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Abstract

In this paper we present a coherent framework for symbolic model checking of linear�time tem�
poral logic �ltl� properties over �nite state reactive systems� taking full fairness constraints into
consideration� We use the computational model of a fair discrete system �fds� which takes into
account both justice �weak fairness� and compassion �strong fairness�� The approach presented
here reduces the model�checking problem into the question of whether a given fds is feasible

�i�e� has at least one computation��
The contribution of the paper is twofold� On the methodological level� it presents a direct

self�contained exposition of full ltl symbolic model checking without resorting to reductions
to either ��calculus� ctl or automata� On the technical level� it extends previous methods by
dealing with compassion at the algorithmic level instead of either adding it to the speci�cation�
or transforming compassion to justice�

Finally� we extend ctl� with past operators� and show that the basic symbolic feasibility
algorithm presented here� can be used to model check an arbitrary ctl� formula over an fds

with full fairness constraints�

� Introduction

Two kinds of temporal logics have been proposed over the years for specifying the properties of
reactive systems� the linear time logic ltl �GPSS��� and the branching time variant ctl �CE����
Also two methods for the formal veri	cation of the temporal properties of reactive systems have been
developed� the deductive approach based on interactive theorem proving
 and the fully automatic
algorithmic approach
 widely known as model checking � Tracing the evolution of these ideas
 we
	nd that the deductive approach adopted ltl as its main vehicle for speci	cation
 while the model�
checking approach used ctl as the speci	cation language �CE���
 �QS����

This is more than a historical coincidence or a matter of personal preference� The main advan�
tage of ctl for model checking is that it is state�based and
 therefore
 the process of veri	cation
can be performed by straightforward labeling of the existing states in the discrete structure
 leading
to no further expansion or unwinding of the structure� In contrast
 ltl is path�based and
 since
many paths can pass through a single state
 labeling a structure by the ltl sub�formulas it satis	es
necessarily requires splitting the state into several copies� This is the reason why the development
of model�checking algorithms for ltl always lagged several years behind their 	rst introduction for
the ctl logic�
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The 	rst model�checking algorithms were based on the enumerative approach
 constructing an
explicit representation of all reachable states of the considered system �CE���
 and were developed
for the branching�time temporal logic ctl� The ltl version of these algorithms was developed in
�LP�� for the future fragment of propositional ltl �ptl�
 and extended in �LPZ�� to the full ptl�
The basic 	xed�point computation algorithm for the identi	cation of fair computations presented
in �LP��
 was developed independently in �EL��� for fctl �fair ctl��

Observing that upgrading from justice to full fairness �i�e�
 adding compassion� is re�ected in
the automata view of veri	cation as an upgrade from a B�uchi to a Streett automaton
 we can view
the algorithms presented in �EL��� and �LP�� as algorithms for checking the emptiness of Streett
automata �VW���� An improved algorithm solving the related problem of emptiness of Streett
automata
 was later presented in �HT���� The development of the impressively e�cient symbolic
veri	cation methods and their application to ctl �BCM���� raised the question whether a similar
approach can be applied to ptl� The 	rst satisfactory answer to this question is given in �BCM����

by showing a reduction of ptl �future fragment� model checking into ��calculus model checking� A
similar transformation from ltl to ctl model checking
 is presented in �CGH���� The advantage
of this approach is that
 following a preliminary transformation of the ptl formula and the given
system
 the algorithm proceeds by using available and e�cient ctl symbolic model checkers such
as smv�

A certain weakness of all the available symbolic model checkers is that
 in their representation of
fairness
 they only consider the concept of justice �weak fairness�� As suggested by many researchers

another important fairness requirement is that of compassion �strong fairness� �e�g�
 �GPSS���

�LPS���
 �Fra����� This type of fairness is particularly useful in the analysis of systems that use
semaphores
 synchronous communication
 and other special coordination primitives� A partial
answer to this criticism is that
 since compassion can be expressed in ltl �but not in ctl�
 once
we developed a model�checking method for ltl
 we can always add the compassion requirements as
an antecedent to the property we wish to verify� A similar answer is standardly given for symbolic
model checkers that use the ��calculus as their speci	cation language
 because compassion can also
be expressed as a ��calculus formula �SdRG���� The only question remaining is how practical this
is�

In this paper we present an approach to the symbolic model checking of ptl formulas
 which
takes into account full fairness
 including both justice and compassion� The approach is self�
contained and does not depend on a reduction to either ��calculus or ctl model checking �as in
�BCM���� and �CGH���
 respectively� or to automata� The main advantage of such a self�contained
approach is that the end users no longer need to deal with two di�erent kinds of logics�

The treatment of the ptl component is essentially that of a symbolic construction of a tableau by
assigning a new auxiliary variable to each temporal sub�formula of the property we wish to verify�
In that
 our approach resembles very much the reduction method used in �BCM���
 CGH���
which
 in turn
 is an extension of the stati�cation method used in �MP��a� and �MP�� to deal
with the past fragment of ltl� The model�checking problem is then reduced into the question of
feasibility of an fds� The symbolic feasibility algorithm
 similar to the enumerative algorithm of
�LP��
 identi	es all computations satisfying a given set of fairness constraints� This involves the
identi	cation of all fair strongly connected components �SCC�� However
 while the enumerative
algorithm identi	es each SCC separately
 the BDD�based symbolic algorithm is more e�cient

identifying all states participating in some fair SCC simultaneously� Our symbolic algorithm can be
viewed as a straightforward implementation of the nested 	xed�point characterization of Emerson�
Lei for fully fair computations �EL���
 as opposed to the ctl model checkers which consider only
the weak�fairness part of this characterization�
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Other works related to the approach developed here are presented in �HTKB��� �HKSV���

where bdd�based symbolic algorithms for bad cycle detection are presented� They are based on
the 	xed�point characterization of Emerson�Lei� These algorithm solves the problem of 	nding all
those cycles within the computation graph
 which satisfy a given set of weak fairness constraints�
�HKSV��� gives heuristics which improves the performance of the Emerson�Lei algorithm� We
use the same heuristics in our algorithm
 while dealing with both types of fairness constraints�
�HTKB��� �HKSV��� can deal with strong fairness by reduction to weak fairness� According to the
automata�theoretic view
 �HKSV��� presents a symbolic algorithm for the problem of emptiness of
B�uchi automata
 while the algorithms presented here provide a symbolic solution to the emptiness
problem of Streett automata�

