Ranking Abstraction as Companion
to
Predicate Abstraction*

Ittai Balaban, Amir Pnueli2, and Lenore D. Zuck

! New York University, New York{bal aban, ani r }@s. nyu. edu
2 Weizmann Institute of Science,
3 University of lllinois at Chicagol enor e@s. ui c. edu

Abstract. Predicate abstraction has become one of the most successtubd-
ologies for proving safety properties of programs. Regestveral abstraction
methodologies have been proposed for proving livenessepiiep. This paper
studies “ranking abstraction” where a program is augmeloyesdnon-constraining
progress monitor, and further abstracted by predicattaatt®on, to allow for au-
tomatic verification of progress properties. Unlike mogetiess methodologies,
the augmentation does not require a complete ranking fomttiat is expected to
decrease with each helpful step. Rather, the inputs are @oemp rankings from
which a complete ranking function may be formed.

The premise of the paper is an analogy between the methodsikihg abstrac-
tion and predicate abstraction, one ingredient of whickefinement: When pred-
icate abstraction fails, one can refine it. When rankingrabgon fails, one must
determine whether the predicate abstraction, or the rgréfostraction, need be
refined. The paper presents strategies for determininghwdaise is at hand.

The other part of the analogy is that of automatically degvdeductive proof
constructs: Predicate abstraction is often used to dervgr@am invariants for
proving safety properties as a boolean combination of thengpredicates. De-
ductive proof of progress properties requires well-fouhdenking functions in-
stead of invariants. We show how to obtain concrete globaking functions
from abstract programs.

We demonstrate the various methods on examples with nesipd, lincluding a
bubble sort algorithm on linked lists.

1 Introduction

Predicate abstraction has become one of the most succesthidologies for proving
safety properties of programs. However, with no extendi@amnnot be used to verify
general liveness properties. In this paper, we presennaefrerk, based on predicate
abstraction andanking abstractionfor verification of both safety and progress prop-
erties. Ranking abstraction, introduced in [8], is basedwmaugmentation of the con-
crete program. The augmentation is parameterized by a seelbfounded ranking

* This research was supported in part by NSF grant CCR-02083XR grant NO0014-99-1-
0131, and SRC grant 2004-TJ-1256.

functions. Based on these, n@wmpassior(strong fairness) requirements as well as
transitions are generated, all of which are synchronoustyposed with the program
in a non-constraining manner. Unlike most methodologies,ranking functions are
not expected to decrease with each transition of the program

The basic premise presented in this paper is that there isalitydbetween the
activities that lead to verification of safety properties predicate abstraction, and those
that lead to verification of progress properties via rankabgtraction. This duality is
expressed through the following components:

e The initial abstractionHeuristics are applied to choose either an initial set ofipre
icates, or a set of core well founded ranking functions.

e RefinementA too-coarse initial abstraction leads to spurious absttaanterex-
amples. Depending on the character of the counterexaniibler @ predicate, or a
ranking, refinement is performed.

e Generation of deductive proof construdedicate abstraction is often used as an
automatic method to generate an inductive invariant as &ebona@ombination of
the given predicates. Dually, ranking abstraction can leel is generate a global
concrete ranking function that decreases with every steépeoprogram, as a lexi-
cographical combination of the core ranking functions.

We demonstrate the use of ranking refinement in order to gesagnation of a canoni-
cal program with nested loops and unbounded random assiganas well as a bubble
sort algorithm on unbounded linked lists. Both examplesiéttie use of additional
heuristics in order to synthesize core ranking functions.

The framework, as well as all experiments, have been impiéadeusing therLv
programmable model-checker [1]. The contribution of thpards as follows: At the
informal, conceptual level, it strives to convince the mathat the duality between in-
variance and progress, present in deductive framewortends to how one approaches
automatic verification of each kind of property. More conelg it suggests a for-
mal framework, based on two specific abstraction methodgrfmring both safety and
progress properties. This includes heuristics for ch@pseparate refinement method-
ologies based on the form of counterexamples, and a methadfomatically deriving
a global well founded program ranking function.

The paper is organized as follows: Section 2 describes thguatational model
of fair discrete systemas well as predicate and ranking abstractions. Furtherntore
motivates the use of ranking abstraction by demonstratsnggiue, compared to a typ-
ical deductive method. Section 3 formalizes the differasttans of abstraction refine-
ment. Section 4 presents a method for extracting the aoxitianstructs necessary for
a deductive proof of a response property from a successflication of the ranking-
abstraction method. These include a set of ranking funstamd helpful assertions.
This section deals with the restricted case of sequenti@rams, which do not assume
any fairness requirements. These restrictions are remn&ettion 5 which performs a
similar extraction of auxiliary constructs for the case sfjatem representing a concur-
rent program, or any other system with weak fairness remerds. Finally, Section 6
summarizes and concludes.

Related Work

The body of work most comparable to ours is [6], where Coolddfki, and Ry-
balchenko present a framework for verifying terminatidrattformalizes duel refine-
ments — of transition predicate abstraction and of tramsitnvariants. Transition in-
variants can be described as composite transition relatiba program that has been
augmented with a ranking function, and assume the role dfimgrfunctions in our
framework. Comparable to our work, the algorithm in [6], wharesented with an ab-
stract counterexample, analyzes the cause of its “spurémss, and refines either the
predicate abstraction or the transition invariant. While vamework is inherently ap-
plicable to systems with (weak and strong) fairness coms;athe framework in [6]
lacks any notion of fairness. Therefore it must be extendexder to support concur-
rent programs. Furthermore in this work we show how to extdaductive proofs of
progress for sequential programs and a wide class of cartyprograms.

Dams, Gerth, and Grumberg [7] point out the duality betwesmification of safety
and progress of programs. Like us, they aim to lift this dyaid provide tools for
proving progress properties, whose functionality is agal to similar tools used for
safety. Specifically, they propose a heuristic for discmgranking functions from a
program'’s text. In contrast, we concentrate on an analodly priedicate abstraction,
a particular method for safety. Our approach is broaderglew in that we suggest a
general framework for safety and progress properties wbach of the activities in a
verification process has an instantiation with respect ¢h @i the dualities.

In [12] Podelski and Rybalchenko present a method for swighadf linear ranking
functions. The method is complete for unnested loops, aethisedded successfully in
a broader framework for proving liveness properties [14}vall as in [6]. This method
is one of several candidates that can be embedded in ourviratkewhen ranking
refinement is called for.

The topic of refinement of state abstraction, specificalgdprate abstraction, has
been widely studied. A number of existing works in this are=a[8, 3], and [4].

2 The Formal Framework

In this section we present our computational model, as vedtha methods of predicate
abstraction and ranking abstraction.

2.1 Fair Discrete Systems

As our computational model, we takdair discrete systen(Fps) D : (V,0,p, 7,C),
where

e V — A set of system variablesA stateof D provides a type-consistent interpre-
tation of the variable¥’. For a states and a system variable € V', we denote by
s[v] the value assigned toby the states. Let X denote the set of all states ovér

e © — Theinitial condition: An assertion (state formula) characterizing the initial
states.

e p(V, V') — Thetransition relation An assertion, relating the valu&sof the vari-
ables in state € X to the valued/’ in anD-successor stat€ € Y. We assume
that every state has@asuccessor.

e J — A set ofjustice (weak fairnesgrequirements (assertions); A computation
must include infinitely many states satisfying each of tletige requirements.

e C — A set ofcompassion (strong fairnes®quirements: Each compassion require-
ment is a pairp, ¢) of state assertions; A computation should include eithér on
finitely manyp-states, or infinitely many-states.

For an assertiog, we say that € X' is auy-state ifs =).
A run of anFDS D is a possibly infinite sequence of states sg, s1, . . . satisfying
the requirements:

e Initiality — sq is initial, i.e.,sg = ©.

e Consecutior— For eacly = 0,1, .. ., the states, 1 is anD-successor of,. That
is, (s¢, sev1) E p(V, V') where, for eachy € V, we interprety ass,[v] andv’ as
So41[v].

A computatiorof D is an infinite run that satisfies

e Justice— for everyJ € 7, o contains infinitely many occurrences fstates.
e Compassior-for every(p, q) € C, eithero contains only finitely many occurrences
of p-states, or contains infinitely many occurrences@btates.

Since we focus here on termination properties of sequemigrams, we define a state
s to beterminalif it has itself as the only successor. Justice assumptiossre that,
if possible, a computation takes non-idle steps, i.e. skegding from a state to a
successor different from. Extending the framework to general, possibly concurrent,
systems requires distinction betwesgadlockstates anterminalstates. The extension
is straightforward, and for simplicity of exposition we wye this distinction here. An
FDS is defined to baerminatingif every computation contains (eventually reaches) a
terminal state. To simplify the treatment of sequentiabpamns, we assume that a state
s that has a successer # s cannot also have itself as a successor. This guarantees
progress without the need for explicit fairness requiretsidn particular it implies that
idling steps are only possible from terminal states.

Once we move to concurrent programs, where fairness regairts play a signifi-
cant role, we will remove this assumption.

Ranking A well-founded domain is a paifV,) such thatV is a set and- is a
partial order ovedV that admits no infinite--decreasing chains. Aanking functionis
a function mapping program states to some well-founded dama

An assertion that, like a transition relation, refers tohbaohprimed and primed
copies of the system variables is callebi@ssertion A bi-assertion3(V, V') is called
well founded over assertiop if there does not exist an infinite sequence of states
S0, 81, .., such thatsy = p and(s;, s;+1) = 3, for everyi > 0. If p = 1 (true),
then we say simply that is well founded

In order to prove that is well founded ovep, it is sufficient to find an auxiliary
assertionp and a well-founded ranking such that

p—¢ and o(V)ABV, V') — o(V) AS(V) - 6(V)

In this case, we say that the well-founded rankéngroves the well-foundedness®f
overp.

Termination of arFDs corresponding to a sequential program is often proved by
finding a well-founded ranking such that decreases on every non-idle step. We refer
to such a ranking function aequate fo(proving)termination With appropriate as-
sumptions on theps (e.g., countable non-determinism), every terminatingsatial)
FDs has such well founded ranking.

The same method can also be applied to prove more generakpsogroperties
such ap = < ¢ over sequential programs. To handle this case, we definde sta
to bepending(with respect tg, q) if it is reachable by a-free path from a reachable
p-state. Then, we should find a well-founded rankénguch thaty decreases on every
non-idle step that departs from a pending state.

