Formal Methods - Jan. 22, 2015

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL.

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation.

- 1. Check whether the instantiation (once completed) is correct (and explain why it is or it is not).
- 2. Express in FOL and evaluate the following queries:
 - (a) Return the characters that appear at least in one map.
 - (b) Return the characters that appear in all maps.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((b \land \langle next \rangle X) \lor \langle next \rangle Y)$ and the CTL formula $EG(AX(\neg a \lor AFb))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Compute the weakest precondition for getting $\{x = 0\}$ by executing the following program:

```
x := 50 + y;
if (x > 50) then {
  if (y > 0) then
    x := x - y;
  else y := -y
}
else x := x + y;
y := y + 50
```

Exercise 5. Given the following conjunctive queries:

```
q1(x) :- edge(x,y), edge(y,y), edge(y,z), edge(z,y).
q2(x) :- edge(x,y), edge(y,z), edge(x,z), edge(x,v), edge(v,z), edge(v,y).
```

check whether q1 is contained into q2, explaining the technique used and, in case of containment, showing the homomorphism between the canonical databases.