(Time to complete the test: 2 not

- 1. Express it in FOL.
- 2. Express it in *DL-Lite*_A, highlighting the parts that are not expressible.
- 3. Given the ABox $\mathcal{A} = \{A(c)\}$, check formally if the diagram, as expressed in *DL-Lite*_A, is consistent with \mathcal{A} .

Exercise 2. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land \langle next \rangle X) \lor \langle next \rangle Y)$ and the CTL formula $AG(EX(EXa \lor EXEXa))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 3. Consider the following predicates: Person(x), saying that x is a person, Appetizer(x), saying that x is a gournet appetizer, MainCourse(x), saying that x is a gournet main course, and likes(x, y), saying that x likes y. Express in FOL the following boolean queries, stating which ones are CQs (do not use abbreviations for cardinalities):

- 1. There exists a person who likes an appetizer and a main course.
- 2. There exists a person who likes two appetizers and a main course.
- 3. There exists a person who likes exactly one main course.
- 4. There exists a person who likes all appetizers.
- 5. Return the persons who like no main courses.
- 6. Return the pairs of persons such that the first likes all appetizers that the second likes, but not viceversa.

Exercise 4. Compute the certain answers to the CQ $q(x) \leftarrow Person(x), Person(y), Likes(x, z), Likes(z, y)$ over the following incomplete database (naive tables), and discuss how you obtained the result:

D Likes		
Person	ls	ld
Smith	Smith	$null_1$
	$null_1$	Brown
null ₁	Brown	$null_2$
BIOWII	Green	White
	White	$null_2$
Green	$null_2$	White

Exercise 5. Compute the weakest precondition for getting $\{x = 100\}$ by executing the following program:

```
x := 90 - y;
if (x = 0) then {
    if (y > 10) then
        x := y - x;
    else x := 10 - x
}
x := x + y;
y := 10 + y
```