Exercise 1. Express in *FOL* the following UML class diagram.

Exercise 2. Consider the following simple UML class diagram, and express in *FOL* the following boolean queries stating which ones are CQs (do not use abbreviations for cardinalities):

- 1. Return persons who like an appetizer and a main course.
- 2. Check if there exists a person who likes two appetizers and a main course.
- 3. Check if there exists a person who likes exactly one appetizer.
- 4. Return persons who like all appetizers.
- 5. Return persons who likes only appetizers.
- 6. Check if there is a pair of persons such that the first likes all appetizers that the second likes.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land \langle next \rangle X) \lor (b \land \langle next \rangle Y))$ and the CTL formula $AG(a \supset (EXEXb \land EXEFa))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Compute the certain answers to the CQ $q(x) \leftarrow Person(x), Person(y), Likes(x, z), Likes(z, y)$ over the following incomplete database (naive tables), and explain formally how you obtained the result:

D	Likes	
Person	ls	ld
Swith	Smith	$null_1$
Smith	$null_1$	Brown
$null_1$	Brown	$null_2$
Brown	Green	White
$null_2$	White	$null_2$
Green	$null_2$	White

Exercise 5. Compute the weakest precondition for getting $\{x = 100\}$ by executing the following program:

```
x := 90 - y;
if (x = 0) then {
    if (y > 10) then
        x := y - x;
    else x := 10 - x
}
x := x + y;
y := 10 + y
```