2.2 Predicate Abstraction

The material here is a summary of [8] and [2]. We fixrms D = (V,0,p,7,C)
whose set of states 5. We consider a set abstract variabled’y = {uy,...,u,}
that range over finite domains. Aabstract statés an interpretation that assigns to each
variableu; a value in the domain af;. We denote by’ 4 the (finite) set of all abstract
states. Arabstraction mappings presented by a set of equalities

a,: ur=EV), ..., u, =E,(V),

where eaclf; is an expression ovér ranging over the domain of;. The abstraction
a, induces a semantic mapping. : X — X4, from the states oD to the set of
abstract states.

Usually, most of the abstract variables are boolean, andttieecorresponding ex-
pressiong; are predicates ovér. This is why this type of abstraction is often referred
to aspredicate abstractionThe abstraction mapping, can be expressed succinctly
by:

Va=£&(V)

Throughout the rest of the paper, when there is no ambigwityshall refer toa,
simply asa. For an assertiop(V'), we define itsx-abstraction (with some overloading
of notation) by:

a(p): IV.(Va=£&(V) A p(V))

The semantics of(p) is |a(p)] : {a(s) | s € ||p||}. Note that/|«(p)]| is, in general,
an over-approximation — an abstract stétes in ||«(p)|| iff there existsome concrete
p-state that is abstracted info A bi-assertion3(V, V') is abstracted by:

(p): IV, V' .(Va=EV) A Vi=EWV") A BV, V)

The abstraction is said to berecise with respect to the assertipif «(—p) = —a(p),
implying that we cannot haveastate and d—p)-state both being abstracted into the
same abstract state. For a temporal formuila positive normal form (where negation is

applied only to state assertions)’ is the formula obtained by replacing every maximal
state sub-formulain ¢ by a(p).

In all cases discussed in this paper, we assume that thedesediabstractions are
precise with respect to the assertions appearing withirsylséeem definition and the
property specification, and all temporal specificationsropgrties are given in positive
normal form. Hence, we can restrict to the over-approxiomegemantics.

The abstraction oD by « is the system

DY = (Va,a(0),0%(p), | J a()), | (ep).a(0))

JeJg (p,q)eC

An abstractiony is calledidle preservindf whenevers, # s;,, wheres;, is ap-successor
of s,, thena(s,) # a(sp). Thus, the abstractiom does not generate new idling steps.
In this paper we restrict our attention to idle-preservibgteactions. This is justified by
the fact that all of ourDS's are derived from programs, and all considered abstnastio
preserve the values of the program counters.

The soundness of predicate abstraction is derived from [8]:

Theorem 1. For a systenD, abstractione, and a temporal formula:
DRyt = Dk

Thus, if an abstract system satisfies an abstract propleety,the concrete system sat-
isfies the concrete property.

2.3 Ranking Abstraction

State abstraction often does not suffice to verify progresgarties. We consideank-
ing abstraction a method of augmenting the concrete program in a non-@nstg
manner, in order to measure progress of program transjtiaitts respect to a ranking
function. Once a program is augmented, a conventional atsgtraction can be used
to preserve the ability to monitor progress in the abstrgstesn. This method was
introduced in [8].

Ranking abstraction allows us to get away with finding a s@tosisible ingredients
for ranking functions, without having to design a comprediemsingle ranking function
which is usually required in deductive verification of ten@iion. This is accomplished
by means of augmenting the system with several non-constgamonitors, and pred-
icates abstracting the resulting system.

Fix some systenD: (V, 0, p, 7,C) and some well-founded domaiiV, >-), and
let o be some ranking function over the domain. detbe a fresh variable (not ifr).
Theaugmentation oD by ¢, written D+, is the system

D+o: (Vu{ded,0,p A ps,J,CU{(dec> 0,dec< 0)})
where the conjungi; is defined by:

1 6=¢
ps: dec’ = 0 6=1¢
—1 otherwise

Thus, D+ behaves exactly lik® and, in addition, keeps track of whethedecreases,
remains the same, or otherwise. The new compassion regnteraptures the restric-
tion thatd cannot decrease infinitely often without increasing indilyitoften, which
follows immediately from the well-foundedness Wf. For the pervasive case that
ranges over the naturals, we can expygsasdec’ = sign(J — d').

Since augmentation does not constrain the behavi@,any property ovel’ is
valid overD iff it is valid over D+44. In order to verify a liveness property @, the
augmentatiorD+6 can be predicate abstracted and checked for satisfiabilttyecab-
stracted property. Note that we do not require thdécreases on every (non-idle) step.
As demonstrated below, it suffices to haveapture some of the behavioral aspects of
a “comprehensive” ranking function.

Example 1 (Nested Loopsfonsider program BESTED-LoopPsin Fig. 1(a). In this
program, the statements “= 7" and “y := ?,”in lines 0 and 1 respectively, denote
random assignments of arbitrary positive integers to et andy. Aninitial attempt

to prove termination of this program is to define the rankingctiond, = y. The
augmentatiorD+9, is shown in Fig. 1(b). Note that statements that in the oalin
program assign values g are now replaced with a simultaneous assignmebbth

y and the augmentation varialdeg,. In the case of control statements suclwéadle,
the augmentation is not displayed explicitly. Howeversiimplicitly assumed that the
assignmentleg, := 0 is executed in parallel with any of these statements. Naie th
the assignments tdeg, have been optimized in some of the statements, replacing the
expressionign (y — ') by its values which are known to Heand0 at the execution of
statements 4 and 5, respectively.

x,y :natural init z =0,y =0
z,y : natural init z =0,y =0 deg, : {—1,0,1}
[0:z:= 7 i compassion(deg, > 0, deg, < 0)
1: whilez > 0do [0: (z,deg) := (7,0) i
2:y:=7 1. while x > 0 do
3: whiley > 0do 2: (y,deg) := (7, sign(y —y’'))
[4:y:=y—1] 3: whiley > 0do
5:xi=x—1 [4: (y,deg) :=(y—1,1)]
1 6:] 5: (z,deg) := (z —1,0)
6 :

(a) Program MSTED-LOOPS
(b) Program AJGMENTED-NESTED-LOOPS

Fig. 1. Program NeSTED-LoOPsSand its augmented version
While this augmentation is not sufficient to prove progranmieation, it can be
used to prove termination of the inner loop (lines 3, 4).

Consider the abstraction:

a: IHI=m, X=(x>0),Y=(y>0), Dec, = deg,

wherel] is the abstract program counter. The resulting abstragranois presented in
Fig. 2. Note thaty introduces nondeterministic assignments to b¥tndY” (lines 4
and 5). Itis now possible to verify, e.g. by model-checkihg, termination of the inner
loop.

Deductive verification of termination of the inner loop ctieg of statements 3
and 4, requires the use of the adequate ranking fun@ion (m = 3) (where the
boolean expressiofir = 3) evaluates to 1 on states in whiehequals3) or the
function (y, = = 3) ranging over lexicographic pairs. However, supplying theded
checker with the “ingredient rank; suffices for the application of the ranking abstrac-
tion method. Obviously, to obtain the termination of the pbste program, we'd need
to also consider the variable N

X,V :{0,1} inityY =0,X=0

Dec, : {—1,0,1}

compassion(Dec, > 0, Dec, < 0)
[0:(X,Dec) := (1,0)

1: while X do
2: (Y7 DeCy) = (17 {71707 1})
3: whileY do

[4:(Y,Degy) := ({0,1},1)]
5:(X,Deg) := ({0,1},0)
6:

Fig. 2. Program ABSTRACTAUGMENTED-NESTED-LOOPS

In a dual way to the computation of an abstraction of a coecassertion, we can
concretize an abstract assertion. {die an abstract assertion. Téencretization ofp,
denoted byx—!(®), is defined as

a N (@) VA (Va=EWV) A D(Va))

For example, consider the abstract assertbon IT = 3A X = 1AY = 0. Its
concretization is given by =1(®) : 1 =3 A2 > 0Ay = 0.

As shown in Example 1, it is sometimes necessary to includeraky’s in order
to obtain a termination proof, by considering simultaneaugmentations by a set of
ranking functions. Aranking coreis a set of ranking functions. L& be the ranking
core{dy,...,dx}. The augmentatioP+R is the system

D+R : (D461 H{02, ..., 0k}

Just like the case of predicate abstraction, we lose noffaxrcept efficiency) by
adding potentially redundant rankings. The main advantagye over direct use of
ranking functions within deductive verification is that anay contribute as many ele-
mentary ranking functions as one wishes. It is then left tocal@h-checker to sort out
their interaction and relevance. To illustrate this, cdasi full deductive proof of ter-
mination of program MSTED-LooPs Due to the unbounded nondeterminism of the

random assignments, a deductive termination proof is sacésbased on a ranking
function over lexicographic tuples, an example of whichis following:

(r=0),4z+3(r =1)+2(mr =2) + (7 € {3,4}),2y + (7 = 3))

With ranking abstraction, however, one need only providelell-founded ranking
coreR = {z,y}.

To abbreviate the notation, we will wri** as shorthand fafD+R)“. Note that,
when we perform ranking abstraction w.r.t a c®e ¢4, . .., dx, we use an abstraction
mapping that extends by the additional definitions:

Dec, =deg, ..., Deg, = deg..

Since augmentation induced by the ranking cRBredoes not constrain the behavior of
the originalFDS D, it follows that every : sg, s1, . . ., a computation oD, gives rise to

o : So,S1,--.,acomputation oD+R agreeing withr on all variable except for thBec
variables associated wifR. The computatio@ can be abstracted int* : Sy, S1,. ..,

a computation o+, such thatS; = a(3;), for all i > 0. Thus, the set of compu-
tations of D is, modulo augmentation and abstraction, a subset of thguetations
of DR, By arguments similar to the ones used in the proof of Thedteme can
establish the soundness of the ranking abstraction mef&pd (

Theorem 2. For a systenD, abstractiona, ranking coreR, and a temporal formula
P

DR = g = Dk
Thus, if a ranking-abstracted system satisfies an abstrapegy, then the concrete
system satisfies the concrete property.

Ranking abstraction is more powerful than predicate abtra, because we can also
establish for it the following claim of completeness ([8]):

Theorem 3. The method of ranking abstraction is complete. Namely,feryesystem
D and temporal formula), such thatD = v, there exist an abstraction and ranking
coreR such thatD® |= ¢,

3 Abstraction Refinement

In this section we will show that, similarly to predicate &hstion, ranking abstraction
also possesses a counterexample guided refinement présssse that, wishing to
check thatD = ¢, we model checke®”® = * and obtained an abstract coun-
terexamples®. There are two possibilities. Either there exists a comccemputation
o, such thatr® is the abstraction of, or o cannot be concretized. In the first case,
is a true counterexample, implying thatis not valid overD. In the second case, this
means that our abstraction is too coarse and needs to bedrefine

The process of counterexample guided refinement has toglissh between these
two cases, and in the case of a spurious counterexampldlite te failure to con-
cretize in order to refine the two abstraction componentandR. Note that the sit-
uation here is more complex than simple predicate abstradbiecause the refinement
may call for a refinement af or of R, or of both.

