceding tests fail, we reach line 17 (Case 4). In this case,βk,m is
known not to be well-founded. This implies that there existsa concrete counter example,
but not necessarily one that can be presented in finite terms.The best that we can do is
present to the user a prefix of a potentially infinite counterexample, as explained in the
preceding discussion of Case 4.

The algorithm may not terminate (assuming even an extremelypowerful model
checker). For one, predicate refinement is not guaranteed toterminate. Similarly, rank-
ing refinement may not terminate. Furthermore the test at line 14, which decides
whether we are in Case 3 or Case 4, is, in general, undecidable.

Example 4 (Termination ofNESTED-LOOPS). Recall program NESTED-LOOPSpre-
sented in Fig. 1(a) and the termination property expressed as (π = 0) =⇒ 1 (π = 4).
Following Example 2, we begin with the initial abstraction and ranking used in Exam-
ple 1. The first iteration of CEGAR results in an abstract counterexample consisting of
the following single-state lasso prefixS0 and the repeating period(S1, . . . , S6) where
S0, . . . , S6 are as in Example 2. The abstract lasso derived from this counterexample is
Ξ : S0, S1, . . . , S6, S7 = S1. We follow the computation of Example 3 to obtain the
bi-assertionsβ1,1, . . . , β1,6, and also compute

β1,7 : init ∧ π = 1 ∧ x = x0 − 1 ∧ x > 0 ∧ y = 0 ∧ decy = 0

It follows thatβ1,7(V0, V) impliesx0 > x > 0, which is well-founded. A well-
founded ranking function proving well-foundedness ofβ1,7 is δ2 = x over the domain
(N, >). Thus we refineR and continue with the same predicate base and the refined
ranking coreR′ : {δ1, δ2}. At this point, the abstraction ofS+R′ by α is sufficient to
verify the termination property of the program.

3.3 Synthesizing Elementary Ranking Functions

A number of methods have been suggested for synthesis of ranking functions that es-
tablish (prove) well-foundedness of a well-founded bi-assertion. In our examples we

have used the simple heuristic of searching for simple linear constraints implied by the
transition relation of a control-flow loop ([12] provides a more general method for do-
ing this. Indeed, their method is complete). For example, given a set of variablesV and
a bi-assertionβ, we check validity of implications such asβ → v > v′, for eachv ∈ V .
As demonstrated, this has been sufficient in dealing with theNESTED-LOOPSprogram.
A more general approach based on linear algebra may look for ranking functions that
are linear combinations of system variables.

Such an extraction is useful in two contexts in which bi-assertions may arise. The
first has been demonstrated in the ranking refinement process. The second is related to
the determination of the ranking components that should be placed in the initial ranking
core. This can be based on a heuristic that analyzes the various loops in the program.
Assume a control loop identified by a sequence of locationsL = ℓ1, . . . , ℓn = ℓ1, such
that, for eachi = 1, . . . , n−1, ℓi+1 can be reached fromℓi in a single step. For a loop
L, we can define a sequence of bi-assertions as follows:

βi,j =

{
V0 = V ∧ π = ℓi j = i

(βi,j−1 1 ρ) ∧ π = ℓj j > i

It only remains to check whether the bi-assertionβL = β1,n is well-founded, and iden-
tify well-founded ranking functions that prove the well-foundedness ofβL. Such an
identification is, in general, undecidable, but we can use any of the heuristics mentioned
above, such as linear analysis.

We have used a variant of this heuristic to deal with programsthat manipulate un-
bounded pointer structures. One such program is BUBBLE SORT, shown in Fig. 4. This
is a parameterized system withH denoting the maximal size of a singly-linked pointer
structure (orheap). The heap itself is represented by the arrayNxt. In addition there
are a number ofpointervariables, such asx andy, that are also parameterized byH . In
the program, as well as in the ranking functions we will use, the assertionNxt∗(u, v)
denotes the second-order formula

∃n, {u = u0, u1, . . . , un = v}.∀i ∈ [1 . . . n].ui = Nxt [ui−1]

That is,Nxt∗(u, v) is satisfied when there is a sequence of graph nodes starting at u
and ending atv, that are consecutive with respect toNxt .

In order to synthesize a ranking function for BUBBLE SORT and similar programs,
our strategy is to seek constraints on graph reachability. One such form of constraint is

βL → (Nxt∗(v, v′) ∧ v 6= v′)

whereβL is the bi-assertion associated with the loopL andv is a pointer variable. Under
the assumption that a singly-linked list emanating fromv is acyclic, such a constraint
suggests the ranking function{i | Nxt∗(v, i)} over the domain(2N,⊃). Indeed, while
proving termination of BUBBLE SORT, one of the functions discovered automatically
by refinement was{i | Nxt∗(yn, i)}, a function that serves to prove termination of the
nested loop (L = lines2 . . . 9).

x, y, yn, prev, last : [0..H]
Nxt : array [0..H] of [0..H] whereNxt∗(x,nil)
D : array [0..H] of bool



0 : (prev, y, yn, last) := (nil , x,Nxt [x],nil);
1 : while last 6= Nxt [x] do



2 : while yn 6= lastdo


3 : if (D[y] > D[yn]) then


4 : (Nxt [y],Nxt [yn]) := (Nxt [yn], y);
5 : if (prev = nil) then

6 : x := yn

else
7 : Nxt [prev] := yn;

8 : (prev, yn) := (yn,Nxt [y])




else
9 : (prev, y, yn) := (y, yn,Nxt [y])







10 : (prev, y, yn, last) := (nil , x,Nxt [x], y);
11 :




Fig. 4. Program BUBBLE SORT

4 Extracting A Deductive Proof

There are situations in which verification alone is not sufficient, and an actual proof is
required. This is the case, for example, when the verification effort is embedded in a
larger proof-generating effort, either because we consider only a component of the sys-
tem, or are verifying a property that is only a part of the fullspecification. When dealing
with safety properties, it is straightforward to generate aconcrete logical formula that
represents an inductive invariant, based on the set of reachable abstract states, to be used
as the basis of a deductive proof. The analogous constructs in the case of a response-
property proof consist of an assertion that over-approximates the set of pending states,
and a well-founded, always-decreasing ranking function.

