Source Integration in Data Warehousing

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, Riccardo Rosati
Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
{calvanese,degiacomo,lenzerini,nardi,rosati}@dis.uniromal.it

Abstract

Source Integration is one of the core problems in Data
Warehousing. Two critical factors for the design and main-
tenance of applications requiring Source Integration, and
in particular Data Warehouse applications, are conceptual
modeling of the domain, and reasoning support over the
conceptual representation. We present a novel approach to
conceptual modeling for Source Integration, which allows
for suitably modeling the global concepts of the applica-
tion, the individual information sources, and the constraints
among different sources. Our methodological framework
relies on the reasoning services associated with the model-
ing formalism to support an incremental Source Integration
phase within the Data Warehouse design process.

1. Introduction

According to [18], integration is the most important
aspect of a data warehouse. When data passes from
the application-oriented operational environment to the
data warehouse, possible inconsistencies and redundancies
should be resolved, so that the warehouse is able to provide
an integrated and reconciled view of data.

There are two basic approaches to the data integration
problem, called procedural and declarative. In the pro-
cedural approach, data are integrated in an ad-hoc man-
ner with respect to a set of predefined information needs,
without resorting to an explicit notion of integrated data
schema [17, 15]. In the declarative approach, the goal is
to model the data at the sources by means of a suitable lan-
guage, and to construct a unified representation to be used
when querying the global information system [9, 1, 20].

In this paper we adopt a declarative approach to integra-
tion, and argue that two critical factors for the design and
maintenance of applications requiring Information Integra-
tion, and in particular integration in Data Warehousing, are
the conceptual modeling of the domain, and the possibility
of reasoning over the conceptual representation. The ap-

proach we propose is based on building a conceptual rep-
resentation of both the information sources and the Data
Warehouse. An important aspect of the conceptual repre-
sentation is the explicit specification of the set of interde-
pendencies between objects in the sources and objects in
the Data Warehouse. Thus, integration is seen as the pro-
cess of understanding and representing the relationships be-
tween data in the sources and in the Data Warehouse, pos-
sibly with some reconciling actions, rather than producing
a unified data schema. Moreover, suitable reasoning tech-
niques associated with the conceptual formalism are used to
support the designer during the resulting specification pro-
cess. Specifically, our work provides the following main
contributions:

1. We use special class-based logical formalisms, called
Description Logics [14, 2], for the conceptual model-
ing of both the global domain and the various sources.
Since the development of successful Information Inte-
gration solutions requires specific modeling features,
we propose a new Description Logic, which treats n-
ary relations as first-class citizens. Note that the usual
characteristic of many Description Logics to model
only unary predicates (concepts) and binary predicates
(roles) would represent an intolerable limit in our case.

2. We provide suitable mechanisms for expressing
what we call the intermodel assertions, i.e. inter-
relationships between concepts in different sources.
Thus, integration is seen as the incremental process
of understanding and representing the relationships be-
tween data in the sources, rather than simply produc-
ing a unified data schema. The fact that our approach
is incremental is also important in amortizing the cost
of integration.

3. For an accurate description of the information sources,
we incorporate in our logic the possibility of describ-
ing the data at the sources in terms of a set of rela-
tional structures. Each relational structure is defined
as a view over the conceptual representation, thus pro-

Domain Model

777777777777 Data Warehouse
Enterprise Schema
Model

Data Warchouse
Store

Source
Modeln

Modell
Source Source
Schemay Schemay, w
conceptual link
””” conceptual/logical mapping
Source Source) . ;
Data Storeq Data Sm,en physical/logical mapping

T data flow

Source

E
E

Figure 1. Architecture for Data Integration

viding a formal mapping between the description of
data and the conceptual representation of the domain.

N

. We provide inference procedures for the fundamental
reasoning services, namely concept and relation sub-
sumption, and query containment. Indeed, we make
use of the first decidability result on query containment
for a Description Logic with n-ary relations [4]. Based
on these reasoning methods, we present a methodolog-
ical framework for Information Integration, which can
be applied both in the virtual and in the materialized
approach.

The paper is organized as follows. In Section 2 we de-
scribe in more detail our framework for Information In-
tegration based on Description Logics. In Section 3 we
present the particular Description Logic we use in the
framework. In Section 4 we illustrate how the reasoning
techniques associated with our logic are used to improve
the design and maintenance of the Information Integration
system. Section 5 concludes the paper.

2. The Framework

In our approach to Source Integration, we refer to the
architecture depicted in Figure 1, in which three layers can
be identified:

e a conceptual layer, constituted by the Domain Model,
including an Enterprise Model and one Source Model
for each data source, which provides a conceptual rep-
resentation of both the information sources and the
Data Warehouse;

e alogical layer constituted by the Source Schemas and
the Materialized View Schema, which describes the
logical content of source data stores and of the ma-
terialized view store, respectively;

e a physical layer, which consists of the data stores con-
taining the actual data of the sources and the integrated
materialized views.