3.1 Abstract Runs and Their Concretizations

LetD: (V,0,p,J,C) be asysten be a predicate base be the abstraction mapping
JV.Va = P(V), anda~! beca’s inverse, i.e., the mappingVs.V4 = P(V), which
we fix for the duration of this section. We refer to runs®fand D~ asconcrete
andabstractruns, respectively. In this section, we assume that, urbgskcitly stated
otherwise, all runs are finite. For argn so, . . ., s.,, we denote by¢| = m thelength
of &.

Consider an abstract rus: Sy, ..., S,,. A concrete rurg : so, ..., s, is called a
concretization of= if a(s;) = S;, for alli € [0..m]. Rather then considering a single
state concretization of the abstract ranwe may wish to derive a characterization of
all possible concretizations &. This may be captured by a sequengg. . ., ¢, of
assertions ovelr. We thus define theymbolic concretization ¢t (with respect taD)

to be the sequencg =) : ¢y, . .., m Of concrete assertions inductively as follows:
. e A Oé_l(S()) 1=0
o (pic1op) A a1(S)) i € [1..m)

whereyp ¢ p is the assertion characterizing the states thapameccessors of @-state.
We sometimes refer tp; as~(=)[i], or simply~[i] if = is understood from the
context.

Example 2.Recall program ESTED-LoopPsof Fig. 1(a), and consider the abstraction
and ranking core of Example 1, that is:

a: X =(x>0),Y =(y>0), Decy = dec,
R: {61 =y}

The abstract system is shown in Fig. 2. Consider an abstacEr S, ..., Sg of the
system, where

So : (I1:0, X:0, Y:0, Deg,:0) Syt (II:1, X:1, Y:0, Dec,:0)
So : (IT:2, X:1, Y:0, Deg,:0) Ss: (I1:3, X:1, Y:1, Deg,: — 1)
Syt (IT:4, X:1, Y:1, Deg,:0) Sy : (I1:3, X:1, Y:0, Dec,:1)
Se : (IT:5, X:1, Y:0, Deg,:0)

The symbolic concretization & is ¢y, . . . pg Where:

©o: WZOAJC:OAy:OAdeQ/:O
pr: m=1ANx>0ANy=0Adeg =0
po: T=2ANx>0ANy=0Adeg =0
p3: m=3ANx>0ANy>0 A deg =-1
pg: T=4Nx>0ANy>0Adeg =0
ps: T=5ANx>0ANy=0Adeg =1
pe: T=6ANx>0ANy=0Adeg =0

The following claim establishes the relation between sylinleoncretizations of
abstract runs and concrete runs:

Claim 1 (Feasibility).For every abstract rug, m € [0..|Z]], and concrete state s
satisfiesy[m] iff there exists a concrete run, ..., s,, = s that is a concretization of
Z[0..m)].

Proof. Assume thats = ~[m]. Proceeding fromn down to 0, we will construct a
sequence of states= s,,, $m-1,- .-, So, Such that, for each = 0,...,m, =[] =
a(s;) ands; = (i, so is initial, and, for eachi € [0..m — 1], s,41 IS ap-successor of
Si-

For everyi € [1..m] assume that we already constructedsuch thats; = ~[i].
The fact thats; satisfiesy[i] = (y[i — 1] op) A a1 (Z]i]) implies that=[i] = a(s;)
and that there exists a state ; which is ap-predecessor of; and satisfies/|[i — 1].

Fori = 0, the fact thaty |= v[0] = a=1(Sy) A © implies thats, is an initial state
such thatSy = a(sg).

Thus, the state sequenge sy, . .., s, = s is a concretization aE[0..m].

In the other direction the claim is straightforward. a

A corollary of Claim 1 is that an abstract rdy1..m| can be concretized iff (=) [m]
is satisfiable.

The assertiony(=)[¢] characterizes all the states that can appear at positib@a
concretization of the abstract ruf. We will generalize this notion by defining a bi-
assertions; ;(=), for0 < ¢ < j < |Z], such that(s,, sp) = f;,; iff there exists
§ : s0,-.-,8=), such thats; = s, ands; = s;. This bi-assertion will be used when
attempting to concretize “abstract cycles” that are olet@diim counterexamples. The
generic presentation of the bi-assertiorsis (Vo, V) (rather thang; ;(V, V")), where
Vy is a fresh copy of the system variables, and records thewalugriables at statg .

Let= = Sy, ..., S, be an abstract run. The bi-assertjen; (=) is defined induc-
tively, for all 7,7 < j7 < m by:
B = V=V A a}(S) j=1
“ (Bij—1op) N al(S;) >

In this definition,V = 1} is an abbreviation fop\ ., (z =), which states equal-
ity between allV -variables and their correspondifig-counterparts. The expression
Bi.j—1 o p stands for

IV (Bij—1(Vo, V) A p(V,V))
Note in particular that this expression preserves the gahighe Vj-variables from

Bij—1t0 B ;.

Example 3.Continuing Example 2, we computg 1, ..., 81,6 as follows:
Bii:init ANm=mg AN x=x0 N y=yo A deq,:de(‘;
61’23init ANT=2A r=x9 N Y ="Yo A de(‘y:O
61’33init Arm=3Nzxz=x29 Ny>0A de(\yifl
61’43init ANrm=4Nzx=29 N y>0A deq,:()
Bis:init ANm=3 ANz=x9 N y=0 A deg =1
Bie:init ANm=5ANzx=x90 AN y=0 A deg =0

whereinit : mo =1 A mg > 0 Ayo = 0 A deg = 0. d

3.2 Counterexample Guided Abstraction Refinement

The verification (or refutation) of a progress propettyover anFbps begins with a
(possibly empty) user-provided initial rankirigy and a predicate abstraction Fol-
lowing [13], initially P is chosen to be the set of atomic state formulas occurring in
p, O, J, C and the concrete formul@, excluding formulas that refer to control and
primed variables.

Let* be the formulax(y). We start by model checking the validity of)) over
DR 1f 4> is valid then we can conclude thét=). Otherwise, a counterexample is
found in the form of a computation @ that does not satisfy~. If such a compu-
tation exists then a standard model checker will return atayexample that is finitely
represented as a “lasso” — an abstract run of the feynEY where=; : Sp, ..., Sk—1
is a finite abstract run, and, : S, ..., S,,_1 is a finite sequence of consecutive ab-
stract states. As in the case of predicate abstraction neéine we first attempt to con-
cretize the counterexampte: Sy, ..., Sk, ..., Sm-1, 5m = Sk. Namely, we compute
Y(EZ) : o, ..., pm andfy ,»(Z). The following may occur:

Case 1. The counterexamgtecannot be concretized.

This case is identified by observing that, = v[m] is unsatisfiable. This is a typical
scenario in state abstraction refinement — the abstraditooicoarse, and should be
refined so as to eliminate the spurious counterexample. @magply any of the known
predicate refinement techniques, e.qg., [5, 3, 4]. For dibfdhg cases, we may assume
thaty,, is satisfiable.

Case 2. The concretization of the counterexample contagysl@ compatible with
=5 — the property is not valid.

This case is identified by observing that(V) A 5., (V, V) is satisfiable. This implies
that there exists a statesuch that = ¢, and(s, s) = 8% m, and therefore, there exists
a state concretization & of the form¢ : sq, ..., sk, ..., Sm = sk = s. It follows that
the infinite concrete rumo, ..., sg_1(sk, ..., Sm—1)* IS @ computation oD which
violatesy). We conclude that is notD-valid.

Case 3. The infinite abstract rugy ; =% cannot be concretized — the abstract coun-
terexample is spurious; perform ranking refinement.

This case is identified by observing that the bi-assertipp, is well-founded over
vr. Obviously, if =1; =% could be concretized by the infinite concrete mgnsy, . . .,
then we would have had an infinite state sequence, naspedy, 1., sk+2r, - - -, Where

L = m — k, such thats;, = ¢ and gy, ,, holds between any two consecutive states in
this sequence. This would have contradicted the factthat is well-founded overy,.

We conclude that the counterexample is spurious.

This case is a typical scenario in ranking abstraction refeam — the ranking is too
coarse, and should be refined to eliminate the spurious emxample. The ranking
core is refined by adding to it a well-founded ranking thawesothe well-foundedness
of ﬁk,'rn OVEryy.

A number of methods have been proposed to synthesize sucticius from well-
founded relations, among them in [12, 7]. In Subsection 33pwesent an additional
heuristic for the domain of unbounded linked lists.

Case 4. The infinite abstract ruf;; =% can be concretized — the property is not
valid.
This case can be identified by observing that the bi-assesiig, is not well-founded
overy;y,. From the fact that, ,,, is not well-founded, we can infer the existence of an
infinite sequencey, si+1, Skt+2L, - - - - This sequence can be enriched by filling in the
missing states to form a concretization®f; =4 that is a computation dP violating
the propertyy.

In this case we can declare the propepstio be invalid over the concrete program.

The process is described in Fig. 3.

CEGAR(D, 9, P, R)
1.let Dy = D™,
2. letya =%
3.if Da = 14 then
4. return “success”
else
[5.letC =S0---Sk—1(Sk---Sm—1)“ be acomputation db4 such thatlC' = =) 4;
6.let= =So,...,5, .., Sm-1,5m = Sk;
7.Computey(Z) : o, - .., om, andSBi m(E);
8.if (32 : 0 < i < m: —sat(yp;)) then ——Casel
[9.let P’ be a predicate refinement Bfinduced by the failure to concretizg;
10. return CEGAR(D, ¥, P', R);

11. else ifsat (o (V) A Br.m(V, V)) then — —Case 2
[12.1et € : so,..., sk, ...,snm = si be the concrete run concretizidty
13. Return “Property not valid. Counterexamplg¢”;

14. else if(Bk,m is well-founded overp;) then — —Case 3

[15. let § be a well-founded ranking proving the well-foundednesg;gf, overox;

| 16. return CEGAR(D, ¢, P, R U {0});

17. else return“Property not valid. Counterexample;, sx+r, Sk+2L,--.";

— —Case 4

Fig. 3. CounterExample Guided Abstraction Refinement algorithm

Lines 1 and 2 abstract the system and the property resplgatiith respect to the
ranking coreR and the predicate bage Line 3 (model-)checks whether the abstract
property holds over the abstract program. If so, the alfgoriteturns “success” (line
4). Else, a finitely-representable counterexample is prediby a model checker) in
line 5, from which we construct the “lass& : Sp,...,Sm_1,5» = Sk at line 6.
Line 7 computes the symbolic concretizatipfE) and the bi-assertiofi .,,(=). Line

8 checks whether the symbolic concretization is satisfidbieis not satisfiable (Case
1), then predicate refinement is applied (line 9) and therdhyu is re-started with the
augmented predicate base (line 10).

