Formal Methods - Jan. 22, 2014

(Time to complete the test: 2 hours)

Exercise 1. Consider the following UML class diagram.

1. Express it in $F O L$.
2. Express it in $D L-L_{\text {ite }}^{\mathcal{A}}, ~$, highlighting parts that are not expressible.
3. Given the ABox $A=\{C(c)\}$ and the boolean conjunctive query $q(x) \leftarrow \operatorname{Rab}(x, y), \operatorname{Rab}(y, z), A(z)$, return the certain answer by exploiting the $D L$-Lite $e_{\mathcal{A}}$ rewriting algorithm.

Solution

$$
\begin{array}{ll}
q(x) \leftarrow \operatorname{Rab}(x, y), \operatorname{Rab}(y, z), A(z) & R a c \sqsubseteq R a b \\
q(x) \leftarrow \overline{\operatorname{Rac}(x, y)}, \overline{\operatorname{Rab}(y, z), A(z)} & \operatorname{Rac} \sqsubseteq \operatorname{Rab} \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{\operatorname{Rac}(y, z)}, \overline{A(z)} & C \sqsubseteq A \\
q(x) \leftarrow \operatorname{Rac}(x, y), \operatorname{Rac}(y, z), \overline{C(z)} & \exists \operatorname{Rac} \sqsubseteq C \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{\operatorname{Rac}(y, z)}, \overline{\operatorname{Rac}(w, z)} & w=y, z=z \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{\operatorname{Rac}(y, z)} & A \sqsubseteq \exists \operatorname{Rac} \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{A(y)} & C \sqsubseteq A \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{C(y)} & \exists \operatorname{Rac} \sqsubseteq C \\
q(x) \leftarrow \operatorname{Rac}(x, y), \overline{\operatorname{Rac}(v, y)} & x=v, y=y \\
q(x) \leftarrow \overline{\operatorname{Rac}(x, y)} & A \sqsubseteq \exists \operatorname{Rac} \\
q(x) \leftarrow \overline{A(x),} & C \sqsubseteq A \\
q(x) \leftarrow \overline{C(x)} & \Longrightarrow x=c
\end{array}
$$

Exercise 2. Model check the Mu-Calculus formula $\mu X . \nu Y .(a \vee[n e x t] X) \wedge[n e x t] Y$ and the CTL formula $A F A G a$ against the following transition system:

Exercise 3. Check whether $\mathrm{CQ} q_{1}$ is contained in $\mathrm{CQ} q_{2}$, reporting canonical DBs and homomorphism:

$$
\begin{aligned}
& q_{1}\left(x_{r}\right) \leftarrow e\left(x_{r}, x_{g}\right), e\left(x_{g}, x_{b}\right), e\left(x_{b}, x_{r}\right) . \\
& q_{2}(x) \leftarrow e(x, y), e(y, z), e(z, x), e(z, v) e(v, w), e(w, z) .
\end{aligned}
$$

Solution

- Freeze:

$$
\begin{aligned}
& q_{1}(r) \leftarrow e\left(r, x_{g}\right), e\left(x_{g}, x_{b}\right), e\left(x_{b}, r\right) . \\
& q_{2}(r) \leftarrow e(r, y), e(y, z), e(z, r), e(z, v) e(v, w), e(w, z) .
\end{aligned}
$$

- Build canonica DB of q_{1}| r | x_{g} |
| :---: | :---: |
| x_{g} | x_{b} |
| x_{b} | r |
- Guess assignment of (existential) variables in q_{2} that makes the atoms in q_{2} true in the canonical DB of q_{1}.

$$
\begin{aligned}
& y=x_{g} \\
& z=x_{b} \\
& v=r \\
& w=x_{g}
\end{aligned}
$$

- Build canonical DB for the query q_{2}.
- Check that the assignment extended to constants (interpreted as themselves) is an homomorphism.

Exercise 4. Compute the certain answers to the CQ $q(x) \leftarrow M(x, y), E(y)$ over the incomplete database (naive tables):

$$
E(\text { mployee }) \quad M(\text { anager })
$$

name
Smith
null $_{1}$
Brown

$m g r$	mgd
Smith	null $_{1}$
null $_{1}$	Brown
Brown	null $_{2}$

Solution

- Evaluate q over the database as it was a complete database
- Filter out all answers where null appears (certain answers are constituted by tuples of constants in Cons)

Answer: $\{$ Smith $\}$

Exercise 5. Compute the weakest precondition for getting $\{x=100\}$ by executing the following program:

$$
\begin{aligned}
& x:=y+50 ; \\
& \text { if }(y>0) \text { then } \\
& x:=y+100 \\
& \text { else } x:=y+200 ; \\
& x:=x+y ;
\end{aligned}
$$

Solution

$\{y=-50\}$
$x:=y+50 ;$
$\{(y>0 \& y=0) \mid(y=<0 \& y=-50)\}=\{y=-50\}$
if (y > 0) then
$\{y+y+100=100\}=\{y=0\}$

```
        {x+y=100}
        {y+200+y=100}={y=-50}
else x := y + 200;
    {x+y=100}
{x+y=100}
x := x + y;
{x=100}
```

