
SAPIENZA Università di Roma – MSc. in Engineering in Computer Science
Formal Methods – September 12, 2014

(Time to complete the test: 2 hours)

Exercise 1. Consider the following UML class diagram.

B

A

C

Qae

1..1

{disjoint,complete}

1..*

Rcd0..* 1..* D

E

<<subset>>

1. Express it in FOL.

2. Express it in DL-LiteA, highlighting the parts that are not expressible.

3. Given the ABoxA = {A(c)}, compute the certain answer to the query q(x) : −Rcd(x, y), D(y), using the rewriting technique
for DL-LiteA.

Exercise 2. Model check the Mu-Calculus formula νX.µY.((b ∧ 〈next〉X) ∨ 〈next〉Y ) and the CTL formula
AG(AFa ∧ EFb ∧ EG¬b) (showing its translation in Mu-Calculus) against the following transition system:

s1
{}

s3
{}s2

{a}
s4
{b}

Exercise 3. Consider the following predicates: Supplier(x, y), saying that x is a supplier in city y; Item(x, y), saying that item x
has color y; and Sells(x, y, z) saying that supplier x sells item y at price z. Express in FOL the following boolean queries, stating
which ones are CQs (do not use abbreviations for cardinalities):

1. There exists a supplier in NY selling a blue item.
2. There exists a supplier in NY selling at least two blue items.
3. There exists a supplier in NY selling only blue items
4. There exists a supplier in NY selling all blue items.
5. Return the pairs of suppliers such that the first supplier sells at least one item at a cheaper price than the second one.
6. Return the pairs of suppliers such that the first supplier sells all items that the second one sells, and at a cheaper price.

Exercise 4. Compute the certain answers to the following CQs over the following incomplete database (naive tables), and discuss
how you obtained the result:

q(x)← Sells(x, y), Item(y, z) q(x, z)← Sells(x, y), Item(y, z)

Sells
supplier item

Smith null1
null2 item1
Brown null3
Green item2
White null5
null4 null3

Item
item color

item1 blue
null1 red
item2 null10
null3 null11

Exercise 5. Check the truth of the following Hoare triple, assuming as invariant: i ≤ 64, explaining in details the technique used:

{i=1} while(i<64) do i:= i*2 {i=64}