If the symbolic concretization is satisfiable, then we chadie 11 whethety;, (V')A
Br.m(V, V) is satisfiable. If it is satisfiable (Case 2) then we can cose concrete
lasso€ : sg,...,8k,---,Sm_1,8m = Sk concretizing= that is therefore a concrete
counterexample.

If the above two tests were answered negatively, we checdkénll4 whether the
bi-assertion;, ,,, (=) is well-founded overy. If it is (Case 3) then we know that the
abstract counterexample is spurious. In line 15, we attéonganstruct a well-founded
rankingd which proves the well-foundedness over of g . (=Z). If we succeed to
identify such & then it is added to the ranking core as a refinement, and weraitst
the algorithm with the extended ranking core. This step éslélast constructive in the
algorithm, and the best that can be offered is a set of hagigir finding a well-
founded ranking that can prove the well-foundedness of agbi-assertion.

Finally, if all preceding tests fail, we reach line 17 (Cageld this casefy ,, is
known not to be well-founded. This implies that there exastencrete counter example,
but not necessarily one that can be presented in finite t@rhesbest that we can do is
present to the user a prefix of a potentially infinite countaneple, as explained in the
preceding discussion of Case 4.

The algorithm may not terminate (assuming even an extrepelyerful model
checker). For one, predicate refinement is not guaranteedrtonate. Similarly, rank-
ing refinement may not terminate. Furthermore the test at lid, which decides
whether we are in Case 3 or Case 4, is, in general, undecidable

Example 4 (Termination dNESTED-LOOPS. Recall program MSTED-LOOPSpre-
sented in Fig. 1(a) and the termination property expresséd & 0) — (m = 4).
Following Example 2, we begin with the initial abstractiamdaanking used in Exam-
ple 1. The first iteration of EGAR results in an abstract counterexample consisting of
the following single-state lasso prefff and the repeating peridds, . . ., Ss) where

So, ..., S¢ are as in Example 2. The abstract lasso derived from thistecaxample is
=:50,51,...,56,57 = S1. We follow the computation of Example 3 to obtain the
bi-assertiong} 1, ..., 316, and also compute

Gizzint A\m=1Aax=20—1Ax>0Ay=0Adeg=0

It follows that 8, 7(Vp, V') implieszy > = > 0, which is well-founded. A well-
founded ranking function proving well-foundednessi}; is 6o = x over the domain
(N, >). Thus we refineR and continue with the same predicate base and the refined
ranking coreR’: {01, 62}. At this point, the abstraction df+R’ by « is sufficient to
verify the termination property of the program. N

3.3 Synthesizing Elementary Ranking Functions

A number of methods have been suggested for synthesis ohghlnctions that es-
tablish (prove) well-foundedness of a well-founded bieaisn. In our examples we

have used the simple heuristic of searching for simple ficeastraints implied by the
transition relation of a control-flow loop ([12] provides @re general method for do-
ing this. Indeed, their method is complete). For examplesmgia set of variableg and
a bi-assertio, we check validity of implications such as— v > v/, for eachv € V.
As demonstrated, this has been sufficient in dealing witiNthgeTED-L OOPSprogram.
A more general approach based on linear algebra may loolafdimg functions that
are linear combinations of system variables.

Such an extraction is useful in two contexts in which bi-a#ses may arise. The
first has been demonstrated in the ranking refinement protkesecond is related to
the determination of the ranking components that shoulddxzed in the initial ranking
core. This can be based on a heuristic that analyzes theugddops in the program.
Assume a control loop identified by a sequence of locations/y, ..., £, = ¢1, such
that, for each = 1,...,n—1, ¢;;1 can be reached frotf) in a single step. For a loop
L, we can define a sequence of bi-assertions as follows:

g _{=V Am=t j=i
Bl (ﬁi7j_1 <>p) A\ 7T:€j Jj >

It only remains to check whether the bi-assertion= (3 ,, is well-founded, and iden-
tify well-founded ranking functions that prove the welldfiecdedness of.. Such an
identification is, in general, undecidable, but we can ugeoéthe heuristics mentioned
above, such as linear analysis.

We have used a variant of this heuristic to deal with progrémasmanipulate un-
bounded pointer structures. One such programus® £ SORT, shown in Fig. 4. This
is a parameterized system with denoting the maximal size of a singly-linked pointer
structure (otheap. The heap itself is represented by the arfé@yt. In addition there
are a number gbointervariables, such asandy, that are also parameterized By In
the program, as well as in the ranking functions we will ube, assertionVat* (u, v)
denotes the second-order formula

In, {u =g, u1,...,up =0v}.Vi € [1...n].u; = Nat[u;_1]

That is, Nzt*(u, v) is satisfied when there is a sequence of graph nodes statting a
and ending at, that are consecutive with respectat.

In order to synthesize a ranking function fouBsLE SORT and similar programs,
our strategy is to seek constraints on graph reachabilitg. €dich form of constraint is

AL — (Nat™(v,0") A v #0)

wheregsy, is the bi-assertion associated with the [doandv is a pointer variable. Under
the assumption that a singly-linked list emanating frois acyclic, such a constraint
suggests the ranking functidn | Nzt*(v,4)} over the domairf2", o). Indeed, while
proving termination of BBBLE SORT, one of the functions discovered automatically
by refinement wa$: | Nzt*(yn,)}, a function that serves to prove termination of the
nested loop L, = lines2...9).

x,y,yn, prev, last: [0..H]
Nzt :array [0..H] of [0..H] where Nat* (z, nil)
D :array [0..H| of bool
[0: (prev,y,yn,last) := (nil, z, Nzt[z], nil);
1: whilelast# Nzt[x] do
2 : while yn # lastdo
[3:if (Dly] > D[yn]) then
4+ (Natly), Nat[yn]) := (Natlyn], y);
5 :if (prev = nil) then
6: x:=yn
else
7: Nazt[preV := yn;
8 ¢ (prev,yn) := (yn, Nat[y))
else
L L 9: (prev,y,yn) := (y,yn, Nxtly])
10 : (prev,y, yn,last) := (nil, x, Nat[z], y);
11:

Fig. 4. Program BJBBLE SORT

4 Extracting A Deductive Proof

There are situations in which verification alone is not sidfit, and an actual proof is
required. This is the case, for example, when the verifioagifort is embedded in a
larger proof-generating effort, either because we comsidly a component of the sys-
tem, or are verifying a property that is only a part of the plécification. When dealing
with safety properties, it is straightforward to generat®acrete logical formula that
represents an inductive invariant, based on the set of abéehbstract states, to be used
as the basis of a deductive proof. The analogous construtteicase of a response-
property proof consist of an assertion that over-approtésithe set of pending states,
and a well-founded, always-decreasing ranking function.

In this section we present algorithms that extract the reszgsuxiliary constructs
from a successful application of the ranking abstractiothioe. The algorithm is based
on the LTL model-checking algorithm of [9]. For simplicitye consider here the case
of anFbs derived from a sequential program and, therefore, has riegusr compas-
sion requirements. We will consider the more general cas®ifurrent programs in
the next section.

4.1 Extracting A Deductive Proof of Invariance Properties

For the sake of completeness and emphasizing the analoggdipredicate abstrac-
tion and ranking abstraction, we present here the proceks ektraction of a deductive
proof of an invariance property from a successful applicatif predicate abstraction.
In Fig. 5, we present the deductive rubkev for establishing the validity of the
invariance property] p. The application of the rule calls for the identification of a

Ruleinv
For assertiong, ¢,
11.0 — ¢
12.0Ap— ¢
13. ¢ —p
Up

Fig. 5. Deductive rulenv

auxiliary assertionp that, together wittp, satisfies premises 11 — 13. We refer to an
assertion that satisfies premises 11 and Ithdsctive

Let D be anrbDs for which we wish to verify the invariance property : [] p.
Assume that we employed the predicate abstractiont/y = P (V') and verified, by
model checking, thab“ | [] p“. By soundness of the predicate abstraction method
we can conclude thd? = [p. It only remains to extract a deductive proof of this fact.

In Fig. 6, we present algorithm»&RACT-INVARIANCE, which extracts an auxil-
iary assertionp from the abstracted systefr*. The algorithm computes first i an

Algorithm EXTRACT-INVARIANCE (D, «)
1. Compute D%;
2. letd :=0%¢ (p*);
3.letp :=a ! (P);

Fig. 6. An algorithm for extracting an inductive assertion

abstract assertion that characterizes all abstract steieare reachable iR<. It then
concretize® into ¢ by applying the concretization mapping .
The correctness of the algorithm is stated by the followilagt:

Claim 2 (Extraction of inductive assertion).
For anyD andc«, the assertiorp extracted by Algorithm ETRACT-INVARIANCE iS
inductive overD. If D = [] p* then alsop — p is valid.

It follows that if we apply the extraction algorithm to a syt after a successful ap-
plication of the predicate abstraction method, then theaeied assertiop satisfies all
the premises of rulevv.

Example 5 (Extracting a deductive proof of invariance f@STED-LOOPS.

Consider program EsTED-Loopspresented in Fig. 1(a). For this program, we wish
to prove the invariance of the assertipn 7 = 6 — —(y > 0), claiming that when
execution reaches locatid@h theny = 0. Applying the predicate abstractienintro-
duced in Example 1, we obtain the abstract program preséantéd. 2 when we omit
all references to variablbec,. The property] p is abstracted by into the abstract
property(1(IT =6 — Y # 1).

Computing the set of reachable states in this abstract anogre obtain a set that
is captured by the following abstract assertion:

¢: (X—-IHOe[l.h) N (IT€25]—=X) A
Y —-Ie€[3.4) AN (II=4-Y)

Concretizing byn—!, we obtain the following candidate assertion or

¢: (x>0—mell.5)])
(y>0—me[3.4])

AN (mef2.5]—=x>0) A

A (m=4—y>0)

It is not difficult to verify independently thap is indeed inductive, and that implies
T=6— -(y>0). o

4.2 Deductive Rules for Response Properties

Moving to response properties, we consider a property ofdima p — < ¢. In this
section we restrict our attention #ps's that are derived from sequential programs.
This implies that thebs has no fairness requirements, and that idling steps ameedio
only from terminal states. A basic proof rule\Bic-REsPONSEfor the deductive veri-
fication of such a property is presented in Fig. 7

Rule Basic-RESPONSE
For a well-founded domaipt : (W,),
assertion, q, ¢,
and ranking functiomA : X — A
Bl »p = qVo
B2.oAp = ¢ Vo AA=A

p = g

Fig. 7. Deductive rule BsIC-RESPONSE

The rule calls for the identification of an auxiliary assemtp and a ranking functioz\
over the well-founded domaid. Assertiony is intended to be an over-approximation
of the set of pending states w.r.t assertipnand q. It is possible to view this rule
as stating that the property : p = <> ¢ is valid overD whenever the transition
relationp, when restricted to the pending states (or their over-appration), forms

a well-founded bi-assertion. The well-founded rankifags a ranking that proves the
well-foundedness of the bi-assertion derived fram

In practice, it is often useful to partitiop into several disjoint assertions that cover
different cases. This leads to rulEe@UENTIAL-RESPONSE which is presented in
Fig. 8.