In this section we present algorithms that extract the necessary auxiliary constructs
from a successful application of the ranking abstraction method. The algorithm is based
on the LTL model-checking algorithm of [9]. For simplicity,we consider here the case
of an FDS derived from a sequential program and, therefore, has no justice or compas-
sion requirements. We will consider the more general case ofconcurrent programs in
the next section.

4.1 Extracting A Deductive Proof of Invariance Properties

For the sake of completeness and emphasizing the analogy between predicate abstrac-
tion and ranking abstraction, we present here the process ofthe extraction of a deductive
proof of an invariance property from a successful application of predicate abstraction.

In Fig. 5, we present the deductive ruleINV for establishing the validity of the
invariance property0 p. The application of the rule calls for the identification of an

Rule INV

For assertionsp,ϕ,

I1. Θ → ϕ

I2. ϕ ∧ ρ→ ϕ′

I3. ϕ→ p0 p

Fig. 5.Deductive ruleINV

auxiliary assertionϕ that, together withp, satisfies premises I1 — I3. We refer to an
assertion that satisfies premises I1 and I2 asinductive.

Let D be anFDS for which we wish to verify the invariance propertyψ : 0 p.
Assume that we employed the predicate abstractionα : VA = P(V) and verified, by
model checking, thatDα |= 0 pα. By soundness of the predicate abstraction method
we can conclude thatD |= 0 p. It only remains to extract a deductive proof of this fact.

In Fig. 6, we present algorithm EXTRACT-INVARIANCE , which extracts an auxil-
iary assertionϕ from the abstracted systemDα. The algorithm computes first inΦ an

Algorithm EXTRACT-INVARIANCE (D, α)
1. ComputeDα;
2. let Φ := Θα 1 (ρα)∗;
3. let ϕ := α−1(Φ);

Fig. 6.An algorithm for extracting an inductive assertion

abstract assertion that characterizes all abstract statesthat are reachable inDα. It then
concretizesΦ intoϕ by applying the concretization mappingα−1.

The correctness of the algorithm is stated by the following claim:

Claim 2 (Extraction of inductive assertion).
For anyD andα, the assertionϕ extracted by Algorithm EXTRACT-INVARIANCE is
inductive overD. If Dα |= 0 pα then alsoϕ→ p is valid.

It follows that if we apply the extraction algorithm to a system after a successful ap-
plication of the predicate abstraction method, then the extracted assertionϕ satisfies all
the premises of ruleINV .

Example 5 (Extracting a deductive proof of invariance forNESTED-LOOPS).
Consider program NESTED-LOOPSpresented in Fig. 1(a). For this program, we wish
to prove the invariance of the assertionp : π = 6 → ¬(y > 0), claiming that when
execution reaches location6, theny = 0. Applying the predicate abstractionα intro-
duced in Example 1, we obtain the abstract program presentedin Fig. 2 when we omit
all references to variableDecy. The property0 p is abstracted byα into the abstract
property0 (Π = 6 → Y 6= 1).

Computing the set of reachable states in this abstract program we obtain a set that
is captured by the following abstract assertion:

Φ : (X → Π ∈ [1..5]) ∧ (Π ∈ [2..5] → X) ∧
(Y → Π ∈ [3..4]) ∧ (Π = 4 → Y)

Concretizing byα−1, we obtain the following candidate assertion forϕ:

ϕ : (x > 0 → π ∈ [1..5]) ∧ (π ∈ [2..5] → x > 0) ∧
(y > 0 → π ∈ [3..4]) ∧ (π = 4 → y > 0)

It is not difficult to verify independently thatϕ is indeed inductive, and thatϕ implies
π = 6 → ¬(y > 0).

4.2 Deductive Rules for Response Properties

Moving to response properties, we consider a property of theform p =⇒ 1 q. In this
section we restrict our attention toFDS’s that are derived from sequential programs.
This implies that theFDShas no fairness requirements, and that idling steps are allowed
only from terminal states. A basic proof rule BASIC-RESPONSEfor the deductive veri-
fication of such a property is presented in Fig. 7

Rule BASIC-RESPONSE

For a well-founded domainA : (W,≻),
assertionsp, q, ϕ,
and ranking function∆ : Σ 7→ A

B1. p =⇒ q ∨ ϕ
B2. ϕ ∧ ρ =⇒ q′ ∨ ϕ′ ∧∆ ≻ ∆′

p =⇒ 1 q

Fig. 7.Deductive rule BASIC-RESPONSE

The rule calls for the identification of an auxiliary assertionϕ and a ranking function∆
over the well-founded domainA. Assertionϕ is intended to be an over-approximation
of the set of pending states w.r.t assertionsp and q. It is possible to view this rule
as stating that the propertyψ : p =⇒ 1 q is valid overD whenever the transition
relationρ, when restricted to the pending states (or their over-approximationϕ), forms
a well-founded bi-assertion. The well-founded ranking∆ is a ranking that proves the
well-foundedness of the bi-assertion derived fromρ.

In practice, it is often useful to partitionϕ into several disjoint assertions that cover
different cases. This leads to rule SEQUENTIAL-RESPONSE, which is presented in
Fig. 8.
The rule uses assertionsϕ0, . . . , ϕm, whereϕ0 = q. It is not difficult to see that if we
can find a set of constructs (assertions and ranking functions) satisfying the premises

Rule SEQUENTIAL-RESPONSE

For a well-founded domainA : (W,≻),
assertionsp, q = ϕ0, ϕ1, . . . , ϕm,

and ranking functions∆0 ,∆1 , . . . ,∆m where each∆i : Σ 7→ A

R1. p =⇒
∨m

j=0
ϕj

For eachi = 1, . . . , m,
R2.ϕi ∧ ρ =⇒

∨m

j=0
(ϕ′

j ∧∆i ≻ ∆′

j)

p =⇒ 1 q

Fig. 8.Deductive rule SEQUENTIAL-RESPONSE

of rule SEQUENTIAL-RESPONSE, we can immediately construct the appropriate con-
structs necessary for rule BASIC-RESPONSE. This can be done by taking

ϕ : ϕ1 ∨ · · · ∨ ϕm

∆ : case
ϕ1 : ∆1

· · ·
ϕm : ∆m

otherwise : 0
end-case

It is customary to refer to assertionsϕ0, . . . , ϕm as thehelpful assertions.
In the rest of the section we will show how the constructs needed for rule SEQUENTIAL-

RESPONSE, i.e. the ranks∆0, . . . , ∆m and helpful assertionsϕ0, . . . , ϕm, can be ex-
tracted from a successful application of the ranking abstraction method.

