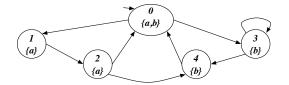

Exercise 1. Express the following UML class diagram in FOL:

Exercise 2. Consider the above UML class diagram and the following (partial) instantiation:

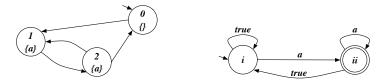

Customer				nrowides	contacts/cost				
Customer	BCustumers	Services s1 s2 s3	Provider p1 p2	provides p1 s1 p1 s2 p1 s3 r2 r2	c1 c1 c1 b2	s1 s2 s3 s1	p1 p1 p1 p2	90.0 80.0 50.0 170,0	
<u>c4</u>				p2 s2	b2	s2	p2	100,0	

1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.

2. Express in FOL the following queries and evaluate them over the completed instantiation:

- (a) Check whether there is a customer with contract with two providers for the same service.
- (b) Return those customers that have contracts only for one service.
- (c) Return those customers that have a contracts with the same provider for all their services.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land [next]X) \lor (b \land [next]Y))$ and the CTL formula $AF(EG(a \supset EXAXb))$ (showing its translation in Mu-Calculus) against the following transition system:


Exercise 4. Check whether CQ q_1 is contained in CQ q_2 , reporting canonical DBs and homomorphism:

$$\begin{array}{rcl} q_1(x_r) & \leftarrow & e(x_r, x_g), e(x_g, x_b), e(x_b, x_r). \\ q_2(x) & \leftarrow & e(x, y), e(y, z), e(z, x), e(z, v)e(v, w), e(w, z). \end{array}$$

Exercise 5. Check whether the following FOL formula is valid, by using tableaux:

$$(\forall x.P(x) \supset Q(x)) \supset (\exists x.P(x) \supset \exists x.Q(x))$$

Exercise 6 (optional). ¹ Model check the LTL formula $\Diamond \Box \neg a$ against the following transition system, by considering that the Büchi automaton for $\neg(\Diamond \Box \neg a)$ is the one below:

¹The student can get the maximum grade even without doing Exercise 6.