The rule uses assertiogs, . . . , ¢, Wherepy = q. It is not difficult to see that if we
can find a set of constructs (assertions and ranking furgtisettisfying the premises

Rule SEQUENTIAL-RESPONSE
For a well-founded domais : (W,),
assertion®, ¢ = ©o, @1, - - -, Pm,
and ranking functiongy, , 4, ,..., A, where eacij); : ¥ — A
RL »p = V;n:o Pj
Foreach =1,...,m,
R2.pinp = V/,(p; N A= A))

P = g

Fig. 8. Deductive rule 8QUENTIAL-RESPONSE

of rule SEQUENTIAL-RESPONSE we can immediately construct the appropriate con-
structs necessary for ruleaBic-RESPONSE This can be done by taking

A : case

(pliAl

(fo'rn : A‘H’L
otherwise: 0
end-case

It is customary to refer to assertions, . . . , ¢, as thehelpful assertions

In the rest of the section we will show how the constructs rdddr rule SQUENTIAL-
RESPONSE i.e. the ranksA, .. ., A,, and helpful assertiongy, . . ., ©.,, can be ex-
tracted from a successful application of the ranking abstra method.

4.3 Extracting the Ranking Functions

Let D, R, anda be a concrete system, a ranking core, and an abstractionimgapp
respectively. Assume that : p =— <> ¢ is the response property we wish to verify
overD. Let D™ be the abstract system amé be the abstracted property.

The extraction process proceeds in two steps, where in thtestiep we extract
the ranking function® = Aq, 44, ..., 4,, and, in the second step, we construct the
assertiong = g, ¢1, - - - , pm. The well-founded domail will be constructed incre-
mentally together with the construction of thg’s.

We start by constructing a transition gragh: (N, E), whose nodes are given by
N = pendU{g}, wherepend is the set of all pending states, apib a speciafjoalnode
representing alj“-states that are reachable from a pending state in one sepllfhat
the pending states are all the states that are reachablg*biree path from a reachable
p“-state. The edges consist of all transitions connectingpameling state to another.
We also include an edge connecting pend to g, if there exists a transition connecting
staten to any non-pending state. For simplicity, we omit all edgasecting any node
to itself, because they cannot contribute to the ranking Wilerefer to the nodes of
the graph asV = {g,51,...,Sn}, whereg is the goal node and, ..., S,, are the
abstract pending states. We refet@s thepending graplof systemD”™,

The ranking function will be represented as a maplagk: N — TUPLES where
TuPLESIs the type of lexicographic tuples whose elements are reitatiral numbers

or ranking functions present in the ranking c@®eThe rankingRankis initialized as
RanKn] = L for eachn € N, where_L is the empty tuple. Then the recursive proce-
dure RANK-GRAPH(G), shown in Fig. 9, is invoked. In each iteration, the algarith
updates the mappingankby concatenating additional components (natural numbers
or elements of the ranking core) to the right of tuples.

Algorithm RANK -GRAPH(G)

Input: a graphG = (N, E) representing the pending states for the abstract system.
Output:Rank an arrayN — TUPLES

Initially: For everyn € N, Rankn) = L.

Rank@G):

1. Decomposé&- into a sorted list of MSCCs (maximal strongly connected congmts)
G = (b, ...,Ck, where sortedness means that j whenever there is an edge from a
C;-node into aC';-node;

2. For every node. € C;, append to Rankn);

3. Perform the following for each non-singleton MSCCn the decomposition:

(a) If for some compassion requireméiitec; > 0, Dec; < 0), C' has some nodes wi
Dec; > 0, but no nodes witlbec; < 0, then append; to Rankn) of every node
n € C if no suchj exists, report “failure” and halt;

(b) LetD be the subgraph obtained by removing every edde i@ading into éDec; > 0
node;

(c) Call RankD);

>

Fig. 9. Procedure RNK-GRAPH, which constructs a ranking function from the transitioaggr
of a terminating abstract system.

When Algorithm RANK-GRAPH terminates, it produces a list of ranking func-

tionsAg, A4, ..., A, Whered is the rank associated with nogdusually 0), while
Ay, ..., A, correspond to abstract stat€s . . ., S,,, respectively.
X,Y :{0,1} Nty =0,X=0

Dec,, Dec, : {—1,0,1}
compassion{(Dec, > 0,Dec, < 0), (Dec, > 0,Dec, < 0)}
[0: (X, Deg, Dec,) := (1,0,-1) i

1 : while X do
2: (Y,Deg,, Dec,) := (1,—1,0)
3 : while Y do
[4:(Y,Deg,,Dec,) := ({0,1},1,0)]
5: (X, Deg,, Dec,) := ({0,1},0,1)

6:

Fig. 10. Abstraction of Program NSTED-L oopsaugmented with ranking corey, = }

Example 6 (Extracting a Ranking Function fdESTED-LOOPS. We illustrate the al-
gorithm by extracting the ranking function for the deduetproof of termination of
program NeSTED-LoOOPS given the abstract program shown in Fig. 10. This is a ver-
sion of the augmented abstract version from Fig. 2, afteneefent with the additional
ranking functiond, : z. The response property we wish to verify is that of termina-
tion, which can be specified by the formwda ¢, — > at_¢s, whereat_¢; is an
abbreviation of the assertion= i.

Fig. 11 visualizes iterations in the progress of the alganitas a series of graphs
of the pending states of the abstracts, with nodes representing states and directed
edges representing transitions. The goal state for theepiyppppears as a graph node
that is labeled with'7 = 6 at the bottom of each diagram.

As the algorithm proceeds, each node is associated withla toat denotes the
ranking generated thus far.

Fig. 13 summarizes the process as a table. The ranking preepdbceeds as fol-
lows: Initially the graph of Fig. 11 is decomposed into comenots), . . . , 4, and nodes
are assigned ranks according to the index of their MSCC. iSlgbown in Fig. 11(a)
and in the “Iteration 1” column of Fig. 13. Since nodgS;,Ss} form an MSCC
that violates the compassion requiremébec, > 0,Dec, < 0), the corresponding
ranking functionz is appended to their ranking tuples, as shown in Fig. 11(Hd)ian
the “Iteration 2” column. The ranking procedure is now apgliecursively to the sub-
graph that consists of nod¢s.,Ss} and all edges except for the one entering the
(Dec, > 0) node (Ss). The subgraph, which is no longer strongly connected due to
edge removal, is re-decomposed into MSCCs, and each tuppelated (by concatena-
tion to the right) with the new MSCC indices (shown in Fig. d)1&nd in the “Iteration
3” column). The component consisting of nodgs and S5 is now a non-singleton
MSCC, and it violates the compassion requirem@uc, > 0, Dec, < 0). Therefore,
the corresponding ranking functignis appended to the rankings of nodesand.Ss,
as shown in Fig. 11(d) and in the “Iteration 4” column. Agdhre procedure is applied
recursively to the subgraph with nodg€sandS; that has all edges but the one leading
into the (Dec, > 0) node (5). The rankings of nodeS, and.S; are appended index
values corresponding to a new sorting (Fig. 11(d) and coltitenation 5”). At this
point there are no non-singleton MSCCs left in the graph bagtocedure terminates.
The final ranking, with zeroes padded to the right where gmieite, is shown in Fig. 12
and in the “final ranking” column. Jd

LetA; = (a1,...,a,) andA; = (b, ...,b,) be two ranks. The formula
gt(A;, A;): /(a1 =b) A Aaw_1 = bl 1) A (a = b},)
k=1

formalizes the condition for\; >~ A; in lexicographic order. In general, we cannot
determine whether the formutdi(A;, A,) is true or false, because some of the by,

can be functions such asor y. Let E be a consistent conjunction whose conjuncts
are expressions of the forfi, = ¢;, or 6, > §; for somed, € R. We say that,
dominatesA; underE, written A; -, A;, if the implication E—gt(A;, 4;) is valid.
Thus, E lists some assumptions about the relations betwgeand §;, under which
gt(4;, 4,) can be evaluated.

10,X:0,Y:0,Dec,: 0, Decy :

!}

(1T

1,X:1,Y:0,Dec,: -1, Decy :

1,X:1,Y:0,Dec,: 1, Decy:

I

(1T

2,X:1,Y:0,Decy: 0, Decy:

!

(T

:0,X:0,Y:0,Decy: 0, Decy :

!}

(1T

1,X:1,Y:0,Dec,: -1, Decy :

(T

1,X:1,Y:0,Dec,: 1, Decy:

2.0

I

(1T

2,X:1,Y:0,Decy: 0, Decy:

@}

!

:3,X:1,Y:1,Dec,: 0, Decy :

)

14, X:1,Y:1,Decy: 0, Decy :

:3,X:1,Y:0,Dec,: 0, Decy :

!

