Exercise 1. Consider the following UML class diagram.

1. Express it in FOL.
2. Express it in DL-Lite\(_A\), highlighting the parts that are not expressible.
3. Given the ABox \(A = \{ A(c) \} \), compute the certain answer to the query \(q(x) : -Rcd(x, y), D(y) \), using the rewriting technique for DL-Lite\(_A\).

Exercise 2. Model check the Mu-Calculus formula \(\nu X.\mu Y.((b \land \langle\text{next}\rangle X) \lor \langle\text{next}\rangle Y) \) and the CTL formula \(AG(AFa \land EFb \land EG\neg b) \) (showing its translation in Mu-Calculus) against the following transition system:

Exercise 3. Consider the following predicates: \(\text{Supplier}(x, y) \), saying that \(x \) is a supplier in city \(y \); \(\text{Item}(x, y) \), saying that item \(x \) has color \(y \); and \(Sells(x, y, z) \) saying that supplier \(x \) sells item \(y \) at price \(z \). Express in FOL the following boolean queries, stating which ones are CQs (do not use abbreviations for cardinalities):

1. There exists a supplier in NY selling a blue item.
2. There exists a supplier in NY selling at least two blue items.
3. There exists a supplier in NY selling only blue items.
4. There exists a supplier in NY selling all blue items.
5. Return the pairs of suppliers such that the first supplier sells at least one item at a cheaper price than the second one.
6. Return the pairs of suppliers such that the first supplier sells all items that the second one sells, and at a cheaper price.

Exercise 4. Compute the certain answers to the following CQs over the following incomplete database (naive tables), and discuss how you obtained the result:

\[q(x) \leftarrow Sells(x, y), \text{Item}(y, z) \quad q(x, z) \leftarrow Sells(x, y), \text{Item}(y, z) \]

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Item</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>null2</td>
<td>item1</td>
</tr>
<tr>
<td>Brown</td>
<td>null3</td>
<td>item2</td>
</tr>
<tr>
<td>Green</td>
<td>null4</td>
<td>null5</td>
</tr>
<tr>
<td>White</td>
<td>null5</td>
<td>null6</td>
</tr>
</tbody>
</table>

Exercise 5. Check the truth of the following Hoare triple, assuming as invariant: \(i \leq 64 \), explaining in details the technique used:

\[\{i=1\} \text{ while}(i<64) \text{ do } i:= i*2 \quad \{i=64\} \]