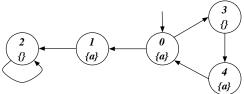

SAPIENZA Università di Roma – MSc. in Engineering in Computer Science

Formal Methods – December 16, 2015 - Final Test A

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL.



Exercise 2. Consider the above UML class diagram and the following (partial) instantiation.

Sailors							Harbor	been	
	Ship	TugBoat	on	aboard	ince	ommand		Constitution	Napoli
Dustin		Bumpy	Dustin	Constitution	little		Napoli	Constitution	Calais
Lubber	Constitution	Lumpy	Rustv	Bumpy	Lubber	Constitution	Calais	Constitution	Piraeus
Rusty		Lumpy	Rusty	Dumpy	J		Piraeus		
								Bumpy	Calais

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Return the sailors that have been on board of a boat which has been in Piraeus.
 - (b) Check whether there exists a harbor in which there have been at least two boats.
 - (c) Return the boats that have been in all harbors.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land \langle next \rangle X) \lor ([next]Y))$ and the CTL formula $EF(AG(a \supset AX \neg a))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Consider the following transition systems:

Write the definition of bisimilarity and compute the bisimilarity relation for the two transition system.

Exercise 5. Given the following boolean conjunctive queries (with a and b constants):

q1() :-
$$e(a,y), e(x,y), e(x,b)$$

q2() :- $e(a,y), e(x,y), e(x,z), e(w,z), e(w,b)$

check whether q1 is contained into q2, explaining the technique used and, in case of containment, showing the homomorphism between the canonical databases.