:5,X:1,Y:0,Dec,: 0, Decy :

!}

Sp:{I1:1,X:0,Y:0,Decy: 1,Decy: 0)
' }
E g: 11=6

(2,x,0)

[SGZ(H13,X:1,Y11,DECX2 0, Decy : -1} 2 [SGZ(H13,X:1,Y11,DECX2 0, Decy : -1) (Z,x)é
Ss:{I1:3,X:1,Y:1,Decy: 0,Decy: 1)] 2 Ss:{I1:3,X:1,Y:1,Decy: 0,Decy: 1)] (2,x)§
i { f
Sy:{Il:4,X:1,Y:1,Dec,: 0,Decy: 0) 2 Sy:{l:4,X:1,Y:1,Dec,: 0,Decy: 0) (2,x)§
! !
[53 (I1:3,X:1,Y:0,Dec,: 0, Decy :])] 2 [53 (I1:3,X:1,Y:0,Dec,: 0, Decy :])] (Z,x)g
! ! |
Sy {I1:5,X:1,Y:0,Dec,: 0,Decy: 0)] 2 Sy {I1:5,X:1,Y:0,Decy: 0,Decy: 0)] (2,%)
...................................... * *
[S]:(H:I,X:O,Y:O,Decx: 1, Decy : 0)] 1 [S]:(H:I,X:O,Y:O,Decx: 1, Decy : 0)] 1
: ¢ | : ¢ |
:\ g:11=6 E 0 :\ g:11=6 E 0
(a) Iteration 1 (b) Iteration 2
[SIOZ(HIO,XZO,YIO,DECXZ 0, Decy : 0)] 4 [SIOZ(HIO,XZO,YIO,DECXZ 0, Decy : 0)] 4
} }
[Sg:(ﬂzl,X:l,Y:(),Decx:»l,Dec‘y: 0N 3 [Sg:(ﬂzl,X:l,Y:(),Decx:»l,Dec‘y: 0N 3
[Sg:(H:I,X: 1,Y:0,Decy: 1, Decy : Oﬂ (2,%,5) [Sg:(H:I,X: 1,Y:0,Decy: 1, Decy : Oﬂ (2,%,5)
} }
[57: (I1:2,X:1,Y:0,Decy: 0,Decy: O) (2,x,4) [57: (I1:2,X:1,Y:0,Decy: 0,Decy: O) (2,x,4)
} }
[Sﬁ: (I1:3,X:1,Y:1,Dec,: 0,Decy: (2,x,3) [Sﬁ: (I1:3,X:1,Y:1,Dec,: 0,Decy: (2,x,3)

:3,X:1,Y:1,Dec,: 0, Decy :

(2,x,2,y,1)

)

({[1:4,X:1,Y:1,Dec,: 0, Decy : (2,x%,2,y,0)
[S3:(H:3,X: 1,Y:0,Dec,: 0, Decy : 1)] 2,x,1)
[SZ: (I1:5,X:1,Y:0,Decy: 0, Decy : 0)] (2,x,0)
[S,:(ﬂ: 1,X:0,Y:0,Dec,: 1, Decy: 0) 1
r l 1
i g: 11=6 E 0

(c) lteration 3

(d) Iterations 4 and 5

Fig. 11. Progress of procedure ARK-GRAPH over the transition graph of the abstraction of
NESTED-LooPS The goal summary state is denoted by ngddo the right of each nodé
is a tuple denotingRank:] as computed in the relevant iteration of the algorithm.

[Sl(): (I1:0,X:0,Y:0,Decy: 0, Decy : 0)] (4,0,0,0,0)
}
[Sgt (I71:1,X:1,Y:0,Dec,: -1, Dec, : 0)N (3,0,0,0,0)
Sg:{IT:1,X:1,Y:0,Decy: 1, Decy: Oﬂ (2,x,5,0,0)
¥
[57: (I1:2,X:1,Y:0,Decy: 0,Dec,: 0) (2,x4,0,0)
!
[56: (I1:3,X:1,Y:1,Decy: 0,Dec,:-1)|\ (2,x3,0,0)
Ss:{I1:3,X:1,Y:1,Dec,: 0, Decy : 1)] (2,%,2,,1)
!
Sy {I1:4,X:1,Y:1,Dec,: 0,Decy: 0)f (2,x,2,y,0)
¥
[53: (IT:3,X:1,Y:0,Dec,: 0, Decy : I)] (2,x,1,0,0)
!
Sy:{I1:5,X:1,Y:0,Dec,: 0, Decy: 0)] (2,x,0,0,0)
v
[Sl :(I1:1,X:0,Y:0,Dec,: 1, Decy : 0)] (1,0,0,0,0)
H ¢ i
{ g =6 | 00000

Fig. 12. The end result of RNK-GRAPH, as applied to the abstraction oENTED-LoOOPS

Forexample, for\; : (2,2,2,y,0), 4; : (2,z,2,y,1)andE : x = 2’ Ay > ¢/, A;
dominatesd; under, thatis,A; -, A;. Aspecial environmentify = A; . (6x =
d5.), which assumes that all ranking components are equal; HominatesA; under
Ey, we denote this fact byl; > A;. Each abstract statg induces an environment,
denotedE(S), which, for eachy, € R, contains the equality, = ¢;, iff S[Deg,| =
0, and contains the inequality, > ;. iff S[Deg,] = 1. We denote the fact thaf;
dominatesS; under the environmerd(S) by writing S; =, S;.

For example, consider the abstract stafgs: (II:4, X:1, Y:1, Dec,:0, Dec,:0)
andSs : (I1:3, X:1, Y1, Dec,:0, Dec,:1), and their associated ranks : (2, z,2,y,0)
and A5(2, x,2,y, 1). According to the definitiorE(S;) = (z = 2’ Ay > ') and
E(Sy) = (z =2' Ny =y'). Itfollows that bothA, -, As andAs =, A, are true.
Following are some important properties of pending grapiusthaeir final rankings:

P1. There is a rank decreage -, A; across every edggs;, S;), with associated
ranksA;, A;. ’

P2. If A; and A; are the ranks associated with statgsand S;, respectively, then
S; # S;impliesA; # A;.

P3. The relation> between ranks is a total order over the set of final ranks coeapu
by Algorithm RANK -GRAPH.

P4. If A; s, AjandA; > Ay, thenA; s, Ag.

nodglteration Jlteration Jlteration 3 Iteration 4 Iteration 5 |Final Ranking
S1o (4) (4,0,0,0,0)
So (3) (3,0,0,0,0)
Ss (2) (2,z) | (2,2,5) (2,2,5,0,0)
Sr (2) (2,2) | (2,z,4) (2,2,4,0,0)
Se (2) (2,2) | (2,2,3) (2,x,3,0,0)
S5 (2) (2,z) | (2,2,2) |(2,2,2,9)|(2,2,2,y,1)| (2,2,2,y,1)
S (2) (2,2) | (2,2,2) |(2,2,2,9)|(2,2,2,y,0)| (2,2,2,y,0)
Ss (2) (2,2) | (2,z,1) (2,2,1,0,0)
So (2) (2,z) | (2,2,0) (2,2,0,0,0)
St (1) (1,0,0,0,0)
g (0) (0,0,0,0,0)

Fig. 13.Iterative Ranking for MSTED-LOOPS

P5. If statesS; andS; agree on the values of their n@ecvariables, then they have
the same set of successors.

These properties can be proven by induction on the stepgjordhm RANK -GRAPH.
The induction hypothesis can be phrased as an invariantitiaties properties P1 and
P2 restricted to the case that the considefgandS; belong to disjoint MSCC’s. This
invariant is expected to hold whenever we enter step 3 inrizhgo RANK -GRAPH.

4.4 Forming an Abstract Verification Diagram

The ranked pending graph still contains too many detailpahticular, it assigns differ-
ent ranks to two abstract states that agree on allDecwvariables. For example, states
S5 1 (I1:3, X:1, Y:1, Dec,:0, Dec,:1) andSe : (1I:3, X:1, Y:1, Dec,:0, Dec,: — 1)
are assigned different ranks in the ranked graph of Fig.rithé next step, we group
together all abstract states that agree on the values cbiDecvariables.

To eliminate this redundant distinction, we form abstract verification diagram
in the spirit of [10]. This is a directed graph whose nodeslabeled with assertions
Dy, P4, ...,2,, and are also ranked by a well-founded ranking. Such diagaaensften
used to provide a succinct representation of the auxilianstructs needed for a proof
rule such as SBQUENTIAL-RESPONSE
The abstract verification diagram is constructed as follows

1. For each set of states in the ranked pending graph tha¢ agréhe values of their
non-Decvariables we construct a node and label it by an assedtigkssertion®
is a conjunction that specifies the values of all ideevariables.
Thus, the set consisting of state : (17:3, X:1, Y:1, Dec,:0, Dec,:1) and state
Se : (IT:3, X:1, Y:1, Dec,:0, Dec,: — 1) will be represented by a single node
labeled by the assertiah: Il =3AX =1AY =1.
For simplicity, we writeS € @ as synonymous t8' = &.

2. We draw an edge from the node (labeled by the asseipio) noded ;, whenever
there are stateS; € @; andS; € ¢; such thatS; is connected t&; in the ranked
pending graph.

3. Anode? is ranked by a rank\ which is the>-minimum among the ranks associ-
ated with the states that are groupedin
Thus, the rank assigned to node I = 3 A X = 1 AY = 1, which has been
obtained by grouping together statgésandSs with associated rank®, x, 2, y, 1)
and(2,z,3),is(2,z,2,y, 1), which is the smaller of the two ranks.

In Fig. 14(a) we present the abstract verification diagrataiobd for program HSTED-
LooPs
A property supporting the correctness of the construcgon i

P6. If&; is connected t@; in the verification diagram anfl; € ¢;, thenA; >, = A;,
whereA;, A; are the ranks associated wih, ¢;, respectively.

The proof of this property is based on the fact that the rarnaissertiod is defined as
the >-minimum over the ranks of all states includedinand on the “semi-transitivity”
property P4.

4.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary conssueteded by ruleEBQUENTIAL-
RESPONSE we compute the concrete helpful assertigns. .., ¢,,. These are ob-
tained simply by concretization of the abstract assert@gns. ., &,,. That s, for each
i=0,...,m,weletp; = a~1(®P;). Thus, for program ESTED-LOOPS we obtain the
helpful assertions presented in the table of Fig. 14(b).

A property that leads to the overall correctness of the caogbn is given by:

P7. If concrete states, s, satisfys; = ¢; ands; = ¢;, ands; is aD-successor of;,
thensi[Ai] = S; [AJ]

We will sketch the proof of this property. Sinee is a D-successor 0§;, there exist
i, 84, states of the augmented systémR, such that; = ¢;,5; = ¢;, ands; is a
D+R-successor 0f;. Abstracting these states lay we obtain abstract state, S,
such thatS; = &,,5; = @, andS; is a D™ e-successor of5; (and hencep; is
connected tep; in the abstract verification diagram). By property P6, ildols that
Ai -, Aj. The definition of-, - implies thatA; - A; under the assumptions that the
ranking components§;, decrease or increase as determined by the values @ehe
variables in stat&;. However, these values are the same as they afednd therefore,
faithfully represent whethet,, decrease or increase on the transition frgno s;. It
therefore follows thas; [A;] > s;[A;].

We can now summarize the complete algorithm for extractfeheoauxiliary constructs
necessary for a successful application of ruEs8ENTIAL-RESPONSE

1. Construct the pending graph and apply AlgorithiaNR -GRAPH in order to assign
well-founded ranks to the nodes in the graph.

2. Construct an abstract verification diagram by abstrgetimay theDecvariables.

3. Derive the helpful assertions by concretization of theeesons labeling the nodes
in the abstract verification diagrams.

