Introduction

Behavior Composition in the Presence of Failure

Sebastian Sardina

RMIT University, Melbourne, Australia Fabio Patrizi & Giuseppe De Giacomo Sapienza Univ. Roma, Italy

KR'08, Sept. 2008, Sydney Australia

There are at least two kinds of games. One could be called finite, the other infinite.

A finite game is played for the purpose of winning ...

... an infinite game for the purpose of continuing the play.

Finite and Infinite Games J. P. Carse

Behavior composition

Given:

- a set of available behaviors B_1, \ldots, B_n
- a target behavior T

we want to realize T by delegating actions to B_1, \ldots, B_n

i.e.: *control* the concurrent execution of B_1, \ldots, B_n so as to *mimic* T over time

4

Behavior composition: synthesis of the controller

Behavior composition vs Planning

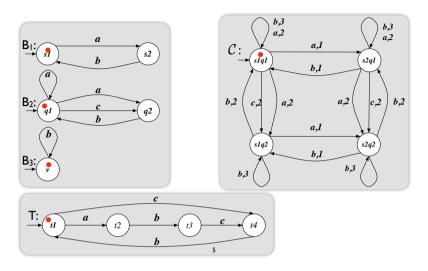
Planning

- Operators: atomic
- Goal: desired state of affair
- Finite game: compose operator sequentially so as to reach the goal
- Playing strategy: plan

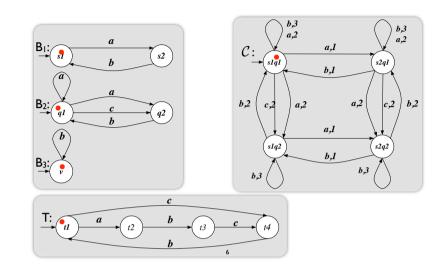
Behavior composition

- "Operators": available transition systems
- "Goal": target transition system
- Infinite game: compose available transition systems concurrently so as to play the target transition systems
- Playing strategy: composition controller

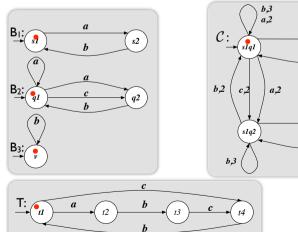
Example

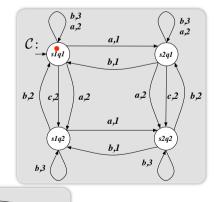


Example



Example





Synthesizing a composition

Techniques for computing compositions:

- Reduction to PDL SAT [JCAI07, AAAI07, VLDB05, ICSOC03]
- Simulation-based
- LTL synthesis as model checking of game structure [ICAPS08]

8

All techniques are for finite state behaviors

Simulation-based technique

Directly based on

"..., *control* the concurrent execution of B₁,...,B_n so as to *mimic* T "

Note this is possible ...

.... if the concurrent execution of $B_1, ..., B_n$ can mimic T

Thm: this is possible iff

... the asynchronous (Cartesian) product C of B_1, \ldots, B_n can (ND-)simulate T

9

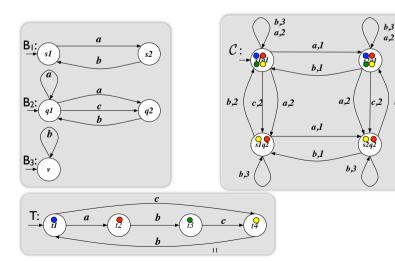
Simulation relation

- Given two transition systems $T = \langle A, S_T, t^0, \delta_T \rangle$ and $C = \langle A, S_C, s_C^0, \delta_C \rangle$ a (**ND**-)**simulation** is a relation R between the states $t \in T$ an $(s_1, .., s_n)$ of C such that:
 - (t, $s_1,..,s_n$) $\in R$ implies that
 - for all $t \rightarrow_a t'$ exists a $B_i \in C$ s.t.
 - $\exists s_i \rightarrow_a s'_i \text{ in } B_i$
 - $\forall s_i \rightarrow_a s'_i \text{ in } B_i \Rightarrow (t', s_1,..,s'_i,..,s_n) \in R$
 - If exists a simulation relation *R* such that (t⁰, s_C⁰) ∈ *R*, then we say that **T** is simulated by C.
 - Simulated-by is (i) a simulation; (ii) the largest simulation.