4.3 Extracting the Ranking Functions

Let D,R, andα be a concrete system, a ranking core, and an abstraction mapping,
respectively. Assume thatψ : p =⇒ 1 q is the response property we wish to verify
overD. LetDR,α be the abstract system andψα be the abstracted property.

The extraction process proceeds in two steps, where in the first step we extract
the ranking functions0 = ∆0, ∆1, . . . , ∆m and, in the second step, we construct the
assertionsq = ϕ0, ϕ1, . . . , ϕm. The well-founded domainA will be constructed incre-
mentally together with the construction of the∆i’s.

We start by constructing a transition graphG : 〈N,E〉, whose nodes are given by
N = pend∪{g}, wherepend is the set of all pending states, andg is a specialgoalnode
representing allqα-states that are reachable from a pending state in one step. Recall that
the pending states are all the states that are reachable by aqα-free path from a reachable
pα-state. The edges consist of all transitions connecting onepending state to another.
We also include an edge connectingn ∈ pend tog, if there exists a transition connecting
staten to any non-pending state. For simplicity, we omit all edges connecting any node
to itself, because they cannot contribute to the ranking. Wewill refer to the nodes of
the graph asN = {g, S1, . . . , Sm}, whereg is the goal node andS1, . . . , Sm are the
abstract pending states. We refer toG as thepending graphof systemDR,α.

The ranking function will be represented as a mappingRank: N → TUPLES, where
TUPLES is the type of lexicographic tuples whose elements are either natural numbers

or ranking functions present in the ranking coreR. The rankingRankis initialized as
Rank[n] = ⊥ for eachn ∈ N , where⊥ is the empty tuple. Then the recursive proce-
dure RANK -GRAPH(G), shown in Fig. 9, is invoked. In each iteration, the algorithm
updates the mappingRankby concatenating additional components (natural numbers
or elements of the ranking core) to the right of tuples.

Algorithm RANK -GRAPH(G)
Input: a graphG = (N,E) representing the pending states for the abstract system.
Output:Rank, an arrayN 7→ TUPLES

Initially: For everyn ∈ N , Rank(n) = ⊥.
Rank(G):

1. DecomposeG into a sorted list of MSCCs (maximal strongly connected components)
G = C0, ..., Ck, where sortedness means thati > j whenever there is an edge from a
Ci-node into aCj -node;

2. For every noden ∈ Ci, appendi to Rank(n);
3. Perform the following for each non-singleton MSCCC in the decomposition:

(a) If for some compassion requirement(Decj > 0,Decj < 0), C has some nodes with
Decj > 0, but no nodes withDecj < 0, then appendδj to Rank(n) of every node
n ∈ C; if no suchj exists, report “failure” and halt;

(b) LetD be the subgraph obtained by removing every edge inC leading into aDecj > 0
node;

(c) Call Rank(D);

Fig. 9. Procedure RANK -GRAPH, which constructs a ranking function from the transition graph
of a terminating abstract system.

When Algorithm RANK -GRAPH terminates, it produces a list of ranking func-
tions∆0, ∆1, . . . , ∆m, where∆0 is the rank associated with nodeg (usually 0), while
∆1, . . . , ∆m correspond to abstract statesS1, . . . , Sm, respectively.

X,Y : {0, 1} init Y = 0, X = 0
Decy,Decx : {−1, 0, 1}

compassion{(Decx > 0,Decx < 0), (Decy > 0,Decy < 0)}


0 : (X,Decy,Decx) := (1, 0,−1)
1 : while X do



2 : (Y,Decy,Decx) := (1,−1, 0)
3 : while Y do[

4 : (Y,Decy,Decx) := ({0, 1}, 1, 0)
]

5 : (X,Decy ,Decx) := ({0, 1}, 0, 1)




6 :




Fig. 10.Abstraction of Program NESTED-LOOPSaugmented with ranking core{y, x}

Example 6 (Extracting a Ranking Function forNESTED-LOOPS). We illustrate the al-
gorithm by extracting the ranking function for the deductive proof of termination of
program NESTED-LOOPS, given the abstract program shown in Fig. 10. This is a ver-
sion of the augmented abstract version from Fig. 2, after refinement with the additional
ranking functionδ2 : x. The response property we wish to verify is that of termina-
tion, which can be specified by the formulaat−ℓ0 =⇒ 1 at−ℓ6, whereat−ℓi is an
abbreviation of the assertionπ = i.

Fig. 11 visualizes iterations in the progress of the algorithm, as a series of graphs
of the pending states of the abstractFDS, with nodes representing states and directed
edges representing transitions. The goal state for the property appears as a graph node
that is labeled withΠ = 6 at the bottom of each diagram.

As the algorithm proceeds, each node is associated with a tuple that denotes the
ranking generated thus far.