An algorithm for dealing with compassion at the algorithmic level is presented in �Kur��

however it is enumerative whereas our work provides a symbolic solution�

In �EL���
 Emerson and Lei observed that the problem of ctl� model checking of 	nite state
systems can be resolved by recursive calls to an ltl model�checking algorithm� Taking a similar
approach
 we augment ctl� with past operators and show that the symbolic feasibility algorithm
presented here
 can be used to model check an arbitrary ctl� formula over a 	nite state fds D

taking the full fairness constraints of D into consideration�

The rest of the paper is organized as follows� In section � we present the computational model
of fair discrete systems �fds�� In section � we present ptl
 the propositional fragment of linear
temporal logic
 including the past operators� Next
 in section � we discuss the construction of
a tester for a ptl formula �
 which is an fds characterizing all the sequences which satisfy ��
Having transformed the model�checking problem into the feasibility problem of an fds
 we present
the symbolic feasibility algorithm in section 
 followed by an algorithm for extracting a witness
�a counter example� in section �� In section � we augment ctl� with past operators and use the
feasibility algorithm to model check an arbitrary ctl� formulas over a 	nite state fds� We conclude
in section � with some experimental results
 comparing the di�erent methods used to deal with
compassion requirements�

A �partial� conference version of this paper appeared in �KPR����

� Fair Discrete Systems

As a computational model for reactive systems
 we take the model of fair discrete system �fds�� The
computational model is used for modeling both the veri	ed system and the temporal properties�
The fds model replaces the earlier model of fair transition system �fts� presented in �MP��b�
and �MP��� The main di�erence between these two models is in the representation of fairness
constraints� The advantage of the new representation is that it enables a uni	ed representation of
fairness constraints arising from both the system being veri	ed
 and the temporal property�

An fds D � hV��� ��J � Ci consists of the following components�

� V � fu�� ���� ung � A 	nite set of typed state variables ranging over 	nite domains� We de	ne
a state s to be a type�consistent interpretation of V 
 assigning to each variable u � V a value
s�u� in its domain� We denote by � the set of all states�

� � � The initial condition� This is an assertion characterizing all the initial states of the D�
A state is called initial if it satis	es ��

� � � A transition relation� This is an assertion ��V� V ��
 relating a state s � � to its D�successor
s� � � by referring to both unprimed and primed versions of the state variables� The transition
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relation ��V� V �� identi	es state s� as a D�successor of state s if hs� s�i j� ��V� V ��� where hs� s�i
is the joint interpretation which interprets x � V as s�x�
 and x� as s��x��

� J � fJ�� � � � � Jkg � A set of assertions expressing the justice �weak fairness� requirements�
Intentionally
 the justice requirement J � J stipulates that every computation contains
in	nitely many J�states �states satisfying J��

� C � fhp�� q�i� � � � hpn� qnig � A set of assertions expressing the compassion �strong fairness�
requirements � Intentionally
 the compassion requirement hp� qi � C stipulates that every
computation containing in	nitely many p�states also contains in	nitely many q�states�

Let � � s�� s�� ���� be a sequence of states
 � be an assertion
 and j � � be a natural number� We say
that j is a ��position of � if sj is a ��state
 namely
 if � holds on s� Let D be an fds for which the
above components have been identi	ed� We de	ne a run of D to be an in	nite sequence of states
� � s�� s�� ���� satisfying the requirements�

� Initiality� s� is initial
 i�e�
 s� j� ��
� Consecution� For each j � �� �� ���
 the state sj�� is a D�successor of the state sj�

A run of D is called a computation if it satis	es the following fairness requirements�

� Justice� For each J � J 
 � contains in	nitely many J�positions
� Compassion� For each hp� qi � C
 if � contains in	nitely many p�positions


it also contain in	nitely many q�positions�

We denote by Comp�D� the set of all computations of D�
A state s is said to be D�reachable if it participates in a run of D� We say that a state is

D�feasible if it participates in some computation of D� An fds D is feasible if D has at least one
computation� We say that an fds D is viable if every D�reachable state is D�feasible� Note that
the fds model does not guarantee viability�

Parallel Composition of fds�s

Fair discrete systems can be composed in parallel� Let Di � hVi��i� �i�Ji� Cii� i � f�� �g
 be two
fair discrete systems� Two versions of parallel composition are used�

Asynchronous composition is used to assemble an asynchronous system from its components�
We de	ne the asynchronous parallel composition of two fds�s to be

hV��� ��J � Ci � hV����� ���J�� C�i k hV����� ���J�� C�i�

where

V � V� � V� � � �� ��� � � �� � ��
J � J� � J� C � C� � C�

We can view the asynchronous execution of D as the interleaved execution of D� and D��
Synchronous composition is used in some cases
 to assemble a system from its components �in

particular when considering hardware designs which are naturally synchronous�� However
 our
primary use of synchronous composition is for combining a system with a tester T� for an ltl

formula � �see section ��� We de	ne the synchronous parallel composition of two fds�s to be

hV��� ��J � Ci � hV����� ���J�� C�i kj hV����� ���J�� C�i�
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where

V � V� � V� � � �� ��� � � �� � ��
J � J� � J� C � C� � C�

The synchronous parallel composition of systems D� and D� is a new system D
 each of whose
basic actions consists of the joint execution of an action of D� and an action of D�� We can view
the execution of D as the joint execution of D� and D��

� Linear Temporal Logic

As a requirement speci	cation language for reactive systems we take the propositional fragment of
linear temporal logic �ptl� �MP��b��

Let P be a 	nite set of propositions� A state formula is constructed out of propositions and the
boolean operators � and �� A temporal formula is constructed out of state formulas to which we
apply the boolean operators and the following basic temporal operators�

� � Next � � Previous
U � Until S � Since

We refer to the set of variables that occur in a formula p as the vocabulary of p� A model for a
temporal formula p is an in	nite sequence of states � � s�� s�� ���� where each state sj provides an
interpretation for the vocabulary of p�

Given a model �
 as above
 we present an inductive de	nition for the notion of a temporal
formula p holding at a position j � � in �
 denoted by ��� j� j� p�

� For a state formula p

��� j� j� p 	 sj j� p
That is
 we evaluate p locally
 using the interpretation given by sj�

� ��� j� j� �p 	 ��� j� 
j� p
� ��� j� j� p � q 	 ��� j� j� p or ��� j� j� q
� ��� j� j� � p 	 ��� j � �� j� p
� ��� j� j� pU q 	 for some k � j� ��� k� j� q�

and for every i such that j � i � k� ��� i� j� p
� ��� j� j� � p 	 j � � and ��� j � �� j� p
� ��� j� j� pSq 	 for some k � j� ��� k� j� q�

and for every i such that k � i � j� ��� i� j� p

If ��� �� j� p
 we say that p holds on �
 and denote it by � j� p� A formula p is called satis�able if
it holds on some model� A formula is called temporally valid if it holds on all models�

Given an fds D
 we can restrict our attention to the set of models which correspond to com�
putations of D
 i�e�
 Comp�D�� This leads to the notion of D�validity
 by which a temporal formula
p is D�valid �valid over fds D� if it holds over all the computations of D� Obviously
 any formula
that is �generally� valid is also D�valid for any fds D� In a similar way
 we obtain the notion of
D�satis	ability�

Additional temporal operators may be de	ned as follows�

� p � tUp � Eventually p
� p � � � �p � Always
 henceforth p
pWq � ����q�U ��p � �q� � Waiting�for
 unless
 weak until





� Construction of Testers for ltl Formulas

In this section
 we present the construction of a tester for a ptl formula �
 which is an fds T�
characterizing all the sequences which satisfy �� Without loss of generality
 assume that the only
temporal operators occurring in � are � 
 U 
 � and S �

For a formula 	
 we write 	 � � to denote that 	 is a sub�formula of �possibly equal to� ��
Formula 	 is called principally temporal if its main operator is a temporal operator� The fds T�
is given by

T��
D
V�� ��� ���J�� C�

E
�

where the components are speci	ed as follows�

System Variables

The system variables of T� consist of the vocabulary of � plus a set of auxiliary boolean variables

X�� fxp j p � � a principally temporal sub�formula of �g�

which includes an auxiliary variable xp for every p
 a principally temporal sub�formula of �� The
auxiliary variable xp is intended to be true in a state of a computation i� the temporal formula p
holds at that state�

We de	ne a mapping 
 which maps every sub�formula of � into an assertion over V��


�	� �

�����
����

	 for 	 a state formula
�
�p� for 	 � �p

�p� � 
�q� for 	 � p � q
x� for 	 a principally temporal formula

The mapping 
 distributes over all boolean operators� When applied to a state formula it yields
the formula itself� When applied to a principally temporal sub�formula p it yields xp�

Initial Condition

The initial condition of T� is given by

�� � past�init����
where

past�init��� �
�

� p��

�x
� p

�
�

pSq��

�x
pSq

 
�q��

Thus
 the initial condition requires that all auxiliary variables encoding �Previous formulas are
initially false� This corresponds to the observation that all formulas of the form � p are false at
the 	rst state of any sequence� In addition
 past�init��� requires that the truth value of x

pSq
equals

the truth value of 
�q�
 corresponding to the observation that the only way to satisfy the formula
pSq at the 	rst state of a sequence is by satisfying q�

Note that
 unlike the de	nition of testers presented in �KPR��
 KP���
 the assertion 
��� is
not a conjunct of ��� Namely
 the initial condition of a tester T� does not assert 
���� This will
permit the use of algorithm feasible presented in Section 
 for model checking both ltl and
ctl� properties
 as discussed in section ��
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Transition Relation

The transition relation of T� is given by

���

��������������

�
� p��

�x�
� p

 
�p�� �
�

pSq��

�x�
pSq

 �
��q� � �
��p� � x
pSq

���

�
�

� p��

�x
� p

 
��p�� �
�

pUq��

�x
pUq

 �
 �q� � �
 �p� � x�
pUq

���

��������������
Note that we use the form x

�
when we know that 	 is principally temporal and the form 
�	�

in all other cases� The expression 
��	� denotes the primed version of 
�	�� The conjuncts of the
transition relation corresponding to the Since and the Until operators are based on the following
expansion formulas�

pSq �� q � �p � � �pSq�� pU q �� q � �p � � �pU q��

where �� denotes congruence
 namely �a �� b� � � �a b��

Fairness Requirements

For each formula pU q � � which has a positive occurrence in � �i�e�
 an occurrence under an even
number of negations�
 we include in J the disjunction


�q� � �x
pU q

This justice requirement ensures that the sequence contains in	nitely many states at which 
�q� is
true
 or in	nitely many states at which x

pUq
is false� The compassion set of T� is always empty�

Correctness of the Construction

For a set of variables U 
 we say that sequence e� is a U �variant of sequence � if � and e� agree on
the interpretation of all variables
 except possibly the variables in U �

The following claim states that the construction of the tester T� correctly captures the set of
sequences satisfying the formula ��

Claim � A state sequence � � s�� � � � satis�es the temporal formula � i� � is an X��variant of a

computation e� � es�� � � � of T�� and es� j� 
����

� Checking for Feasibility

In this section we present a symbolic algorithm for computing the set of D�feasible states� The
symbolic algorithm presented here is inspired by the full state�enumeration algorithm originally
presented in �LP�� and �EL��� �for full explanations and proofs see �Lic��� and �MP���� The
enumerative algorithm was designed for ltl model checking
 and was concerned with checking
feasibility of an fds� Since we want to use the same basic algorithm for both ltl and ctl�

model checking
 our basic symbolic algorithm computes the set of D�feasible states
 from which the
feasibility of D is trivially obtained� The enumerative algorithm constructs a state�transition graph

G
D

for D� This is a directed graph whose nodes are all the D�reachable states
 and whose edges
connect node s to node s� i� s� is a D�successor of s� If system D has a computation it corresponds
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to an in	nite path in the graph G
D

which starts at a D�initial state� We refer to such paths as
initialized paths�

Subgraphs of G
D

can be speci	ed by identifying a subset S � G
D

of the nodes of G
D
� It

is implied that as the edges of the subgraph we take all the original G
D
�edges connecting nodes

�states� of S� A subgraph S is called just if it contains a J �state for every justice requirement
J � J � The subgraph S is called compassionate if
 for every compassion requirement �p� q� � C
 S
contains a q�state
 or S does not contain any p�state� A subgraph is singular if it is composed of
a single state which is not connected to itself� A subgraph S is fair if it is a non�singular strongly
connected subgraph �scs� which is both just and compassionate�

For �
 an in	nite initialized path in G
D

 we denote by Inf ��� the set of states which appear

in	nitely many times in �� The following claim
 which is proved in �Lic���
 connects computations
of D with fair subgraphs of G

D
�

Claim � The in�nite initialized path � is a computation of D i� Inf��� is a fair subgraph of G
D
�

The Symbolic algorithm

The symbolic algorithm
 aimed at exploiting the data structure of obdd�s
 is presented in a general
set notation� Let � denote the set of all states of an fds D� A predicate over � is any subset U � ��
A �binary� relation over � is any set of pairs R � �� �� Since both predicates and relations are
sets
 we can freely apply the set�operations of union
 intersection
 and complementation to these
objects� In addition
 we de	ne two operations of composition of predicates and relations� For a
predicate U and relation R
 we de	ne the operations of pre� and post�composition as follows�

R � U � fs � � j �s� s�� � R for some s� � Ug
U �R � fs � � j �s�� s� � R for some s� � Ug

If we view R as a transition relation
 then R � U is the set of all R�predecessors of U �states
 and
U � R is the set of all R�successors of U �states� To capture the set of all states that can reach a
U �state in a 	nite number of R�steps �including zero�
 we de	ne