Simulated-by is a coinductive definition

Example

b,2



Simulation relation (cont.)

 Algorithm Compute (ND-)simulation

 Input: target behavior T = <A, S_T, t⁰, δ_T, F_T> and (Cart. prod. of) available behaviors C = <A, S_C, s_{C⁰}, δ_C, F_C>

 Output: the simulated-by relation (the largest simulation)

Body

```
 \begin{split} & \mathsf{R} = \emptyset \\ & \mathsf{R}' = \mathsf{S}_T \times \mathsf{S}_\mathcal{C} \\ & \textbf{while} \; (\mathsf{R} \neq \mathsf{R}') \; \{ \\ & \mathsf{R} := \mathsf{R}' \\ & \mathsf{R}' := \mathsf{R}' \quad - \; \{(\mathsf{t}, \mathsf{s}_1, .., \mathsf{s}_n) \mid \exists \; \mathsf{t} \rightarrow_a \mathsf{t}' \; \text{in} \; \mathsf{T} \land \\ & \forall \; \mathsf{B}_i \; . \; \neg \exists \; \mathsf{s} \rightarrow_a \mathsf{s}' \; \text{in} \; \mathsf{B}_i \; \lor \; \exists \; \mathsf{s}_i \rightarrow_a \mathsf{s}'_i \; \text{in} \; \mathsf{B}_i \land (\mathsf{t}', \; \mathsf{s}_1, .., \mathsf{s}'_i, .., \mathsf{s}_n) \not \in \mathsf{R}' \; \} \\ & \} \\ & \textbf{return} \; \mathsf{R}' \\ & \textbf{End} \end{split}
```

Using simulation for composition

Given the largest simulation R of T by C, we can build every composition through the **controller generator (CG)**.

 $\begin{array}{l} \textbf{CG} = < A, \ [1,...,n], \ S_r, \ s_r^0, \ \delta, \ \omega > \ with \\ \bullet \ A: \ the \ \textbf{actions} \ shared \ by \ the \ behaviors \\ \bullet \ [1,...,n]: \ the \ \textbf{identifiers} \ of \ the \ actional \ shared \ behaviors \\ \bullet \ S_r = \ S_T \times \ S_1 \times \ldots \times \ S_n: \ the \ \textbf{states} \ of \ the \ controller \ generator \\ \bullet \ s_r^0 = (t^0, s^0_1, \ldots, s^0_n): \ the \ \textbf{initial state} \ of \ the \ controller \ generator \\ \bullet \ (S_r \times A \rightarrow \ 2^{[1,...,n]}: \ the \ \textbf{output function}, \ defined \ as \ follows: \end{array}$

$\omega(t, s_1, .., s_n, a) = \{i \mid B_i \text{ can do } a \text{ and remain in } R\}$

• $\delta \subseteq S_r \times A \times [1,...,n] \to S_r$: the state transition function, defined as follows

 $(t, s_1, .., s_i, .., s_n) \rightarrow_{a,i} (t', s_1, .., s'_i, .., s_n) \text{ iff } i \in \omega(t, s_1, .., s_i, .., s_n, a)$

13

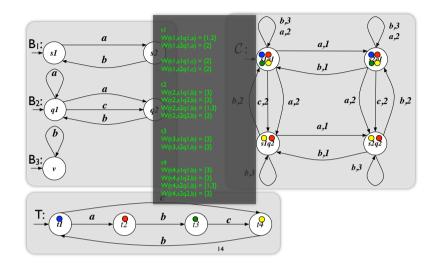
Results for simulation

Thm: Choosing at each point any value in ω gives us a correct controller for the composition.

Thm: Every controller that is a composition can be obtained by choosing, at each point, a suitable value in ω .