[@g: I1=0 A X=0 A Y=0] (3.0,0,0,0)
v
@, I=1 A X=1 A ¥=0] (2,,4,0,0)
¥
[®g: I1=2 A X=1 A Y=0] (2,%,3,0,0) Inde>4 Vi | A;
v 8mr=0Az=0Ay=0|[(3,0,0,0,0)
®s: 113 A X=1 A Y=1] 2x2,9,1) NNim=1Az>0Ay=0|(2,2,4,0,0)
T 6lr=2Az>0Ay=0[(2z3,0,0)
Oy 114 A X=1 A Y=1] 2,%,2,5,0) Sjt=3Az>0Ay>0((22,2,y,1)
7 4r=4Nz>0Ay>0[(2z2,y,0)
—— r=3Az>0Ay=0[(221,0,0)
[®3:11=3 A X=1 A Y=0] 2.2,1,0,0) or—5A2>0Ay=0|(2,2,0,0,0)
! Ur=1Az=0Ay=0[(1,0,0,0,0)
@y I1=5 A X=1 A Y=0] (2,,0,0,0) Olxr =6 (0,0,0,0,0)
v b) Assertions and Rankings for E¥TED-
[@, :11=1 A X=0 A Y=0] (1,0,0,0,0) LooPs
)
[@o: 116] (0,0,0,0,0)

(a) Abstract Verification Diagram for ISTED-
Looprs

Fig. 14.Final, simplified, result of RNK -GRAPH, with the resulting concrete helpful assertions

5 Extracting Deductive Proofs for Concurrent Programs

In the previous Section we showed how to extract a deductiveff response prop-
erties forrDS's derived from sequential programs and, therefore, coimgino fairness
requirements. In this Section we extend the methaebtgls containing justice require-
ments that can, therefore, represent the majority of coantiprograms.

Recall that in Subsection 2.1 we stated that, since we focsgquential programs,
we can restrict to systems where idle steps are only allowsd ferminal states. Now,
when discussing concurrent systems, we lift this restnictAs a matter of fact, we as-
sume that every state has an idle successor. We, howellaestiict our attention to
the subclass glist discrete system(8ps), which allow an arbitrary number of justice
requirements, but no native compassion requirements. drilérrg abstraction method
introduces its own compassion requirements into the autgdesystem prior to ab-
straction, but we allow no compassion requirements in tiggral systenD.

5.1 A Deductive Rule for Response under Justice

In the case of sequential programs, we could require a waltded ranking that de-
creases orverynon-idle step. This is no longer possible in the case of coratipro-
grams or in the presence of justice requirements. Here, wiéipathe space of pending
steps into regions characterized by assertions. . .¢,, where foreach = 1,...,m,
w; — —J;, so that any step frome;-state that causes to be fulfilled should cause the

ranking to decrease. However, as long as we remain wighiwe may take an arbitrary
number of steps and the rank need not decrease.

In Fig. 15 we present proof ruleEsPoNSEwhich establishes the response property
p = ¢ for aipsD. Premise R1 of the rule requires that angtate is also ap;-
state for somé = 0, ..., m. Premise R2 of the rule requires that any step from-a
state { > 0) either causes the ranking to decrease or preserves theofaly, provided
we stay in thep;-region. By premise R3, justice requiremefptis not satisfied by any
p;-State. It follows that every infinite run that enters thegtieg domain without leaving
it either causes the ranking to decrease infinitely manydjmich is impossible, or
stays forever within somg;-region from a certain point on. However, in the latter case,
justice requirement; will be satisfied only finitely many times. It follows that dua
run cannot be a computation since it violates the justiceirement associated with
J;. We conclude that no computation can stay contained fomgithin the domain of
pending states. Hence any computation that enters thermmeddimain must eventually
exit, and satisfy;.

Rule RESPONSE
For a well-founded domais : (W,),

assertion®, ¢ = ©o, @1, - - -, Pm,
justice requirements Ji, ..., Jm,
and ranking functiongyy , 4, ,..., A,, where eacijy; : ¥ — A
RL »p = v;n:o Pi
Foreach = 1,...,m,

R2.oiNp = (piNAi= A7)V ViLy(gj A A= A7)
R3. ¢ = ~J;

P = g

Fig. 15. Deductive rule RSPONSE

5.2 Applying Ranking Abstraction to Concurrent Programs

The method of ranking abstraction can be applied, with namgbatoJbpss derived
from concurrent programs.

We illustrate this application on progranptDOwN, presented in Fig. 16, for which
we wish to prove the response propeftyy = 0 A 7w = 0) = O(mp = 4),
wherer; andms are the location counters fdr, and P, respectively. To distinguish
between the locations of processes and I, we denote them by;, andm;, re-
spectively. We also use the notatiah_¢; to denoter; = 4, and, similarly, we use
at_m; to denoter, = j. The justice requirements of the programs are given by
J = {—at_{y, -at_{,,-at_{ly, -at_¢3, ~at_mg}. Thus, every statement at location
(i.e.,¢; ormy;) is associated with a justice requirement of the ferat_/¢, guaranteeing
that the statement is eventually executed, and executies dat remain stuck at
Employing the predicate bage: {z > 0,y > 0} and the ranking cor® : {J, : y},
we obtain the abstraction

a: Iy =m, I =7, X =(x>0), Y =(y >0), Deg, = deg,

x,y : naturalinit x =0,y =1
lo : while z = 0 do
[élz y::y+1]
Py | £ :whiley > 0do H Ps {mof$::1:|
[€3: y::yfl]
ly -

Fig. 16.Program W-DowN

Augmenting and abstracting prograne{DowN, we obtain the abstract progranBATRACT
Up-DownN, presented in Fig. 17.

X,Y :naturalinit X =0,Y =1
Dec, : {-1,0,1}
compassion(Dec, > 0, Dec, < 0)
4o - while X = 0do
[el . (Y,Deg,) := (1, —1)]
P l> : whileY = 1do H P {
[63 . (Y,Deg,) = (Y =1, (Y > 0))]
by :

mia :

Fig. 17.Program ABSTRACT-UP-DOWN

The program uses the operatiorwhich is defined by — 1 = max(Y —1,0). The
justice requirements of the abstract program are the sarfar s concrete program
—J = {—-at_{y, ~at_{y, -~at_ls, ~at_¢3, ~at_mg}, except thaat_¢; andat_m; are
now interpreted aél; = i andIl; = j, respectively.

Model checking the abstracted propefty : (II; = OAII; = 0) = > (11 = 4)
over program BSTRACT-UP-DOWN, we find out that it is valid. We conclude that the
concrete program krDOWN terminates.

5.3 Extracting a Deductive Proof

We proceed to outline the algorithm by which we can extraettbcessary ingredients
for a deductive proof by rule BspoNnsefrom a successful application of the rank-
ing abstraction method. As in the sequential case, the @idraprocess proceeds in
three steps. In the first step we construct the pending giaph assign ranks to the
abstract states belonging to this graph. That step alsgresaihelpful justice require-
ment to each abstract state (as required by r&sfFONSH. The second step constructs
an abstract verification diagram which contains an abstdaeersions of the helpful
assertions. In the third and final step we construct the f@eyrhelpful assertions.

Once again, we start by constructing a transition gi@pH N, E), which represents
the set of pending states plus a goal state. In the just vediche construction, it
is important to label the edges by a label that can be viewsreas the transition
that leads from one state to the next, or the justice req@ntwhich the transition
causes to be satisfied. This correspondence results frofat¢héhat every transition
7 in the program can be associated with a justice requirenieihat holds iff r is

disabled. To illustrate this construction, we present ig. Bi8 the labeled transition
graph corresponding to the pending states of progr&sm/RACT-UP-DOWN. As seen
in the diagram, we represent the justice requiremeits ¢; and —at_m; simply by
the locationd; andm;, respectively.

0 S10: {111 :0,11,:0,X:0,Y:1, Decy : 0)]

I

So: (Il :1,11,:0,X:0,Y: 1, Decy : 0) Mo

I

Sg:{I1;:0,11,:0,X:0,Y: 1, Decy : -1) my

Sy 1,11,:1,X:1,Y:1,Decy: 0)

¥4

>

Q
[
[S(,:(HI:O,HZ:I,X:1,Y:1,Dec,,:»1) £o
[

Ss:(11,:0,11,:1,X:1,Y: 1, Decy: 0)

I

Syl :2,11,:1,X:1,Y: 1, Decy: 0)

S3i(Il,:2,1,:1,X:1,Y:1,Decy: 1)] 1,

1 | L
Syl :3,1,:1,X:1,Y: 1, Decy : 0)

v b

[SI:(HI:Z,HZ:I,X: 1,Y:0,Decy: 1)]

T

1
g:1L=4 E

Fig. 18.Pending and goal states for prograrB ¢t RACT-UP-DOWN.

Having constructed the pending transition graplwe proceed to analyze it and
determine the ranks associated with the abstract statessié process in the algorithm
for rank determination is the decomposition of subgraptustimeir MSCC'’s. An MSCC
C'is said to bgust with respect to justice requirementif C' contains a state satisfying
Ji;. ComponenC is defined to bgust if it is just with respect to all justice require-
ments. In Fig. 19, we present the algorithm for computing #mks for a pending graph
produced for abps.

In the table of Fig. 20, we present the progress of algorithan iR JUST-GRAPH
when applied to the pending graph of programsARACT-UP-DoOWN, which is given
in Fig. 18. The last column in the table lists, for each node, justice requirement
identified as helpful for that node. These entries are detenin line 3 of Algorithm
RANK-JUST-GRAPH.

In the first iteration, the MSCC decomposition yields thédwing sorted list:

g, S1, {S2, S3}, Sa, Ss, Se, S7, {Ss, So}, Sio

Algorithm RANK -JUST-GRAPH(G)

Input: a graphG = (N, E) representing the pending states for the abstract system.
Output:Rank an arrayN +— TUPLES

Initially: For everyn € N, Rankn) = L.

Just-Rank():

1. Decomposé&- into a sorted list of MSCC6&' = Cy, ..., Ck;
2. For every node. € C;, append to Rankn);
3. For each unjust MSCC, identify the justice requiremenf; that causes the injustice, and
mark J; as the requirement that is helpful fo.
4. Perform the following for each just MSCC in the decomposition, excluding noge
(a) If for some compassion requireméitec; > 0, Dec; < 0), C' has some nodes with
Dec; > 0, and no nodes witldec; < 0, then append; to Rankn) of every node
n € C; if no suchj exists, report “failure” and halt;
(b) LetD be the subgraph obtained by removing every edde i@ading into éDec; > 0
node;
(c) Call Just-RankD);

Fig. 19. Procedure RNK-JusT-GRAPH, which constructs a ranking function from the transition
graph of a terminating abstrams.

