Exercise 1. Consider the following UML class diagram.

- 1. Express it in FOL.
- 2. Express it in DL-Lite_A, highlighting the parts that are not expressible.
- 3. Given the ABox $\mathcal{A} = \{A(c)\}$, compute the certain answer to the query q(x) : -Rcd(x, y), D(y), using the rewriting technique for *DL-Lite*_{\mathcal{A}}.

Exercise 2. Model check the Mu-Calculus formula $\nu X.\mu Y.((b \land \langle next \rangle X) \lor \langle next \rangle Y)$ and the CTL formula $AG(AFa \land EFb \land EG \neg b)$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 3. Consider the following predicates: Supplier(x, y), saying that x is a supplier in city y; Item(x, y), saying that item x has color y; and Sells(x, y, z) saying that supplier x sells item y at price z. Express in FOL the following boolean queries, stating which ones are CQs (do not use abbreviations for cardinalities):

- 1. There exists a supplier in NY selling a blue item.
- 2. There exists a supplier in NY selling at least two blue items.
- 3. There exists a supplier in NY selling only blue items
- 4. There exists a supplier in NY selling all blue items.
- 5. Return the pairs of suppliers such that the first supplier sells at least one item at a cheaper price than the second one.
- 6. Return the pairs of suppliers such that the first supplier sells all items that the second one sells, and at a cheaper price.

Exercise 4. Compute the certain answers to the following CQs over the following incomplete database (naive tables), and discuss how you obtained the result:

$$q(x) \leftarrow Sells(x, y), Item(y, z) \qquad q(x, z) \leftarrow Sells(x, y), Item(y, z)$$

Sells			
supplier	item	Item	
Smith	$null_1$	item	color
$null_2$	item1	item1	blue
Brown	$null_3$	$null_1$	red
Green	item2	item2	$null_{10}$
White	$null_5$	$null_3$	$null_{11}$
$null_4$	$null_3$		

{i=1} while(i<64) do i:= i*2 {i=64}