The methodology for Source Integration described in
Section 4, and the reasoning techniques developed in Sec-
tion 3, support the incremental building of the conceptual
and the logical representations. The designer is provided
with information on various aspects, including the global
concepts relevant for new information requirements, the
sources from which a new view can be defined, the cor-
respondences between sources and/or views, and a trace of
the integration steps.

We describe now the structure of the conceptual and log-
ical layers, which constitute the core of the proposed inte-
gration framework. The actual formalism we adopt and the
associated reasoning techniques are described in the next
section.

Conceptual Layer. The Enterprise Model is a conceptual
representation of the global concepts and relationships that
are of interest to the application. It corresponds roughly to
the notion of integrated conceptual schema in the traditional
approaches to schema integration. However, since we pro-
pose an incremental approach to integration, the Enterprise
Model is not necessarily a complete representation of all
the data of the sources but it provides a consolidated and
reconciled description of the concepts and the relationships
that are important to the enterprise, and have already been
analyzed. Such a description is subject to changes and ad-
ditions as the analysis of the information sources proceeds.
The Source Model of an information source is a conceptual
representation of the data residing in it, or at least of the
portion of data currently taken into account. Again, our ap-
proach does not require a source to be fully analyzed and
conceptualized.

Both the Enterprise Model and the Source Models are
expressed by means of a logic-based formalism (see Sec-
tion 3) which is general and powerful enough to express
the usual database models, such as the Entity-Relationship
Model, the Relational Model, or the Object-Oriented Data
Model (for the static part). The inference techniques as-
sociated with the formalism allow for carrying out several
reasoning services on the representation.

Besides the Enterprise Model and the various Source
Models, the Domain Model contains the specification of
the interdependencies between elements of different Source
Models and between Source Models and the Enterprise
Model. The notion of interdependency is a central one in
our approach. Since the sources are of interest in the over-
all architecture, integration does not simply mean produc-
ing the Enterprise Model, but rather to be able to establish
the correct relationships both between the Source Models
and the Enterprise Model, and between the various Source
Models. We formalize the notion of interdependency by
means of so called intermodel assertions [8], which provide
a simple and effective declarative mechanism to express the

dependencies that hold between entities (i.e. classes and re-
lationships) in different models [16]. We use again a logic-
based formalism to express intermodel assertions, and the
associated inference techniques provide a means to reason
about interdependencies among models.

Logical Layer. Our approach requires that each source,
besides being conceptualized, is also described in the
Source Schema in terms of a logical data model (in our
case the Relational Model) which allows for representing
the structure of the stored data. Such a structure is speci-
fied in terms of a set of relation definitions, each one ex-
pressed by means of a view (i.e. a query) over the concep-
tual representation of the source (i.e. the Source Model).
Suitable software components, called wrappers, implement
the mapping of physical structures to logical structures (see
Figure 1).

The Data Warehouse Schema provides a description of
the logical content of the materialized views constituting
the Data Warehouse. Similarly to the case of the sources,
each portion of the Data Warehouse Schema is described in
terms of a set of definitions of relations, each one expressed
in terms of a query over the Domain Model. A view is ac-
tually materialized starting from the data in the sources by
means of suitable software components, called mediators
(see Figure 1).

3. Representation and Reasoning

We describe now the formalism used both at the con-
ceptual and the logical level, and the associated reasoning
techniques.

Representation at the Conceptual Level. We use for the
conceptual level a specific logic based formalism called
DLR, whose basic components are concepts (i.e. classes)
and n-ary relations'. DLR is inspired by the knowl-
edge representation languages introduced in [3, 11, 10, 8],
and can be ragarded as an extension of Description Log-
ics [14,7, 2] towards n-ary relations.

We assume to deal with a finite set of atomic relations
and concepts, denoted by P and A respectively. We use
R to denote arbitrary relations (of given arity between 2
and 1,42), and C' to denote arbitrary concepts, respectively
built according to the following syntax (¢ and j denote com-
ponents of relations, i.e. integers between 1 and 1,44, 1
denotes the arity of a relation, i.e. an integer between 2 and
Nmaz, and k£ denotes a nonnegative integer)2:

R == T,|P|($i/n:C)|-R|RiMR,

I'Domains, i.e. sets of values such as integer, string, etc., can be easily
included in DLR.

2Concepts and relations must be well-typed, which means that (i) only
relations of the same arity n can be combined to form expressions of type

. C (ah)r
PL C TI
(-R)T = T{\RZ
(RiMR2)T = RINRL
($i/n:C)T = {(d1,...,dn) € TZ |d; € CT}
T = AT (=C)T = AT\ T
AL - AT (01 [l Cz)I = CII N C2I
(3[$i]R)§ = {de Ai | 3A(d1,...,dn) € RT.d; = d}
(Sk[ER)" = {deA™]
#{(d1,...,dn) € Rzll— | di =d} < k}

Figure 2. Semantics of DLR

C = T1|A|-C|CiNCy| IR | (L Kk[$]R)
The semantics of the DLR constructs is specified through
the usual notion of interpretation. An interpretation T =
(AZ,.Z) is constituted by an interpretation domain AT and
an interpretation function -* that assigns to each concept C
a subset CT of AT, and to each relation R of arity n a sub-
set RZ of (AT)", such that the conditions in Figure 2 are
satisfied (where P, R, R, and R, have arity n). We ob-
serve that T1 denotes the interpretation domain, while T,,,
for n > 1, does not denote the n-cartesian product of the
domain, but only a subset of it, that covers all relations of
arity n. As a consequence, the “—” construct on relations is
used to express difference of relations, rather than comple-
ment.

