Exercise 1. Express the following UML class diagram in *FOL*.

Worker	Director Jim Rick		Department		works In		directs		
John		TempDir Ann	ICT	[John	ICT	Ann	ICT]
Mary			HR		Mary	ICT	Jim	HR	
Joe			Management		Joe	HR	Rick	Management	J

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Return the directors that direct a department with at least one worker.
 - (b) Return the departments whose employees are all directors.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land \langle next \rangle X) \lor (\neg b \land \langle next \rangle Y))$ and the CTL formula $(AGEFa) \lor E(aUb)$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Check whether the following Hoare triple is correct, using as *invariant* $i \le 10$.

{i=0} while(i<10) do i:= i+1 {i=10}

Exercise 5. Given the following boolean conjunctive queries:

```
q1() :- edge(r,b), edge(b,g), edge(g,r).
q2() :- edge(x,y), edge(y,z), edge(z,x), edge(z,v), edge(v,w), edge(w,z).
```

check whether q1 is contained into q2, explaining the technique used and, in case of containment, showing the homomorphism between the canonical databases.