Fig. 13 summarizes the process as a table. The ranking procedure proceeds as fol-
lows: Initially the graph of Fig. 11 is decomposed into components0, . . . , 4, and nodes
are assigned ranks according to the index of their MSCC. Thisis shown in Fig. 11(a)
and in the “Iteration 1” column of Fig. 13. Since nodes{S2,S8} form an MSCC
that violates the compassion requirement〈Decx > 0,Decx < 0〉, the corresponding
ranking functionx is appended to their ranking tuples, as shown in Fig. 11(b) and in
the “Iteration 2” column. The ranking procedure is now applied recursively to the sub-
graph that consists of nodes{S2,S8} and all edges except for the one entering the
(Decx > 0) node (S8). The subgraph, which is no longer strongly connected due to
edge removal, is re-decomposed into MSCCs, and each tuple isupdated (by concatena-
tion to the right) with the new MSCC indices (shown in Fig. 11(c) and in the “Iteration
3” column). The component consisting of nodesS4 andS5 is now a non-singleton
MSCC, and it violates the compassion requirement〈Decy > 0,Decy < 0〉. Therefore,
the corresponding ranking functiony is appended to the rankings of nodesS4 andS5,
as shown in Fig. 11(d) and in the “Iteration 4” column. Again,the procedure is applied
recursively to the subgraph with nodesS4 andS5 that has all edges but the one leading
into the(Decy > 0) node (S5). The rankings of nodesS4 andS5 are appended index
values corresponding to a new sorting (Fig. 11(d) and column“Iteration 5”). At this
point there are no non-singleton MSCCs left in the graph and the procedure terminates.
The final ranking, with zeroes padded to the right where appropriate, is shown in Fig. 12
and in the “final ranking” column.

Let∆i = (a1, . . . , ar) and∆j = (b1, . . . , br) be two ranks. The formula

gt(∆i, ∆j) :
r∨

k=1

(a1 = b′1) ∧ · · · ∧ (ak−1 = b′k−1) ∧ (ak ≻ b′k)

formalizes the condition for∆i ≻ ∆′
j in lexicographic order. In general, we cannot

determine whether the formulagt(∆i, ∆j) is true or false, because some of theak, bk
can be functions such asx or y. Let E be a consistent conjunction whose conjuncts
are expressions of the formδk = δ′k or δk ≻ δ′k for someδk ∈ R. We say that∆i

dominates∆j underE, written∆i ≻E
∆j , if the implicationE→gt(∆i, ∆j) is valid.

Thus,E lists some assumptions about the relations betweenδk andδ′k under which
gt(∆i, ∆j) can be evaluated.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iterations 4 and 5

Fig. 11. Progress of procedure RANK -GRAPH over the transition graph of the abstraction of
NESTED-LOOPS. The goal summary state is denoted by nodeg. To the right of each nodei
is a tuple denotingRank[i] as computed in the relevant iteration of the algorithm.

Fig. 12.The end result of RANK -GRAPH, as applied to the abstraction of NESTED-LOOPS

For example, for∆i : (2, x, 2, y, 0),∆j : (2, x, 2, y, 1) andE : x = x′∧y > y′,∆i

dominates∆j underE, that is,∆i ≻E
∆j . A special environment isE0 =

∧
δk∈R(δk =

δ′k), which assumes that all ranking components are equal. If∆i dominates∆j under
E0, we denote this fact by∆i > ∆j . Each abstract stateS induces an environment,
denotedE(S), which, for eachδk ∈ R, contains the equalityδk = δ′k iff S[Deck] =
0, and contains the inequalityδk ≻ δ′k iff S[Deck] = 1. We denote the fact thatSi

dominatesSj under the environmentE(S) by writingSi ≻S
Sj .

For example, consider the abstract statesS4 : 〈Π :4, X :1, Y :1, Decx:0, Decy:0〉
andS5 : 〈Π :3, X :1, Y :1, Decx:0, Decy:1〉, and their associated ranks∆4 : (2, x, 2, y, 0)
and∆5(2, x, 2, y, 1). According to the definitionE(S5) = (x = x′ ∧ y > y′) and
E(S4) = (x = x′ ∧ y = y′). It follows that both∆4 ≻

S5
∆5 and∆5 ≻

S4
∆4 are true.

Following are some important properties of pending graphs and their final rankings:

P1. There is a rank decrease∆i ≻
Sj

∆j across every edge(Si, Sj), with associated
ranks∆i, ∆j .

P2. If ∆i and∆j are the ranks associated with statesSi andSj , respectively, then
Si 6= Sj implies∆i 6= ∆j .

P3. The relation> between ranks is a total order over the set of final ranks computed
by Algorithm RANK -GRAPH.

P4. If∆i ≻Sj
∆j and∆j > ∆k, then∆i ≻Sj

∆k.

nodeIteration 1Iteration 2Iteration 3 Iteration 4 Iteration 5 Final Ranking

S10 (4) (4, 0, 0, 0, 0)

S9 (3) (3, 0, 0, 0, 0)

S8 (2) (2, x) (2, x, 5) (2, x, 5, 0, 0)

S7 (2) (2, x) (2, x, 4) (2, x, 4, 0, 0)

S6 (2) (2, x) (2, x, 3) (2, x, 3, 0, 0)

S5 (2) (2, x) (2, x, 2) (2, x, 2, y) (2, x, 2, y, 1) (2, x, 2, y, 1)

S4 (2) (2, x) (2, x, 2) (2, x, 2, y) (2, x, 2, y, 0) (2, x, 2, y, 0)

S3 (2) (2, x) (2, x, 1) (2, x, 1, 0, 0)

S2 (2) (2, x) (2, x, 0) (2, x, 0, 0, 0)

S1 (1) (1, 0, 0, 0, 0)

g (0) (0, 0, 0, 0, 0)

Fig. 13. Iterative Ranking for NESTED-LOOPS

P5. If statesSi andSj agree on the values of their non-Decvariables, then they have
the same set of successors.

These properties can be proven by induction on the steps in Algorithm RANK -GRAPH.
The induction hypothesis can be phrased as an invariant thatincludes properties P1 and
P2 restricted to the case that the consideredSi andSj belong to disjoint MSCC’s. This
invariant is expected to hold whenever we enter step 3 in algorithm RANK -GRAPH.

4.4 Forming an Abstract Verification Diagram

The ranked pending graph still contains too many details. Inparticular, it assigns differ-
ent ranks to two abstract states that agree on all non-Decvariables. For example, states
S5 : 〈Π :3, X :1, Y :1, Decx:0, Decy:1〉 andS6 : 〈Π :3, X :1, Y :1, Decx:0, Decy:− 1〉
are assigned different ranks in the ranked graph of Fig. 12. In the next step, we group
together all abstract states that agree on the values of all non-Decvariables.

