
SAPIENZA Università di Roma – MSc. in Engineering in Computer Science
Formal Methods – Feb. 18, 2014

(Time to complete the test: 2 hours)

Exercise 1. Consider the following UML class diagram.

C

B

D

Rbd
Rac

1..1

{disjoint,complete}

1..*

A

1. Express it in FOL.

2. Express it in DL-LiteA, highlighting parts that are not expressible.

3. Given the ABox A = {A(a)} and the conjunctive query q(x) ← Rac(x, y), Rbd(y, z), A(z), return the certain
answer by exploiting the DL-LiteA rewriting algorithm.

Solution

q(x)← Rac(x, y), Rbd(y, z), A(z) B v A
q(x)← Rac(x, y), Rbd(y, z), B(z) D v B
q(x)← Rac(x, y), Rbd(y, z), D(z) ∃Rbd− v D
q(x)← Rac(x, y), Rbd(y, z), Rbd(w, z) w = y, z = z

q(x)← Rac(x, y), Rbd(y, z) B v ∃Rbd
q(x)← Rac(x, y), B(y) C v B
q(x)← Rac(x, y), C(y) ∃Rac− v C
q(x)← Rac(x, y), Rac(v, y) v = x, y = y

q(x)← Rac(x, y) A ⊆ ∃Rac
q(x)← A(x) =⇒ x = a

Exercise 2. Model check the Mu-Calculus formula νX.µY.(a ∨ 〈next〉X) ∧ [next]Y and the CTL formula
EG(¬a ⊃ AXAFa) (showing its translation in Mu-Calculus) against the following transition system:

s2
{a}

s4
{a,b}

s1
{}

s3
{b}

Solution
We denote by Xi a set of states and by Xi a new proposition such that JXiK = Xi. Similarly for Yi and Yi. We need to
compute JνX.µY.(a ∨ 〈next〉X) ∧ [next]Y K

X0 = {1, 2, 3, 4}
X1 = JµY.(a ∨ 〈next〉X0) ∧ [next]Y K

Y10 = ∅
Y11 = J(a ∨ 〈next〉X0) ∧ [next]Y0K
= {s1, s2, s3, s4} ∩ PreA(∅) = ∅

X1 = ∅
X2 = JµY.(a ∨ 〈next〉X1) ∧ [next]Y K

Y20 = ∅
Y21 = J(a ∨ 〈next〉X1) ∧ [next]Y0K = {s1, s2, s3, s4} ∩ PreA(∅) = ∅

X2 = ∅

So the TS does not satisfy the formula, since its initial state s1 is not in JνX.µY.(a ∨ 〈next〉X) ∧ [next]Y K.

Notice that the fact that we are looking for a least fixpoint of a variable (Y) in a next operator [next]Y that occurs in
AND with a complex expression (µY.(a ∨ 〈next〉Xi) ∧ [next]Y trivializes the computation of the fixpoint to the empty
set

Checking the CTL formula and translating it into mu-calculus is left as an exercise.

Exercise 3. Consider the following predicates Employee(x) saying that x is an employee, Manages(x, y) saying that
x manages y, and MSc(x) saying that x is a person with master degree. Express in FOL the following boolean queries
(stating which ones are CQs):

1. There exists an employee with master degree that manages someone with the master degree.

2. There exists an employee with master degree that manages at least two people with the master degree.

3. There exists an employee that manages someone with the master degree and someone without the master degree.

4. There exists an employee that manages only people with master degree.

5. There exists an employee that manages all the people with master degree.

Solution

1. There exists an employee with master degree that manages someone with the master degree

∃x.Employee(x) ∧MSc(x) ∧Manages(x, y) ∧MSc(y) (CQ)

2. There exists an employee with master degree that manages at least two people with the master degree

∃x.Employee(x) ∧MSc(x) ∧Manages(x, y) ∧MSc(y) ∧Manages(x, z) ∧MSc(z) ∧ y 6= z

3. There exists an employee that manages someone with the master degree and someone without the master degree

∃x.Employee(x) ∧Manages(x, y) ∧MSc(y) ∧Manages(x, z) ∧ ¬MSc(z)

4. There exists an employee that manages only people with master degree.

∃x.Employee(x) ∧ (∀y.Manages(x, y) ⊃MSc(y))

5. There exists an employee that manages all the people with master degree.

∃x.Employee(x) ∧ (∀y.Msc(y) ⊃Manages(x, y))

Exercise 4. Compute the certain answers to the CQ q(x) ← Employee(x),Manages(x, y) over the incomplete
database (naive tables):

Employee

name
Smith
null1
Brown

Manages

mgr mgd
Green Smith
Smith null1
null1 Brown
Brown null2

Solution

• Evaluate q over the database as it was a complete database

• Filter out all answers where null appears (certain answers are constituted by tuples of constants in Cons)

Answer: {Smith,Brown}

Exercise 5. Compute the weakest precondition for getting {x = y} by executing the following program:

x := y + 1;
if (y > 0) then
x := x + y

else x := y + 100;
x := x + y;

Solution

{(y > 0 & y + 1 + y = 0) | (y = -100)} = {(y > 0 & y = -0.5 | y = -100} = {false | y = -100}

x := y + 1;

{(y > 0 & x + y = 0) | (y =< 0 & y=-100)} = {(y > 0 & x + y = 0) | (y = -100)}

if (y > 0) then

{x + y = 0}

x := x + y

{x=0}

{y + 200 = 0} = {y = -100}

else x := y + 100;

{x=0}

{x+y = y} = {x=0}

x := x + y;

{x=y}

