SAPIENZA Università di Roma - MSc. in Engineering in Computer Science
 Formal Methods - September 12, 2014
 (Time to complete the test: 2 hours)

Exercise 1. Consider the following UML class diagram.

1. Express it in $F O L$.
2. Express it in D L-Lite $_{\mathcal{A}}$, highlighting the parts that are not expressible.
3. Given the $\mathrm{ABox} \mathcal{A}=\{A(c)\}$, compute the certain answer to the query $q(x):-R c d(x, y), D(y)$, using the rewriting technique for $D L-$ Lite $_{\mathcal{A}}$.

Exercise 2. Model check the Mu-Calculus formula $\nu X . \mu Y .((b \wedge\langle n e x t\rangle X) \vee\langle n e x t\rangle Y)$ and the CTL formula $A G(A F a \wedge E F b \wedge E G \neg b$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 3. Consider the following predicates: $\operatorname{Supplier}(x, y)$, saying that x is a supplier in city y; $\operatorname{Item}(x, y)$, saying that item x has color y; and $\operatorname{Sells}(x, y, z)$ saying that supplier x sells item y at price z. Express in $F O L$ the following boolean queries, stating which ones are CQs (do not use abbreviations for cardinalities):

1. There exists a supplier in NY selling a blue item.
2. There exists a supplier in NY selling at least two blue items.
3. There exists a supplier in NY selling only blue items
4. There exists a supplier in NY selling all blue items.
5. Return the pairs of suppliers such that the first supplier sells at least one item at a cheaper price than the second one.
6. Return the pairs of suppliers such that the first supplier sells all items that the second one sells, and at a cheaper price.

Exercise 4. Compute the certain answers to the following CQs over the following incomplete database (naive tables), and discuss how you obtained the result:

$$
\begin{aligned}
q(x) \leftarrow \operatorname{Sells}(x, y), \operatorname{Item}(y, z) & q(x, z) \leftarrow \operatorname{Sells}(x, y), \operatorname{Item}(y, z) \\
\begin{array}{|c|c|c|c|}
\hline \text { Sells } \\
\text { supplier } & \text { item }^{\prime} \\
\hline \text { Smith } & \text { null }_{1} \\
\text { null }_{2} & \text { item1 } \\
\text { Brown } & \text { null }_{3} \\
\text { Green } & \text { item2 } \\
\text { White } & \text { null }_{5} \\
\text { null }_{4} & \text { null }_{3} \\
\hline
\end{array} & \begin{array}{|c|c|}
\hline \text { item } \\
\text { item } & \text { color } \\
\hline \text { item1 } & \text { blue } \\
\text { null }_{1} & \text { red } \\
\text { item2 } & \text { null }_{10} \\
\text { null }_{3} & \text { null }_{11} \\
\hline
\end{array}
\end{aligned}
$$

Exercise 5. Check the truth of the following Hoare triple, assuming as invariant: $i \leq 64$, explaining in details the technique used:

$$
\{i=1\} \quad \text { while }(i<64) \text { do } i:=i * 2 \quad\{i=64\}
$$