To eliminate this redundant distinction, we form anabstract verification diagram
in the spirit of [10]. This is a directed graph whose nodes arelabeled with assertions
Φ0, Φ1, . . . , Φm and are also ranked by a well-founded ranking. Such diagramsare often
used to provide a succinct representation of the auxiliary constructs needed for a proof
rule such as SEQUENTIAL-RESPONSE.
The abstract verification diagram is constructed as follows:

1. For each set of states in the ranked pending graph that agree on the values of their
non-Decvariables we construct a node and label it by an assertionΦ. AssertionΦ
is a conjunction that specifies the values of all non-Decvariables.
Thus, the set consisting of stateS5 : 〈Π :3, X :1, Y :1, Decx:0, Decy:1〉 and state
S6 : 〈Π :3, X :1, Y :1, Decx:0, Decy: − 1〉 will be represented by a single node
labeled by the assertionΦ : Π = 3 ∧X = 1 ∧ Y = 1.
For simplicity, we writeS ∈ Φ as synonymous toS |= Φ.

2. We draw an edge from the node (labeled by the assertion)Φi to nodeΦj , whenever
there are statesSi ∈ Φi andSj ∈ Φj such thatSi is connected toSj in the ranked
pending graph.

3. A nodeΦ is ranked by a rank∆ which is the>-minimum among the ranks associ-
ated with the states that are grouped inΦ.
Thus, the rank assigned to nodeΦ : Π = 3 ∧ X = 1 ∧ Y = 1, which has been
obtained by grouping together statesS5 andS6 with associated ranks(2, x, 2, y, 1)
and(2, x, 3), is (2, x, 2, y, 1), which is the smaller of the two ranks.

In Fig. 14(a) we present the abstract verification diagram obtained for program NESTED-
LOOPS.
A property supporting the correctness of the construction is

P6. IfΦi is connected toΦj in the verification diagram andSj ∈ Φj , then∆i ≻Sj
∆j ,

where∆i, ∆j are the ranks associated withΦi, Φj , respectively.

The proof of this property is based on the fact that the rank ofan assertionΦ is defined as
the>-minimum over the ranks of all states included inΦ, and on the “semi-transitivity”
property P4.

4.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary constructs needed by rule SEQUENTIAL-
RESPONSE, we compute the concrete helpful assertionsϕ0, . . . , ϕm. These are ob-
tained simply by concretization of the abstract assertionsΦ0, . . . , Φm. That is, for each
i = 0, . . . ,m, we letϕi = α−1(Φi). Thus, for program NESTED-LOOPS, we obtain the
helpful assertions presented in the table of Fig. 14(b).

A property that leads to the overall correctness of the construction is given by:

P7. If concrete statessi, sj satisfysi |= ϕi andsj |= ϕj , andsj is aD-successor ofsi,
thensi[∆i] ≻ sj [∆j].

We will sketch the proof of this property. Sincesj is aD-successor ofsi, there exist
s̃i, s̃j, states of the augmented systemD+R, such that̃si |= ϕi, s̃j |= ϕj , and s̃j is a
D+R-successor of̃si. Abstracting these states byα, we obtain abstract statesSi, Sj ,
such thatSi |= Φi, Sj |= Φj , andSj is a DR,α-successor ofSi (and henceΦi is
connected toΦj in the abstract verification diagram). By property P6, it follows that
∆i ≻Sj

∆j . The definition of≻
Sj

implies that∆i ≻ ∆j under the assumptions that the
ranking componentsδk decrease or increase as determined by the values of theDeck
variables in stateSj. However, these values are the same as they are ins̃j and therefore,
faithfully represent whetherδk decrease or increase on the transition fromsi to sj . It
therefore follows thatsi[∆i] ≻ sj [∆j].
We can now summarize the complete algorithm for extraction of the auxiliary constructs
necessary for a successful application of rule SEQUENTIAL-RESPONSE.

1. Construct the pending graph and apply Algorithm RANK -GRAPH in order to assign
well-founded ranks to the nodes in the graph.

2. Construct an abstract verification diagram by abstracting away theDec-variables.
3. Derive the helpful assertions by concretization of the assertions labeling the nodes

in the abstract verification diagrams.

(a) Abstract Verification Diagram for NESTED-
LOOPS

Index ϕi ∆i

8 π = 0 ∧ x = 0 ∧ y = 0 (3, 0, 0, 0, 0)
7 π = 1 ∧ x > 0 ∧ y = 0 (2, x, 4, 0, 0)
6 π = 2 ∧ x > 0 ∧ y = 0 (2, x, 3, 0, 0)
5 π = 3 ∧ x > 0 ∧ y > 0 (2, x, 2, y, 1)
4 π = 4 ∧ x > 0 ∧ y > 0 (2, x, 2, y, 0)
3 π = 3 ∧ x > 0 ∧ y = 0 (2, x, 1, 0, 0)
2 π = 5 ∧ x > 0 ∧ y = 0 (2, x, 0, 0, 0)
1 π = 1 ∧ x = 0 ∧ y = 0 (1, 0, 0, 0, 0)
0 π = 6 (0, 0, 0, 0, 0)

(b) Assertions and Rankings for NESTED-
LOOPS

Fig. 14.Final, simplified, result of RANK -GRAPH, with the resulting concrete helpful assertions

5 Extracting Deductive Proofs for Concurrent Programs

In the previous Section we showed how to extract a deductive proof of response prop-
erties forFDS’s derived from sequential programs and, therefore, containing no fairness
requirements. In this Section we extend the method toFDS’s containing justice require-
ments that can, therefore, represent the majority of concurrent programs.

Recall that in Subsection 2.1 we stated that, since we focus on sequential programs,
we can restrict to systems where idle steps are only allowed from terminal states. Now,
when discussing concurrent systems, we lift this restriction. As a matter of fact, we as-
sume that every state has an idle successor. We, however, still restrict our attention to
the subclass ofjust discrete systems(JDS), which allow an arbitrary number of justice
requirements, but no native compassion requirements. The ranking abstraction method
introduces its own compassion requirements into the augmented system prior to ab-
straction, but we allow no compassion requirements in the original systemD.