Consequently, we assign to nodgs, .. ., S1g the sequence of ranks:
0,1,2 2 3,4,5 6,7, 7,8

Next, we examine each of the components, excludingVe find that the only just
component is{ Sy, S3}. This is because each of the other components is unjust w.r.t
some justice requirement, as shown by

Componedt S1 | Sy | S5 | Se | S~ |{Sg, Sg}| S1o
Violates |_|aL£2|_‘at,£2|_|at,€()|_‘at,£()|_|at,€1| —at_mg |_‘at,m()

Component{ Sy, S5} is just. Therefore we search for a compassion requirement
that is violated by the component. Indeed, we observe(bat, > 0,Dec, < 0) is
violated because Statg; has a positive value ddec, but there is no state assigning
a negative value t@ec, in this component. We therefore augment the rank$-of
and.S; by the ranking element, : y, remove the edges enteriisj, and invoke the
procedure Just-Rank with a graphwhose nodes argSs, Ss } and which has the single
edge(S; — S»). Decomposing the subgragph, we obtain the decompositiofy, Ss.
Consequently, in the 3rd (and last) iteration, we appenatiess,, S3 the rankd, 1,
respectively.

Note that, once we identify that some components are unjiestio not process
them any further. Note also that, while the sequential wersf the ranking computation
algorithm always terminates with a graph consisting of leitu;n components, the just
version may leave several components intact, sudtbas S }.

In Fig. 21(a), we present a ranked version of the pendinghgiagges labeled with
the helpful justice requirements are drawn in bold type.

Nodd|Iteration Jiteration Jiteration 3Final Ranking|Helpful Justice Req
Sto 8 (8, 0, 0) mo
So 7 (7, 0, 0) mo
Sg 7 (7, O, O) mo
7 6 (6,0,0) 2
Se 5 (5,0,0) %
Ss Z (4,0,0) 7
S4 3 (3,0,0) 2
S 2 (27y) (27y7 1) (27y71) L2
Sa 2 (27y) (27y70) (273/70) 3
S1 1 (1,0,0) Lo
g 0 (0,0,0)

Fig. 20.Progress of Algorithm BNK-JUST-GRAPH

On successful termination of AlgorithmaRk-JusT-GRAPH, we can claim the
following properties:

C1. For every two stateS;, S; which belong to disjoint MSCC's, and such thstis
connected td;, there is a rank decreask >, A;, whereA;, A; are the ranks
associated witth;, S;, respectively.

C2. For every two state$;, S; and their associated ranky, A;, thenA; = A; iff S;
andsS; belong to the same MSCC.

In addition, properties P3—P5 of Section 4 are also true. here

5.4 Forming an Abstract Verification Diagram

In the second step of the extraction process, we form theaasterification diagram
merging together each MSCC of the pending graph into a saggertion.

1. In the first step we merge together abstract states tHat difly in theirDecvari-
ables. This is done by identifying two such abstract stateand.S;, retaining the
representative with the smaller rank, and redirecting sgeviously connecting
to the node with higher ranks into the node with the lower rank
Thus, in the graph of Fig. 18, we can melfjg into Sg, Sg into S5, andS, into
Ss.

2. Next, we construct for each MSCC of the graph resultingiftbe previous step a
single assertio® which is a disjunction of the valuations of the nBrecvariables
of all the states contained in the MSCC.

Thus, the assertion corresponding to the MSCC which contamtwo statesSy :
(I1,:0, I15:0, X:0, Y:1, Dec,: — 1) andSy : (II;:1, II5:0, X:0, Y:1, Dec,:0) is
@I e {0,1} NIl =0ANX=0AY =1.

3. We draw an edge labeled byconnecting node; to node®;, whenever there are
statesS; € @; andS; € @, such thatS; is connected t&; by aJ-labeled edge in
the ranked pending graph.

mo/_[sm:(nlzo,nzzo,)(:o,y: 1, Dec, : 0)] (3,0,0)
L b
So: (Il :1,11,:0,X:0,Y: 1, Decy: 0) Mo (3,0,0)
Q l [1
Sg:{IT,:0,1T,:0,X:0,Y: 1, Dec, : -1} o | (3,0,0) [(Ds:ﬂle{o,l} ANI,=0AX=0AY=1H" (50,0
§m
[S7:(171:l,172:l,X:I,Y:l,Decy:0)] (3,0,0) [@;:HI:II\HZ:IAX:IAY:I] (4,0,0)
Y 1 b
[Sﬁz(HI:O,HZ:l,X:I,Y:l,Decy:—l) Lo | 3,0,0) [q>4;171:0/\172:1 AX=1AY=1 (3,0,0)
{ b
[551(171:0,172:l,X:l,Y:l,Decy:0) (3,0,0) [@S;HI:2AI72:II\X:1A)’:I] (2,y,1)
Y % 1 L
\)[SA:(lez,HZ:1,X:1,Y:1,Decy: 0) (3,0,0) [q)z;m:s/\nz:l/\x:l/\y:]] (2,4,0)
Vb
Sy :2,M1,:1,X:1,Y: 1, Decy : 1)] 1, @uD [q>1;n1:z/\ M=1AX=1AY=0] (1,0,0)
2 Y& 'z
Syt Al :3,MT,:1,X:1,Y: 1, Decy: 0) (2,4,0) [@:lT, =4] (0,0,0)
Y b) Abstract verification diagram for program
[SI:(HI:Z,HZ:I,X: 1,Y:0, Decy: 1)] (3,00 | ABSTRACT-UP-DOWN.
Y&
. y
E\ g:1,=4 E (3,0,0)

a) Aranked version of the Pending graph for pro-
gram ABSTRACT-UP-DOWN.

Fig.21. The ranking produced by A&K-JusT-GRAPH on the Pending graph of program
ABSTRACT-UP-DOWN, and the subsequent abstract verification diagram.

4. A node is ranked by a rank\ which is the common rank associated with the
states that belong to the MSCC.

In Fig. 21(b), we present the abstract verification diagrémained from the graph of
Fig. 21(a).
An important property of the abstract verification diagrarthie following:

P6. If®; is connected t@; in the verification diagram anfl; € &;, thenA; - A;,
whereA;, A; are the ranks associated with), ¢;, respectively.

5.5 Obtaining the Concrete Helpful Assertions

As the last step in the extraction of the auxiliary conssuseded by rule BSPONSE
we compute the concrete helpful assertiggs. . . , ¢,,. As in the sequential case, these
are obtained simply by concretization of the abstract &isssdy, . . . , &,,. In the table
presented in Fig. 22, we present the auxiliary constructisaeted for program &-
DOwN.

As in the sequential case, the following property leads ¢oaverall correctness of
the construction:

P7. If concrete states, s; satisfys; = ¢; ands; |= ¢;, ands; is aD-successor o,
thenSZ[Az] - Sj [A]]

Z| Pi | Ay | Ji

6 at,éo,l ANat-mo Az =0Ay >0 (5,0,0) —at_mg
5lat_ ¢ nat_mi Az >0A y >0 (4,0,0) —at_/
4 at loNnat-mi Az >0Ay >01(3,0,0)] -at_lo
3lat_lo ANat_mq A x >0Ay >0 (Z,y, 1) —at_/lo
2| at_lz3 ANat_mq Ax >0Ay >0 (Z,y,()) —at_/{3
llat o Aat-mi Az >0AY =0((1,0,0)| ~at_Ls
0 at_/4

Fig. 22.Extracted auxiliary constructs for progranp{DOwWN

6 Conclusion

The work in this paper is a direct continuation of [2], wheré&ramework was pre-
sented for automatic computation of predicate and rankistractions, with a specific
application to the domain of unbounded pointer structuaks Shape Analysis). That
framework requires all predicates and component rankingtfans to be provided by
the user. Here we have extended it with dual means of refinefaeioth types of
abstraction.

We have shown two heuristics for synthesizing componerkingrfunctions, one
for a linear domain and another for a domain of unboundedteostructures. These
have been surprisingly effective in proving terminationaofiumber of example pro-
grams. In the near future we plan to explore richer heusstiche domain of shape
analysis.

In the last two sections we have shown how a deductive proafreponse prop-
erty can be extracted from a successful application of thking-abstraction method.
First, we consider the simpler case of systems with no fagmequirements, which
correspond to sequential programs. We then indicated hevwextraction process can
be applied to systems with justice requirements, which eamsled to model concurrent
programs.

References

1. A. Pnueli and E. Shahar. A platform combining deductivéhvelgorithmic verification.
In Rajeev Alur and Thomas A. Henzinger, editdPspceedings of the Eighth International
Conference on Computer Aided Verification Cblume 1102, page 184, New Brunswick,
NJ, USA, /1996. Springer Verlag.

10.

11.

12.

13.

I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis bylipege abstraction. VM-
CAI'2005: Verification, Model Checking, and Abstractiortdrpretation pages 164-180,
2005.

. T.Ball, A. Podelski, and S. K. Rajamani. Relative comgaeiss of abstraction refinement for

software model checking. [Fools and Algorithms for Construction and Analysis of Syste
pages 158-172, 2002.

. T.Balland S. K. Rajamani. Automatically validating teongl safety properties of interfaces.

Lecture Notes in Computer Scien@®57:103+, 2001.

. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cetetample-guided abstraction

refinement. IComputer Aided Verificatigmppages 154—-169, 2000.

. B. Cook, A. Podelski, and A. Rybalchenko. Abstractionmefinent for termination. I8tatic

Analysis Symposiumages 87-101, 2005.

. D. Dams, R. Gerth, and O. Grumberg. A heuristic for the matiic generation of ranking

functions. In G. Gopalakrishnan, editd¥orkshop on Advances in Verificatigmages 1-8,
2000.

. Y. Kesten and A. Pnueli. Verification by augmented finitabgtraction.Information and

Computation163(1):203—-243, 2000.

. O. Lichtenstein and A. Pnueli. Checking that finite-staircurrent programs satisfy their

linear specification. IfProc. 12th ACM Symp. Princ. of Prog. Langages 97-107, 1985.
Z.Manna and A. Pnueli. Temporal verification diagramsT.llto and A. R. Meyer, editors,
Theoretical Aspects of Computer Softwarelume 789 ofLect. Notes in Comp. Scpages
726-765. Springer-Verlag, 1994.

A. Podelski and A. Rybalchenko. Software model checkinliveness properties via tran-
sition invariants. Research Report MPI-1-2003-2-004, NPdanck-Institut fur Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germanyribec2003.

A. Podelski and A. Rybalchenko. A complete method fordjuethesis of linear ranking
functions. InVerification, Model Checking, and Abstract Interpretatigrages 239-251,
2004.

S. Graf and H. Saidi. Construction of abstract statetgravith PVS. In O. Grumberg, editor,
Proc. 9th International Conference on Computer Aided \@tfon (CAV’97) volume 1254,
pages 72-83. Springer Verlag, 1997.

