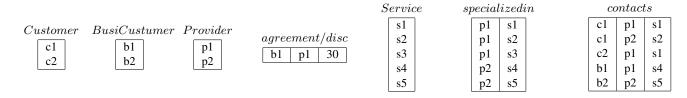
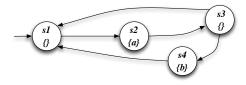

SAPIENZA Università di Roma – MSc. in Engineering in Computer Science


Formal Methods – July 12, 2019

(Time to complete the test: 2 hours)

Exercise 1. Express the following UML class diagram in FOL:



Exercise 2. Consider the above UML class diagram and the following (partial) instantiation:

- 1. Check whether the above instantiation, once completed, is correct, and explain why it is or it is not.
- 2. Express in FOL the following queries and evaluate them over the completed instantiation:
 - (a) Return those providers that are specialized in at least two services.
 - (b) Return those business customers that have contracts only with providers with whom they have an agreement.
 - (c) Return those business customers that have contracts with all providers with whom have an agreement .
 - (d) Check whether there exists a customer with contracts for all services.

Exercise 3. Model check the Mu-Calculus formula $\nu X.\mu Y.((a \land \langle next \rangle X) \lor ([next] \neg b \land \langle next \rangle Y)$ and the CTL formula $EG(AFa \land (EFb \lor AG \neg b))$ (showing its translation in Mu-Calculus) against the following transition system:

Exercise 4. Check whether the Hoare triple below is correct, by using $(x \ge 0 \land y \ge 0 \land x + y = 23)$ as invariant:

$$\{x = 23 \land y = 0\}$$
 while(x>0) do (x=x-1; y:= y+1) $\{y = 23\}$

Exercise 5. Check whether the following FOL formula is valid, by using tableaux:

$$(\forall x.(A(x) \equiv B(x))) \supset ((\forall y.A(y)) \equiv (\forall z.B(z)))$$

Exercise 6 (optional). Model check the LTL formula $\lozenge \Box \neg a$ against the following transition system, by considering that the Büchi automaton for $\neg(\lozenge \Box \neg a)$ is the one below:

¹The student can get the maximum grade even without doing Exercise 6.