5.1 A Deductive Rule for Response under Justice

In the case of sequential programs, we could require a well-founded ranking that de-
creases oneverynon-idle step. This is no longer possible in the case of concurrent pro-
grams or in the presence of justice requirements. Here, we partition the space of pending
steps into regions characterized by assertionsϕ1,ϕm where for eachi = 1, . . . ,m,
ϕi → ¬Ji, so that any step from aϕi-state that causesJi to be fulfilled should cause the

ranking to decrease. However, as long as we remain withinϕi, we may take an arbitrary
number of steps and the rank need not decrease.

In Fig. 15 we present proof rule RESPONSEwhich establishes the response property
p =⇒ 1 q for a JDSD. Premise R1 of the rule requires that anyp-state is also anϕi-
state for somei = 0, . . . ,m. Premise R2 of the rule requires that any step from aϕi-
state (i > 0) either causes the ranking to decrease or preserves the value of∆i, provided
we stay in theϕi-region. By premise R3, justice requirementJi is not satisfied by any
ϕi-state. It follows that every infinite run that enters the pending domain without leaving
it either causes the ranking to decrease infinitely many times, which is impossible, or
stays forever within someϕi-region from a certain point on. However, in the latter case,
justice requirementJi will be satisfied only finitely many times. It follows that such a
run cannot be a computation since it violates the justice requirement associated with
Ji. We conclude that no computation can stay contained foreverwithin the domain of
pending states. Hence any computation that enters the pending domain must eventually
exit, and satisfyq.

Rule RESPONSE

For a well-founded domainA : (W,≻),
assertionsp, q = ϕ0, ϕ1, . . . , ϕm,

justice requirements J1, . . . , Jm,

and ranking functions∆0 ,∆1 , . . . ,∆m where each∆i : Σ 7→ A

R1. p =⇒
∨m

j=0
ϕj

For eachi = 1, . . . , m,
R2.ϕi ∧ ρ =⇒ (ϕ′

i ∧∆i = ∆′

i) ∨
∨m

j=0
(ϕ′

j ∧∆i ≻ ∆′

j)

R3. ϕi =⇒ ¬Ji

p =⇒ 1 q

Fig. 15.Deductive rule RESPONSE

5.2 Applying Ranking Abstraction to Concurrent Programs

The method of ranking abstraction can be applied, with no change, toJDS’s derived
from concurrent programs.

We illustrate this application on program UP-DOWN, presented in Fig. 16, for which
we wish to prove the response property(π1 = 0 ∧ π2 = 0) =⇒ 1 (π1 = 4),
whereπ1 andπ2 are the location counters forP1 andP2 respectively. To distinguish
between the locations of processesP1 andP2, we denote them byℓi, andmj, re-
spectively. We also use the notationat−ℓi to denoteπ1 = i, and, similarly, we use
at−mj to denoteπ2 = j. The justice requirements of the programs are given by
J = {¬at−ℓ0,¬at−ℓ1,¬at−ℓ2,¬at−ℓ3,¬at−m0}. Thus, every statement at locationℓ
(i.e.,ℓi ormj) is associated with a justice requirement of the form¬at−ℓ, guaranteeing
that the statement is eventually executed, and execution does not remain stuck atℓ.
Employing the predicate baseP : {x > 0, y > 0} and the ranking coreR : {δy : y},
we obtain the abstraction

α : Π1 = π1, Π2 = π2, X = (x > 0), Y = (y > 0), Decy = decy,

x, y : natural init x = 0, y = 1

P1 ::




ℓ0 : while x = 0 do[
ℓ1 : y := y + 1

]

ℓ2 : while y > 0 do[
ℓ3 : y := y − 1

]

ℓ4 :




P2 ::

[
m0 : x := 1
m1 :

]

Fig. 16.Program UP-DOWN

Augmenting and abstracting program UP-DOWN, we obtain the abstract program ABSTRACT-
UP-DOWN, presented in Fig. 17.

X,Y : natural init X = 0, Y = 1
Decy : {−1, 0, 1}
compassion(Decy > 0,Decy < 0)

P1 ::




ℓ0 : while X = 0 do[
ℓ1 : (Y,Decy) := (1,−1)

]

ℓ2 : while Y = 1 do[
ℓ3 : (Y,Decy) := (Y ·− 1, (Y > 0))

]

ℓ4 :




P2 ::

[
m0 : X := 1
m1 :

]

Fig. 17.Program ABSTRACT-UP-DOWN

The program uses the operation·− which is defined byY ·− 1 = max(Y −1, 0). The
justice requirements of the abstract program are the same asfor the concrete program
– J = {¬at−ℓ0,¬at−ℓ1,¬at−ℓ2,¬at−ℓ3,¬at−m0}, except thatat−ℓi andat−mj are
now interpreted asΠ1 = i andΠ2 = j, respectively.

Model checking the abstracted propertyΨα : (Π1 = 0∧Π2 = 0) =⇒ 1 (Π1 = 4)
over program ABSTRACT-UP-DOWN, we find out that it is valid. We conclude that the
concrete program UP-DOWN terminates.

5.3 Extracting a Deductive Proof

We proceed to outline the algorithm by which we can extract the necessary ingredients
for a deductive proof by rule RESPONSEfrom a successful application of the rank-
ing abstraction method. As in the sequential case, the extraction process proceeds in
three steps. In the first step we construct the pending graph,and assign ranks to the
abstract states belonging to this graph. That step also assigns a helpful justice require-
ment to each abstract state (as required by rule RESPONSE). The second step constructs
an abstract verification diagram which contains an abstracted versions of the helpful
assertions. In the third and final step we construct the (concrete) helpful assertions.