R� � U � U � R � U � R � �R � U� � R � �R � �R � U�� � � � � �

It is easy to see that R� � U converges after a 	nite number of steps� In a similar way
 we de	ne

U � R� � U � U �R � �U � R� � R � ��U � R� � R� �R � � � � �

which captures the set of all states reachable in a 	nite number of R�steps from a U �state� For
predicates U and W 
 we de	ne the relation U �W as

U �W � f�s�� s�� � �� j s� � U� s� �Wg�

Let D � hV��� ��J � Ci be an fds� For an assertion � over V� the system variables of D
 we denote
by k�k the predicate consisting of all states satisfying �� Similarly
 for an assertion � over �V� V ��

we denote by k�k the relation consisting of all state pairs hs� s�i satisfying ��

Algorithm feasible presented in Fig� �
 denotes by R the transition relation implied by �� The
predicate variable new represents a set of states� We use the shorthand notation

R � new
def
� R � �new � ���
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Algorithm feasible �D� � predicate ! Compute the set of D�feasible states

new� old � predicate

R � relation

�� old �� �
�� new �� k�k � k�k�"
�� R �� k�k � new
�� while �new 
� old� do

begin

� old �� new
�� while �new 
� new �R � new� do
�� new �� new � �R � new�
�� for each J � J do

�� new �� �R � new�� � �new � kJk�
��� for each �p� q� � C do

��� new �� �new � kpk� � �R � new�� � �new � kqk�
end

��� new �� R� � new
��� return�new�

Figure �� Algorithm feasible

Algorithm feasible consists of a main loop which converges when the values of the predicate
variable new coincide on two successive visits to line �� Prior to entry to the main loop we compute
in new the universal set of all reachable states in D and place in R the transition relation implied
by �
 restricted to pairs �s�� s�� where s� is a reachable state in D�

The main loop �lines �����
 contains three inner loops� The inner loop at lines ���
 successively
removes from new all states which do not have a successor in new� The loop at lines ��� removes
from new all states which are not R��predecessors of some J�state
 for all justice requirements
J � J � The term R�new restricts R to pairs �s�� s�� where s� is currently in new� This is done to
avoid regeneration of states which have already been eliminated� The loop at lines �����
 removes
from new all p�states which are not R��predecessors of some q�state for some �p� q� � C� The term
R � new restricts R again to pairs �s�� s�� where s� is currently in new�

Finally
 line �� augments new with all its R��predecessors�

Correctness of the feasible Algorithm

The following sequence of claims establishes the correctness of the algorithm�

Claim � �Termination� Algorithm feasible terminates�

Proof� Let us denote by new�
i the value of variable new on the i�th visit �i � �� �� � � �� to line

� of the algorithm� Since all assignments to variable new within the main loop
 are of the form
new �� E where E � new� it is not di�cult to see that new�

� � new�
�� From this
 it can be

established by induction on i that new�
i�� � new�

i 
 for every i � �� � � � � � It follows that the
sequence jnew�

�j � jnew�
� j � jnew�

�j � � �
 is a non�increasing sequence of natural numbers which
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must eventually stabilize� At the point of stabilization
 we have that new�
i�� � new�

i 
 implying
termination of the algorithm�

Let D � hV��� ��J � Ci be an fds
 s be a D�reachable state and U be the set of states resulting from
the application of algorithm feasible over D�

Claim � �Completeness� If s is D�feasible then s � U �

Proof� Assume that s is D�feasible� Then by de	nition
 s is on an initialized fair path � in D�
From Claim �
 Inf ��� is a fair subgraph S � G

D
� Namely
 S is a non�singular strongly�connected

subgraph �scs� which contains a J�state for every J � J 
 and such that
 for every �p� q� � C
 S
contains a q�state or contains no p�state� Let

eS � S � fs� j s� is on an initialized path to a state in Sg

Obviously s � eS� Following the operations performed by algorithm feasible
 we can show that
S is contained in the set new at all locations beyond the 	rst visit to line �� This is because any
removal of states from new which is carried out in lines �
 �
 and ��
 cannot remove any state of
S� Consequently
 S must remain throughout the process and will be contained in U � Finally
 when
line �� is executed
 the set new is augmented from S to eS� implying that s � U �

Claim 	 �Soundness� If s � U then s is D�feasible�

Proof� Assume that s � U � Let S � U be the set of states in U 
 reachable from s by a U �path�
Since s � U� s is D�reachable� For every J � J 
 s can reach a J�state by a path fully contained
within S� For every �p� q� � C
 either s is not a p�state
 or s can reach a q�state by an S�path�

Let us decompose S into maximal strongly�connected subgraphs� At least one subgraph St is
terminal in this decomposition
 in the sense that every S�edge exiting an St�state also leads to an
St�state� We argue that St is fair� By de	nition
 it is strongly connected� It cannot be singular

because it would consist of a single state that would have been removed on the last execution of the
loop at lines ���� Let r be an arbitrary state within St� For every J � J 
 r can reach some J�state
er � U by an S�path� Since St is terminal within S
 this path must be fully contained within St and

therefore
 er � St� In a similar way
 we can show that St satis	es all the compassion requirements�
We can conclude that s is on an initialized path to a fair subgraph
 which establishes that s is
D�feasible�

The Claims Completeness and Soundness lead to the following conclusion�

Corollary 
 s is D�feasible i� s � U �

Corollary � D is feasible i� U � k�k 
� ��

Proof� A direct result of Corollary � and the de	nition of feasibility�
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Algorithm feasible for ctl� Versus ltl

Algorithm feasible presented in Fig� � is designed for model�checking both ltl and ctl� prop�
erties over an fds� In �KPR���
 we present a similar algorithm designed for model�checking ltl

properties only� An algorithm for ltl model checking
 needs to assert the existence �non�existence�
of a reachable fair scs in some fds D� The original enumerative algorithms of �EL��� and �LP��
were based on recursive exploration of strongly connected subgraphs
 ensuring closure under both
successors and predecessors� As the work in �KPR��� shows
 it is possible to relax the requirement
of bi�directional closure into either closure under predecessors and search for terminal scs compo�
nents
 or
 alternatively
 closure under successors and search for initial scs components� This idea

which may be worth exploring even in the enumerative case
 has been explored extensively in the
context of symbolic model checking �see �RBS�����

In this paper however
 algorithm feasible is designed for model�checking both ltl and ctl�

properties
 as discussed in section �� In the case of ctl�
 we need to evaluate the set of feasible
states in D
 namely the set of all states on some reachable fair scs
 or on a 	nite initialized path
to a reachable fair scs� In this case
 we can no longer choose arbitrarily between forward and
backward closure evaluation� The only appropriate choice is backward closure
 which guarantees
that all terminal scs are fair� This is the version of algorithm feasible presented in Fig� ��

Model Checking ltl Properties

Using algorithm feasible
 we can now model check an ltl property � over an fds D as follows�
To model check the D�validity D j� �


� De	ne the tester T���

� De	ne the synchronous parallel composition A � DkjT���

Let �
A

be the initial condition of the fds A�

� Evaluate feasible�DkjT��� � k�A
� 
����k�

The veri	cation is based on the following Claim�

Claim � D j� � i� feasible�DkjT��� � k�
A

� 
����k � �

The proof of equivalent claims can be found in �VW���
 �LP���

� Extracting a Witness

To use formal veri	cation as an e�ective debugging tool in the context of veri	cation of 	nite�state
reactive systems checked against temporal properties
 a most useful information is a computation
of the system which violates the requirement
 to which we refer as a witness or a counter�example�
Since we reduced the problem of checking D j� � to checking the feasibility of D kjT��
 such a
witness can be provided by a computation of the combined fds D kjT���

In the following we present an algorithm which produces a computation of an fds that has
been declared feasible� We introduce the list data structure to represent a linear list of states� We
use # to denote the empty list� For two lists L� � �s�� � � � � sa� and L� � �sb� � � � � sc�
 we denote by
L� �L� their concatenation
 de	ned by L� �L� � �s�� � � � � sa� sb � � � � sc�� For a non�empty predicate
U � �
 we denote by choose�U� a consistent choice of one of the members of U �
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The function path�source� destination�R�
 presented in Fig� �
 returns a list which contains
the shortest R�path from a state in source to a state in destination� In the case that source and
destination have a non�empty intersection
 path will return a state belonging to this intersection
which can be viewed as a path of length zero�

Function path�source� destination � predicate" R � relation� � list !
! ! Compute shortest path from source to destination

new � predicate

bp� � � array of predicates

pos � integer

s � state
new �� destination
pos �� �" bp �pos� �� new
while �bp �pos� � source � �� do
begin

bp �pos� �� �� bp �pos� �R � bp �pos�
pos �� pos� �

end

s �� choose �bp �pos� � source�
L �� �s�
while �pos � �� do
begin

pos �� pos� �
s �� choose �s �R � bp �pos��
L �� L � �s�

end

return L

Figure �� Function path �

Finally
 in Fig� � we present an algorithm which produces a computation of a given fds� Al�
though a computation is an in	nite sequence of states
 if D is feasible
 it always has an ultimately

periodic computation of the following form�

�� s�� s�� � � � � sk	 
z �
pre�x

� sk��� � � � � sk	 
z �
period

� sk��� � � � � sk	 
z �
period

� � � � � sk��� � � � � sk	 
z �
period

� � � �

Based on this observation
 our witness extracting algorithm will return as result the two 	nite
sequences pre�x and period �

The algorithm starts by checking whether fds D is feasible� It uses Algorithm feasible to
perform this check� If D is found to be infeasible
 the algorithm exits while providing a pair of
empty lists as a result�

If D is found to be feasible
 we store in �nal the set of states returned by feasible� This set
contains the set of all states participating in a computation of D� We restrict the transition relation
R to pairs �s�� s�� where both s� and s� are states within �nal � Next
 we perform a search for a
terminal maximal strongly connected subgraph �terminal mscs� within �nal � The search starts at
s � �nal 
 an arbitrarily chosen state within �nal � In the loop at lines  and � we search for a state s
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Algorithm witness �D� � �list� list� ! Extract a witness for a feasible fds�

�nal � predicate

R � relation

pre�x � period � list

s � state

�� �nal �� feasible �D�
�� if ��nal � �� then return �#�#�
�� R �� k�k � ��nal � �nal�
�� s �� choose�final�
� while �fsg � R� �R� � fsg 
� �� do
�� s �� choose�fsg � R� �R� � fsg�
�� �nal �� fsg � R�

�� R �� R � ��nal � �nal�
�� pre�x �� path�k�k��nal � k�k�

��� period �� �choose�flast �pre�x �g � R��
��� for each J � J do

��� if �list�to�set�period � � kJk � �� then
��� period �� period � path�flast �period �g��nal � kJk� R�
��� for each �p� q� � C do

�� if �list�to�set�period � � kqk � � � �nal � kpk 
� �� then
��� period �� period � path�flast �period �g��nal � kqk� R�
��� period �� period � path�flast �period �g� flast �pre�x �g� R�
��� return �pre�x � period �

Figure �� Algorithm witness�

satisfying fsg�R� � R��fsg� i�e� a state all of whose R��successors are also R��predecessors� This
is done by successively replacing s by a state s � fsg�R��R��fsg� as long as the set of s�successors
is not contained in the set of s�predecessors� Eventually
 execution of the loop must terminate when
s reaches a terminal mscs within �nal � Termination is guaranteed because each such replacement
moves the state from one mscs to a proceeding mscs in the canonical decomposition of �nal into
mscs�s�

A central point in the proof of correctness of Algorithm feasible established that any terminal
mscs within �nal is a fair subgraph� Line � computes the mscs containing s and assigns it to the
variable �nal 
 while line � restricts the transition relation R to edges connecting states within �nal �
Line � draws a �shortest� path from an initial state to the subgraph �nal �

Lines �� � �� construct in period a traversing path
 starting at the last state of the pre�x 

last�pre�x �� and returning to the same state
 while visiting on the way states that ensure that an
in	nite repetition of the period will ful	ll all the fairness requirements�

Lines ����� ensure that period contains a J�state
 for each J � J � To prevent unnecessary
visits to states
 we extend the path to visit the next J �state only if the part of period that has
already been constructed did not visit any J�state� Lines ����� similarly take care of compassion�
Here we extend the path to visit a q�state only if the constructed path did not already do so and
the mscs �nal contains some p�state� Finally
 in line ��
 we complete the path to form a closed
cycle by looping back to last�pre�x ��
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� Symbolic Model Checking ctl� Properties

In the following
 we show that algorithm feasible can be used to model check an arbitrary ctl�

formula over a 	nite state fds
 taking weak and strong fairness constraints into consideration�
We de	ne ctl� with both future and past temporal operators� We denote the fragment of ctl�
without the past operators as the future fragment of ctl��

An enumerative algorithm for model checking the future fragment of ctl� is presented in
�EL���� In this work
 Emerson and Lei show that model checking a ctl� formula over a 	nite state
system
 can be performed by recursive calls to an ltl model checker� We take a similar approach

using algorithm feasible to verify an arbitrary ctl� formula over a 	nite state fds D�

In the following
 we 	rst present the syntax and semantics of the logic
 then discuss the use of
algorithm feasible for verifying ctl� properties�

��� The Logic ctl�

A propositional ctl� formula is constructed out of propositions to which we apply the boolean
operators
 temporal operators and path quanti	ers� The temporal operators are the same operators
presented in section � for ltl� The path quanti�ers are Ef and Af � as de	ned below�

A ctl� formula p is interpreted over the state graph �Kripke structure� generated by an fds

D� In the following
 we use the term path in D as synonymous to a computation of D�
There are two types of formulas in ctl�� State formulas which are interpreted over states and

path formulas which are interpreted over paths� Let P be a 	nite set of propositions� The syntax
of a ctl� formula is de	ned inductively as follows�
State formulas�

� Every proposition p � P is a state formula�
� If p is a path formula
 then E

f
p and A

f
p are state formulas�

� If p and q are state formulas then so are �p and p � q�

Path formulas�

� Every state formula is a path formula�
� If p and q are path formulas then so are �p
 p � q
 � p� pU q� � p and pSq�

The formulas of ctl� are all the state formulas generated by the above rules�
A state formula of the form Qp
 where Q is a path quanti	er and p is a path formula containing

no path quanti	ers is called a basic state formula� A basic state formula of the form Af	 �Ef	�
is called a basic universal �existential� formula� Note that the set of basic universal formulas
corresponds to the set of linear temporal logic formulas �ltl��

The semantics of a ctl� formula is de	ned inductively as follows� State formulas are interpreted
over states in D� We de	ne the notion of a path formula p holding at a state s in D
 denoted
�D� s� j� p
 as follows�

� For an assertion p

�D� s� j� p 	 s j� p

� �D� s� j� �p 	 �D� s� 
j� p
� �D� s� j� p � q 	 �D� s� j� p or �D� s� j� q
� �D� s� j� E

f
p 	 �D� �� j� j� p for some path � � ��� ��� � � � � Comp�D��

and position j � � satisfying �j � s�

The universal path quanti	er is de	ned by Afp � �Ef�p� Note that we have only de	ned the fair
versions Af and Ef of the path quanti	ers� If one wants to verify a formula A� over an fds D
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it can be done by verifying Af� over Dunfair� which is obtained from D by removing all fairness
requirements�

Path formulas are interpreted over a path �computation� in D� We de	ne the notion of a path
formula p holding at position j � � of a path � in Comp�D�� denoted �D� �� j� j� p
 as follows�

� For a state formula p

�D� �� j� j� p 	 �D� s� j� p� for s � �j

� �D� �� j� j� �p 	 �D� �� j� 
j� p
� �D� �� j� j� p � q 	 �D� �� j� j� p or �D� �� j� j� q
� �D� �� j� j� � p 	 �D� �� j � �� j� p
� �D� �� j� j� pU q 	 �D� �� k� j� q for some k � j

and �D� �� i� j� p for every i� j � i � k
� �D� �� j� j� � p 	 j � � and �D� �� j � �� j� p
� �D� �� j� j� pSq 	 �D� �� k� j� q for some k
 � � k � j

and �D� �� i� j� p for every i� k � i � j

Let p be a ctl� formula� We say that p holds on D �p is D�valid�
 denoted D j� p
 if �D� s� j� p

for every initial state s in D� A ctl� formula p is called satis�able if it holds on some model D� A
ctl� formula is called valid if it holds on all models� Let p and q be ctl� formulas� We use the
notations p �� q and p�� q as a shorthand for Af � �p�q� and Af � �p q� respectively�

��� Model Checking Basic State Formulas

In the following we show how to model check basic state formulas over an fds D�
Algorithm feasible is formulated in set�theoretic terms� However
 its implementation obviously

represents any set of states by a BDD which also represents an assertion� In the following we use
notations such as k�k � feasible�D� in order to refer to the assertion � characterizing the set of
states returned by the algorithm�

In Fig� � we present algorithm sat�ef which evaluates the set of D�reachable states satisfying
a basic existential formula Ef�� Note that
 since � is a path formula with no embedded path
quanti	ers
 it is also an ltl formula
 for which a tester can be constructed�

Algorithm sat�ef �D� �� � predicate !
! ! Compute the set of D�reachable states satisfying Ef�

�� De	ne the temporal tester T� for ��
�� De	ne the synchronous parallel composition DkjT��
�� Evaluate k	k � k
���k � feasible�DkjT��
�� Project away the auxiliary variables X� of T�
 returning k�E�k � k�X� � 	k�

Figure �� Algorithm sat�ef

The following claim states that the set k�
E�
k evaluated by algorithm sat�ef is exactly the set of

D�reachable states satisfying the ctl� formula Ef��

Claim  �D� s� j� Ef� i� s � k�
E�
k

Corollary �� D j� �
E�
�� Ef�

�



Let D be an fds and A
f
� be a basic universal formula� To evaluate the set of D�reachable states

satisfying the formula
 we use the ctl� congruence A
f
��� �E

f
���

In Fig�  we present algorithm sat�af which evaluates the set of D�reachable states satisfying a
basic universal formula Af��

Algorithm sat�af �D� �� � predicate !
! ! Compute the set of D�reachable states
 satisfying Af�

�� De	ne the temporal tester T���
�� De	ne the synchronous parallel composition DkjT���
�� Evaluate k	k � k
����k � feasible�DkjT���
�� Project away the auxiliary variables of T�� and complement the result


returning k�
A�
k � k��X�� � 	k�

Figure � Algorithm sat�af

The following claim states that the set k�
A�
k evaluated by algorithm sat�af is exactly the set of

D�reachable states satisfying the ctl� formula Af��

Claim �� �D� s� j� Af� i� s � k�
A�
k

Corollary �� D j� �
A�

�� Af�

The two algorithms sat�ef and sat�af can be combined into a single algorithm sat�basic �D� ���
de	ned by

sat�basic �D� Ef�� � sat�ef�D� ��
sat�basic �D� Af�� � sat�af�D� ��

��� Decomposing an Arbitrary ctl� Formula into Basic Formulas

Consider an arbitrary �non basic� ctl� formula p which we wish to verify over an fds D� Following
�EL���
 we reduce the task of verifying formula p into simpler subtasks
 each required to verify a
basic state formula over D�

Algorithm valid�ctl� �D� 	� � Boolean ! t if 	 is D�valid
 f otherwise�

�� while �	 not an assertion� do
�� begin

�� identify a basic state formula � in 	
�� evaluate k�k �� sat�basic �D� ��
� 	 �� 	��� ��
�� end

�� return��D�	�

Figure �� Algorithm valid�ctl�
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In Fig� � we present algorithm valid�ctl� for the veri	cation of an arbitrary ctl� formula 	 over
an fds D� The algorithm consists of a while loop
 where at each iteration of the loop formula 	
is reduced to a new formula in which all occurrences of some basic state formula � within 	
 are
replaced by an assertion congruent to �� The loop terminates when 	 is reduced to an assertione	 that characterizes the set of states in D satisfying 	� Formula 	 is D�valid if k�Dk � k e	k
 or
equivalently �D� e	� The following claim states the soundness of algorithm valid�ctl��

Let D be an fds and 	 be an arbitrary ctl� formula
 then

Claim �� D j� 	 i� valid�ctl��D� 	� returns t�

Example

hx � �i hx � �i hx � �i

Figure �� An example system D

Consider the system D presented in Fig� �� This system has a single state variable x and no fairness
requirements� For this system we wish to prove the property f � Ef � Ef � �x � ��
 claiming the
existence of a computation from each of whose states it is possible to reach a state at which x � ��

Using algorithm valid�ctl�
 the task of verifying the non�basic formula

Ef � Ef � �x � ��

is reduced into the following tasks�

R�� Evaluate k��k � sat�basic �D� Ef � �x � ���� This yields �� � �x � ���
R�� Evaluate k��k � sat�basic �D� Ef � ���� This yields �� � �x � ���
R�� Evaluate �D���� This yields t�

� Experimental Results

The algorithms described in this paper were implemented within the tlv system �PS���� In the
following section
 we summarize our experimental results for algorithm feasible� The experiments
were carried on a Sun Ultra with � Gigabyte of memory� We limit our attention to ltl properties
since our intention is to test the performance of algorithm feasible
 which is the same for ltl and
ctl��

��� Compassion at the Algorithmic Level

In order to test whether compassion at the algorithmic level yields better performance
 we verify
several examples which require compassion
 using three di�erent veri	cation methods�
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�� Verifying compassion at the algorithmic level� We denote this methods by nt �no transfor�

mation��

�� Transforming compassion to justice� From an automata theoretic perspective this transforms
a Streett automata into a B�uchi automata� We denote this method by cj �compassion trans�

formed to justice��

�� Replacing compassion requirements in the system by adding an antecedent to the veri	ed
property� We denote this method by ca �compassion as antecedent��

In method cj
 every compassion requirement is transformed into a justice requirement
 at
the price of introducing an extra boolean variable� Let D � hV��� ��J � Ci be an fds� For every
hpi� qii � C we introduce a new variable ri and modify D as follows�

eV � V � frige� � � � �ri � f�
e� � � � �ri � ��pi � r

�
i��eJ � J � f�ri � qi�geC � C � f�pi� qi�g

Method ca replaces a set of compassion requirements by a conjunction of ltl formulas
 added
as an antecedent to the veri	ed property� Let D be an fds
 � be a formula we wish to verify over
D and C be the set of compassion requirements in D� We replace the veri	cation of D j� � by the
following veri	cation task�

D��C� j�

�
 �
hp�qi�C

�� � p� � � q�

�
A� �

where D��C� is the fds D from which all the compassion requirements have been removed�
Note that a similar method can be applied to ctl� formulas� Let 	 be a ctl� property
 and c

be de	ned as follows�

c �
�

hp�qi�C

�� � p� � � q�

We modify the calls to sat�ef and sat�af in algorithm valid�ctl� as follows�

� For a basic existential formula
 call sat�ef �D��C�� c � �� �

� For a basic universal formula
 call sat�af �D��C�� c� �� �

����� Feasibility of Parameterized Programs

The programs we use for experimentation are parameterized programs
 of the form

S�n� � P ��� kP ��� k � � � kP �n�

which are veri	ed for di�erent values of n�
Consider program dine presented in Fig� �� This program is a symmetric solution to the dining

philosophers problem
 using semaphores for coordination between processes� Program dine satis	es
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the safety requirement of mutual exclusion
 stating that no neighboring philosophers can dine at
the same time� However
 this program fails to satisfy the liveness requirement of accessibility for
the 	rst process
 stating that if the philosopher wishes to dine
 it will eventually do so
 as speci	ed
by�

	� � � �at ����� � at �����

in n � integer where n � �
local c � array ����n� where c � �

n

j	�
P �j� ��

�
�����������

� � loop forever do�
��������

� � non�critical

� � request c�j�
� � request c�j �n ��
� � critical


 � release c�j�
� � release c�j �n ��

�
��������

�
�����������

Figure �� Program dine� The Dining Philosophers�

Program dine is written in spl �Simple Programming Language�� The process of translating an
spl program to an fds can be done automatically �MP��� The translation associates a compassion
requirement with every request statement� The execution of the statement request s reduces the
value of the semaphore s by �� The statement can be executed only if s � �� For example
 the
compassion requirement associated with � of process � is hat ���� � c��� � � � at ����i� This
requirement ensures that if statement � is in	nitely often enabled
 it is in	nitely often taken�

The non�critical statement has no corresponding justice or compassion requirement� A process
may remain inde	nitely in such a statement� For all other statements
 the translation associates
a justice requirement of the form �at i� In program dine
 statements �� �� 
 and � each have
corresponding justice requirements�

Note that it may be possible to translate an spl program to an fds using fewer justice require�
ments
 however
 this typically requires a deeper understanding of the program
 and thus manual
translation�

As a second example we consider the asymmetric version of the dining philosophers
 program
dine�contr �dining philosophers with one contrary process�
 where the behavior of one of the
philosophers is reversed
 i�e� it 	rst lifts the right fork and then the left one� The accessibility
property 	 is valid for program dine�contr�

The third example is program mux�sem
 presented in Fig� �
 implements mutual exclusion by
semaphores� The following accessibility property is valid for program mux�sem�

	� � � �at ����� � at �����

In the following experiments we verify the accessibility property 	� for program dine and
dine�contr
 and the accessibility property 	� for program mux�sem�

In the tables summarizing our results
 we use the following notations�
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in n � integer where n � �
local y � integer where y � �

n

i	�

P �i� ��

�
������

� � loop forever do�
����
� � non�critical

� � request y
� � critical

� � release y

�
����

�
������

Figure �� Program mux�sem� Mutual Exclusion with Semaphores�

� n ! The number of processes for which the parameterized program has been tested�

� Proc� ! The veri	cation method used for the compassion requirements�

� jJ j� jCj ! The number of justice and compassion requirements in the fds DkjT���

� Time ! Timing results �in seconds��

� BDD Peak! the maximum number of allocated bdd nodes�

� Op� !The number of pre�composition �pre�image� operations invoked by algorithm feasible�

� Ext� Iter� ! The number of external while�loop iterations performed � lines ���� of
algorithm feasible ��

n Proc� jJ j jCj Time bdd Peak Op� Ext� Iter�

� nt �� � ���� ����� ��� �
cj �� � ��� ����� ��� 
ca �� � ����� ������ ���� �

� nt �� � ��� ����� ���� �
cj �� � ������ ����� ���� 
ca �� � ������� ������� ���� �

Table �� Program dine

The overall numbers of fairness requirements jJ j � jCj of the nt and cj methods are equal

but the compassion requirements of method nt have been transformed to justice requirements in
method cj� The additional justice requirements in method ca are due to the tester
 which is
generated from a more complex property�

In all our experiments on real systems
 method nt has the best results and method ca has �by
far� the worst results
 both in execution time
 and memory consumption� However
 in some cases
the number of pre�composition operations for method cj was less than that of method nt�
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n Proc� jJ j jCj Time bdd Peak Op� Ext� Iter�

� nt �� � ���� ����� ��� ��
cj �� � ���� ����� ��� 
ca �� � ����� ����� �� �

� nt �� � ���� ����� ���� �
cj �� � ����� ����� ��� �
ca �� � ������� ������� ��� �

Table �� Program dine�contr

n Proc� jJ j jCj Time bdd Peak Op� Ext� Iter�

� nt �� � ���� ��� ��� 
cj �� � ���� ����� ��� 
ca �� � ���� ���� ��� �

� nt �� � ���� ���� ��� 
cj �� � ��� ���� ��� 
ca �� � ���� ����� ��� �

 nt ��  ���� ����� ��� 
cj �� � ���� ����� ��� 
ca �� � ����� ����� �� �

� nt �� � ���� ���� ��� 
cj �� � ���� ����� ��� 
ca �� � ������� ������ �� �

Table �� Program mux�sem

����� Feasibility of Randomly Generated Graphs

The experiments for real systems were not conclusive with regard to the comparison between meth�
ods nt and cj� Although method nt has better performance than cj
 the latter sometimes requires
signi	cantly fewer pre�composition operations� In this section we present additional experiments
for comparing between the two methods�

We can view a system as a digraph where the state space of the system corresponds to the
vertex space
 and there is a directed edge from u to v in the digraph i� there is a transition from
u to v in the system�

The problem in performing experiments over any set of real examples is that they provide a
limited range of digraph patterns� Our experiments should not be biased towards any speci	c
design� Therefore
 we performed numerous experiments on random digraphs� We generate random
digraphs as suggested in �Yan����

Given a graph G with vertices V and edges E
 the order of G is n � jV j and the density of G
is d � jEj�jV j�

In the following tables
 n � ����� Each table only changes one parameter
 either the size of
the set of compassion requirements
 or the density of the random graph� Each table entry is the
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average of ��� experiments�

j C j nt cj

Time Op� Ext� Iter� Time Op� Ext� Iter�

�� ���� ���� ��� ���� ���� ���

�� ���� ����� ��� ���� ���� ���

�� ���� ����� ��� ���� ���� ���

��� ���� ���� ��� ����� ���� ���

��� ���� ����� �� ����� ����� ���

Table �� Varying compassion set size� d � �� �

Density nt cj

Time Op� Ext� Iter� Time Op� Ext� Iter�

��� ���� ��� ��� ���� ���� ���

��� ���� ����� ��� ���� ���� ���

� ���� ����� �� ���� ���� ���

��� ���� ����� �� ��� ����� ���

��� ���� ������ ��� ���� ���� ���

Table � Varying density� j C j � �� �

Table � produces results similar to those obtained for real systems� The real systems we checked
were parameterized
 with compassion requirements associated with each process� Therefore
 the
number of compassion requirements increases together with the number of processes� In method cj

each requirement introduces an additional variable
 which a�ects performance of pre�composition
operations� Therefore
 when the number of pre�composition operations is roughly the same
 using
method nt is preferable�

In Table  method cj requires less time and less pre�composition operations as density increases�
The reduced number of pre�composition operations compensates for the performance penalty of each
pre�composition operation�

����� Conclusions

In many cases
 the best results for time and memory are obtained in method nt �Compassion at the
algorithmic level�� Method nt is likely to be better for systems with big compassion sets� Method
cj requires an addition of a program variable for each compassion requirement� This decreases
the performance of pre�composition operations
 and is the reason that even though in some cases
where the number of pre�composition operations is lower in method cj
 the performance is still
worse since each pre�composition operations cost more�

By far
 the worst results occured using method ca
 where compassion is added as an antecedent
of the property� The tester generated for such modi	ed speci	cations has four additional variables

one for each principle temporal operator in the formula �� � p� � � q�
 and also has additional
justice requirements� These account for the decreased performance�
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��� Reducing the Number of Justice Conditions

When we de	ne the fds associated with a given program
 we introduce a justice requirement for each
of the program locations
 to ensure that the process does not remain in that location inde	nitely�
However
 this creates many justice conditions which may slow the algorithm down� In the following

we verify the e�ect of reducing the number of justice requirements
 on the performance of algorithm
feasible�

Fig� �� presents a toy example designed to allow us to create an fds which corresponds to the
program
 such that the number of justice requirements is greatly reduced when compared to the
fds which would normally be generated� Each process of program cycle may remain at location
� inde	nitely� However
 once the process executes � it must not remain stuck in one of the other
program locations
 rather
 it should cycle through the rest of the program locations until it returns
to ��

The idle statement makes a nondeterministic choice between either remaining forever in the
current program location
 or advancing to the next statement� The skip statement does nothing
except to advance to the next statement�

n

j	�
P �j� ��

�
�������

� � loop forever do�
�����

� � idle

� � skip
���
m � skip

�
�����

�
�������

Figure ��� Program cycle�

For each process i
 program cycle has program locations �� � � � � m� The standard fds corre�
sponding to program cycle contains
 for each process i and for each � � j � m� j 
� � 
 a justice
condition of the form �at j� Therefore
 a program of p processes and m locations in each process
has p � �m � �� justice conditions� In the modi	ed fds each process i has only a single justice
condition� at ��

We verify the following accessibility property
 for the 	rst process�

	� � � �at � � � at m�

Tables � and � compare executions of programs with � and �� program locations� These tables
show a slight improvement when less justice conditions are generated� However
 program cycle

was tailored to simplify the reduction of justice conditions� In other programs we have checked

such as dine
 the price of reducing the number of justice conditions was either adding a single

complex justice requirement
 or adding variables to the veri	ed system� In these cases
 reducing
the number of justice requirements increased execution time of the feasibility algorithm�

Note that for justice requirements of the form �at i� line � of algorithm feasible converges
in only two steps� Although the standard
 automatic way for generating an fds from a program
produces more justice requirements than what could optimally be produced by hand
 the price for
processing each of these justice requirement is small� This can explain our experimental results�

We thus conclude that reducing the number of justice conditions is usually not recommended�
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Table �� Six Program Locations

N  Justice Cond� � Justice Cond�

�� ��� ����

�� ���� ����

�� ���� �����

�� ����� �����

�� ����� ����

�� ����� �����

Table �� Ten Program Locations

N � Justice Cond� � Justice Cond�

� ���� ����

� ���� ����

�� ����� ����

�� ���� �����

�� ����� ����

�� ����� �����
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