Thm: Computing the controller generator is EXPTIME (composition is EXPTIME-complete [IJCAI07]) where the exponential depends only on the number (not the size) of the available behaviors.

Example



Behavior failures

Components may become unexpectedly unavailable for various reasons.

We consider four kinds of behavior failures:

- A behavior **temporarily freezes**; it will eventually resume in the same state it was in;
- A behavior (or the environment) unexpectedly and arbitrarily (i.e., without respecting its transition relation) changes its current state;
- A behavior **dies** it becomes permanently unavailable.
- A dead behavior unexpectedly comes **alive again** (this is an opportunity more than a failure).

Just-in-time composition

Once we have the controller generator ...

- ... we can **avoid choosing any particular composition** apriori ...
- ... and **use directly** $\boldsymbol{\omega}$ to choose the available behavior to which delegate the next action.

We can be *lazy* and make such choice *just-in-time*, possibly adapting reactively to *runtime* feedback.

17

Parsimonious failure recovery

Algorithm Computing (ND-)simulation - parametrized version Input: transition system T = <A, T, t⁰, δ_{T} , F_{T} > and transition system C= <A, S, $s_{C^{0}}$, δ_{C} , F_{C} > relation \mathbf{R}_{sure} including the simulated-by relation output: the simulated-by relation (the largest simulation) Body $Q = \emptyset$ $Q' = \mathbf{R}_{raw} - \mathbf{R}_{sure}$ //Note $R' = (Q' \cup \mathbf{R}_{sure})$ while $(Q \neq Q')$ { Q' := Q' $Q' := Q' - \{(t, s_{1},..,s_{n}) \mid \exists t \rightarrow_{a} t' \text{ in } T \land$ $\forall B_{i} \cdot \neg \exists s \rightarrow_{a} s' \text{ in } B_{i} \lor \exists s_{i} \rightarrow_{a} s'_{i} \text{ in } B_{i} \land (t', s_{1},..s'_{i},..s_{n}) \notin Q' \cup \mathbf{R}_{sure} \}$ } return $Q' \cup \mathbf{R}_{sure}$

Reactive failure recovery with CG

CG already solves:

- Temporary freezing of an available behavior B_i
 - In principle: wait for B_i
 - But with CG: stop selecting Bi until it comes back!
- Unexpected behavior (environment) state change
 - In principle: recompute CG / simulated-by from new initial state ...
 - ... but CG / simulated-by independent from initial state!
 - Hence: simply use old CG / simulated-by from the new state!!

18

Parsimonious failure recovery (cont.)

Let [1,..,n] = W U F be the available behaviors.

- Let $\mathbf{R} = \mathbf{R}_{WUF}$ be the **simulated-by** relation of target by behaviors W U F. Then the following hold:
- **R**_W ⊆ πw(**R**_{WUF})
 - $\pi_W(\mathbf{R}_{W\cup F})$ is not a simulation in general
 - Behaviors F die: compute \mathbf{R}_W with $\mathbf{R}_{raw} = \pi_W(\mathbf{R}_{WUF})$!
- **R**W×F ⊆ **R**WUF
 - $\textbf{\textit{R}}_{W}\times F$ is a simulation of target by behaviors W U $\,$ F
 - Dead behaviors F come back: compute R_{WUF} with R_{sure} = R_W × F !

Tools for computing composition based on simulation

- Computing simulation is a well-studied problem (related to bisimulation, a key notion in process algebra).
 Tools, like the Edinburgh Concurrency Workbench and its clones, can be adapted to compute composition via simulation.
- Also LTL-based syntesis tools, like TLV, can be used for (indirectly) computing composition via simulation [Patrizi PhD08]

We are currently focussing on the second approach.

21

Conclusion

- Behavior composition: an infinite game.
- Simulation based composition techniques allow for *failure tolerance*!
- It realies on *a controller generator:* kind of stateful universal plan generator for composition.
- Full observability of available behavior' states is crucial for CG to work properly. But ... Partial observability addressable by manipulating knowledge states! [work in progress]
- All techniques are for finite states. What about dealing with infinite states? Very difficult, but also crucial when *mixing processes and data*!

22