Once again, we start by constructing a transition graphG : 〈N,E〉, which represents
the set of pending states plus a goal state. In the just version of the construction, it
is important to label the edges by a label that can be viewed either as the transition
that leads from one state to the next, or the justice requirement which the transition
causes to be satisfied. This correspondence results from thefact that every transition
τ in the program can be associated with a justice requirementJτ that holds iff τ is

disabled. To illustrate this construction, we present in Fig. 18 the labeled transition
graph corresponding to the pending states of program ABSTRACT-UP-DOWN. As seen
in the diagram, we represent the justice requirements¬at−ℓi and¬at−mj simply by
the locationsℓi andmj , respectively.

Fig. 18.Pending and goal states for program ABSTRACT-UP-DOWN.

Having constructed the pending transition graphG we proceed to analyze it and
determine the ranks associated with the abstract states. A basic process in the algorithm
for rank determination is the decomposition of subgraphs into their MSCC’s. An MSCC
C is said to bejust with respect to justice requirementJi if C contains a state satisfying
Ji. ComponentC is defined to bejust if it is just with respect to all justice require-
ments. In Fig. 19, we present the algorithm for computing theranks for a pending graph
produced for aJDS.

In the table of Fig. 20, we present the progress of algorithm RANK -JUST-GRAPH

when applied to the pending graph of program ABSTRACT-UP-DOWN, which is given
in Fig. 18. The last column in the table lists, for each node, the justice requirement
identified as helpful for that node. These entries are determined in line 3 of Algorithm
RANK -JUST-GRAPH.
In the first iteration, the MSCC decomposition yields the following sorted list:

g, S1, {S2, S3}, S4, S5, S6, S7, {S8, S9}, S10

Algorithm RANK -JUST-GRAPH(G)
Input: a graphG = (N,E) representing the pending states for the abstract system.
Output:Rank, an arrayN 7→ TUPLES

Initially: For everyn ∈ N , Rank(n) = ⊥.
Just-Rank(G):

1. DecomposeG into a sorted list of MSCCsG = C0, ..., Ck;
2. For every noden ∈ Ci, appendi to Rank(n);
3. For each unjust MSCCC, identify the justice requirementJi that causes the injustice, and

markJi as the requirement that is helpful forC.
4. Perform the following for each just MSCCC in the decomposition, excluding nodeg:

(a) If for some compassion requirement(Decj > 0,Decj < 0), C has some nodes with
Decj > 0, and no nodes withDecj < 0, then appendδj to Rank(n) of every node
n ∈ C; if no suchj exists, report “failure” and halt;

(b) LetD be the subgraph obtained by removing every edge inC leading into aDecj > 0
node;

(c) Call Just-Rank(D);

Fig. 19.Procedure RANK -JUST-GRAPH, which constructs a ranking function from the transition
graph of a terminating abstractJDS.

Consequently, we assign to nodesg, S1, . . . , S10 the sequence of ranks:

0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8

Next, we examine each of the components, excludingg. We find that the only just
component is{S2, S3}. This is because each of the other components is unjust w.r.t
some justice requirement, as shown by

Component S1 S4 S5 S6 S7 {S8, S9} S10

Violates ¬at−ℓ2 ¬at−ℓ2 ¬at−ℓ0 ¬at−ℓ0 ¬at−ℓ1 ¬at−m0 ¬at−m0

Component{S2, S3} is just. Therefore we search for a compassion requirement
that is violated by the component. Indeed, we observe that(Decy > 0,Decy < 0) is
violated because StateS3 has a positive value ofDecy but there is no state assigning
a negative value toDecy in this component. We therefore augment the ranks ofS2

andS3 by the ranking elementδy : y, remove the edges enteringS3, and invoke the
procedure Just-Rank with a graphD whose nodes are{S2, S3} and which has the single
edge(S3 → S2). Decomposing the subgraphD, we obtain the decompositionS2, S3.
Consequently, in the 3rd (and last) iteration, we append to nodesS2, S3 the ranks0, 1,
respectively.

Note that, once we identify that some components are unjust,we do not process
them any further. Note also that, while the sequential version of the ranking computation
algorithm always terminates with a graph consisting of singleton components, the just
version may leave several components intact, such as{S8, S9}.

In Fig. 21(a), we present a ranked version of the pending graph. Edges labeled with
the helpful justice requirements are drawn in bold type.

Node Iteration 1Iteration 2Iteration 3Final Ranking Helpful Justice Req.

S10 8 (8, 0, 0) m0

S9 7 (7, 0, 0) m0

S8 7 (7, 0, 0) m0

S7 6 (6, 0, 0) ℓ1
S6 5 (5, 0, 0) ℓ0
S5 4 (4, 0, 0) ℓ0
S4 3 (3, 0, 0) ℓ2
S3 2 (2, y) (2, y, 1) (2, y, 1) ℓ2
S2 2 (2, y) (2, y, 0) (2, y, 0) ℓ3
S1 1 (1, 0, 0) ℓ2
g 0 (0, 0, 0)

Fig. 20.Progress of Algorithm RANK -JUST-GRAPH

On successful termination of Algorithm RANK -JUST-GRAPH, we can claim the
following properties:

C1. For every two statesSi, Sj which belong to disjoint MSCC’s, and such thatSi is
connected toSj , there is a rank decrease∆i ≻

Sj
∆j , where∆i, ∆j are the ranks

associated withSi, Sj , respectively.
C2. For every two statesSi, Sj and their associated ranks∆i, ∆j , then∆i = ∆j iff Si

andSj belong to the same MSCC.

In addition, properties P3–P5 of Section 4 are also true here.

5.4 Forming an Abstract Verification Diagram

In the second step of the extraction process, we form the abstract verification diagram
merging together each MSCC of the pending graph into a singleassertion.

1. In the first step we merge together abstract states that differ only in theirDecvari-
ables. This is done by identifying two such abstract statesSi andSj , retaining the
representative with the smaller rank, and redirecting edges previously connecting
to the node with higher ranks into the node with the lower rank.
Thus, in the graph of Fig. 18, we can mergeS10 into S8, S6 into S5, andS4 into
S3.

2. Next, we construct for each MSCC of the graph resulting from the previous step a
single assertionΦ which is a disjunction of the valuations of the non-Decvariables
of all the states contained in the MSCC.
Thus, the assertion corresponding to the MSCC which contains the two statesS8 :
〈Π1:0, Π2:0, X :0, Y :1, Decy: − 1〉 andS9 : 〈Π1:1, Π2:0, X :0, Y :1, Decy:0〉 is
Φ : Π1 ∈ {0, 1} ∧Π2 = 0 ∧X = 0 ∧ Y = 1.

3. We draw an edge labeled byJ connecting nodeΦi to nodeΦj , whenever there are
statesSi ∈ Φi andSj ∈ Φj such thatSi is connected toSj by aJ-labeled edge in
the ranked pending graph.

(a) A ranked version of the Pending graph for pro-
gram ABSTRACT-UP-DOWN.

(b) Abstract verification diagram for program
ABSTRACT-UP-DOWN.

Fig. 21. The ranking produced by RANK -JUST-GRAPH on the Pending graph of program
ABSTRACT-UP-DOWN, and the subsequent abstract verification diagram.

4. A nodeΦ is ranked by a rank∆ which is the common rank associated with the
states that belong to the MSCC.

In Fig. 21(b), we present the abstract verification diagram obtained from the graph of
Fig. 21(a).
An important property of the abstract verification diagram is the following:

P6. IfΦi is connected toΦj in the verification diagram andSj ∈ Φj , then∆i ≻Sj
∆j ,

where∆i, ∆j are the ranks associated withΦi, Φj , respectively.

5.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary constructs needed by rule RESPONSE,
we compute the concrete helpful assertionsϕ0, . . . , ϕm. As in the sequential case, these
are obtained simply by concretization of the abstract assertionsΦ0, . . . , Φm. In the table
presented in Fig. 22, we present the auxiliary constructs extracted for program UP-
DOWN.

As in the sequential case, the following property leads to the overall correctness of
the construction:

P7. If concrete statessi, sj satisfysi |= ϕi andsj |= ϕj , andsj is aD-successor ofsj ,
thensi[∆i] ≻ sj [∆j].

i ϕi ∆i Ji

6 at−ℓ0,1 ∧ at−m0 ∧ x = 0 ∧ y > 0 (5, 0, 0) ¬at−m0

5 at−ℓ1 ∧ at−m1 ∧ x > 0 ∧ y > 0 (4, 0, 0) ¬at−ℓ1
4 at−ℓ0 ∧ at−m1 ∧ x > 0 ∧ y > 0 (3, 0, 0) ¬at−ℓ0
3 at−ℓ2 ∧ at−m1 ∧ x > 0 ∧ y > 0 (2, y, 1) ¬at−ℓ2
2 at−ℓ3 ∧ at−m1 ∧ x > 0 ∧ y > 0 (2, y, 0) ¬at−ℓ3
1 at−ℓ2 ∧ at−m1 ∧ x > 0 ∧ Y = 0 (1, 0, 0) ¬at−ℓ2
0 at−ℓ4

Fig. 22.Extracted auxiliary constructs for program UP-DOWN

6 Conclusion

The work in this paper is a direct continuation of [2], where aframework was pre-
sented for automatic computation of predicate and ranking abstractions, with a specific
application to the domain of unbounded pointer structures (aka Shape Analysis). That
framework requires all predicates and component ranking functions to be provided by
the user. Here we have extended it with dual means of refinement for both types of
abstraction.

We have shown two heuristics for synthesizing component ranking functions, one
for a linear domain and another for a domain of unbounded pointer structures. These
have been surprisingly effective in proving termination ofa number of example pro-
grams. In the near future we plan to explore richer heuristics in the domain of shape
analysis.

In the last two sections we have shown how a deductive proof ofa response prop-
erty can be extracted from a successful application of the ranking-abstraction method.
First, we consider the simpler case of systems with no fairness requirements, which
correspond to sequential programs. We then indicated how the extraction process can
be applied to systems with justice requirements, which can be used to model concurrent
programs.

References

1. A. Pnueli and E. Shahar. A platform combining deductive with algorithmic verification.
In Rajeev Alur and Thomas A. Henzinger, editors,Proceedings of the Eighth International
Conference on Computer Aided Verification CAV, volume 1102, page 184, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

2. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. InVM-
CAI’2005: Verification, Model Checking, and Abstraction Interpretation, pages 164–180,
2005.

3. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction refinement for
software model checking. InTools and Algorithms for Construction and Analysis of Systems,
pages 158–172, 2002.

4. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
Lecture Notes in Computer Science, 2057:103+, 2001.

5. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. InComputer Aided Verification, pages 154–169, 2000.

6. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination. InStatic
Analysis Symposium, pages 87–101, 2005.

7. D. Dams, R. Gerth, and O. Grumberg. A heuristic for the automatic generation of ranking
functions. In G. Gopalakrishnan, editor,Workshop on Advances in Verification, pages 1–8,
2000.

8. Y. Kesten and A. Pnueli. Verification by augmented finitaryabstraction.Information and
Computation, 163(1):203–243, 2000.

9. O. Lichtenstein and A. Pnueli. Checking that finite-stateconcurrent programs satisfy their
linear specification. InProc. 12th ACM Symp. Princ. of Prog. Lang., pages 97–107, 1985.

10. Z. Manna and A. Pnueli. Temporal verification diagrams. In T. Ito and A. R. Meyer, editors,
Theoretical Aspects of Computer Software, volume 789 ofLect. Notes in Comp. Sci., pages
726–765. Springer-Verlag, 1994.

11. A. Podelski and A. Rybalchenko. Software model checkingof liveness properties via tran-
sition invariants. Research Report MPI-I-2003-2-004, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, December 2003.

12. A. Podelski and A. Rybalchenko. A complete method for thesynthesis of linear ranking
functions. InVerification, Model Checking, and Abstract Interpretation, pages 239–251,
2004.

13. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
Proc. 9th International Conference on Computer Aided Verification (CAV’97), volume 1254,
pages 72–83. Springer Verlag, 1997.