A DLR conceptual model M (i.e., either the Enterprise
Model or one of the Source Models) is constituted by a finite
set of intramodel assertions, which express knowledge on
the relations and concepts in M, and have the form

Lcr Lgr L=1T L 1L
with L, L' either two relations of the same arity or two con-
cepts.

An interpretation Z satisfies an intramodel assertion L T
L' (resp. L = L") if LT C L'F (resp. LT = L'7), and it
satisfies L [Z L' (resp. L # L") if Z does not satisfy L C L'
(resp. L = L'). An interpretation satisfies M, if it satisfies
all assertions in M.

To specify knowledge on the conceptual interrelation-
ships among the sources and/or the enterprise, we use in-
termodel assertions [8], which have essentially the form
of intramodel assertions, although the two relations (con-
cepts) L and L’ belong to two different conceptual mod-
els M;, M;. Intermodel assertions can be either exten-
sional, which express relationships between the extensions
of the relations (concepts) involved, or intensional, which
express conceptual relationships that are not necessarily re-
flected at the instance level. Formally, the interpretation of

R M Ra (which inherit the arity n), and (ii) # < n whenever ¢ denotes a
component of a relation of arity n.

extensional intermodel assertions is analogous to the one
of intramodel assertions. Instead, for the interpretation
of intensional intermodel assertions only the intersection
of the relations (concepts) L, L' with both Tp,; and T
(T1; and Ty;) is considered. For example, an interpre-
tation Z satisfies the intermodel assertion R; C;,; R;- if
T NTar NRFC T, N T, I NR,.

A Domain Model (DM) W is an (m + 2)-tuple
(Mo, M1, ..., Mu,G) such that: (i) My is the Enter-
prise Model; (ii) each M;, fori € {1,...,m},is a Source
Model; (iii)) G (for “glue”) is a finite set of intermodel
assertions. We assume that G always includes for each
i € {1,...,m} the following assertions: T1; Cezt T1g,
and T,; Cezt Tpo for each n such that a relation R of ar-
ity n appears in M;. An interpretation Z satisfies WV if it
satisfies all the intramodel and intermodel assertions in W.

Representation at the Logical Level. We express the
logical level in terms of a set of relation schemas, each de-
scribing either a relation of a Source Schema, or a relation
of the Data Warehouse Schema. Such relations are related
to the DM by characterizing each relation schema in terms
of a non-recursive Datalog query over the elements of the
DM, i.e. a query of the form:

q(X) « body,(X,¥1) V-V body,, (X, ym)

where each body,(X,¥;) is a conjunction of atoms, either
R(t) or C(t) (where t and ¢ are variables in %,§;)*, with
R, C relations and concepts over the DM. The arity of q is
equal to the number of variables of X.

We observe that, by means of assertions on both relations
and concepts expressed in the DM, additional constraints
than those directly present in the query can be imposed.
This distinguishes our approach with respect to [13, 19],
where n-ary relations appearing in queries are not part of
the conceptual model.

Given an interpretation Z of a DM W, a query ¢ for
W of arity n is interpreted as the set ¢ of n-tuples
(01,...,0,), with each o; € AZ, such that, when substi-
tuting (01, ..., 0p) for (z1,...,z,), the formula

El)_;l-bOdyl (ia)_;1) AEERY 3}_;m'bodym()_ia)_;m)

evaluates to true in Z. If ¢ and ¢’ are two queries (of the
same arity) for YW, we say that q is contained in ¢’ wrt W,
if g7 C ¢'% for every T satisfying W.

Reasoning. The typical kinds of reasoning services
needed at the conceptual level in order to support the de-
signer in applying the integration methodology presented
in Section 4 (e.g., checking whether the DM is consistent,

3Qur approach is applicable also when constants are used in the queries.

CONTRACT(C ($l:clientg) M ($2: Depty) M
($3: servicep)
REG-AT(C ($1l:clientg) 1 ($2: Depty)
PrDeptg C Deptg
REG-AT; C ($1l:clientq)r1($2:Depty)
PROMOTION; L REG-AT;
LOCATION; C ($1:Depty) M ($2:String)
Dept; LC 3IS'LOCATION;[$1].T»
CONTRACT2 L (81:Clients) M ($2:Depts) M
($3:Services)
Dept; Zext PrDeptg
REG-AT; [ept REG-ATo

Client; =eut Clientg M 3IZIREG-AT([$1].PrDept,
Clientg M 321CONTRACT([$1].T 2
Cest J2'PROMOTION;[$1].T2

Clients [Cext Clientg M IZ'CONTRACT(([$1].T 2

Depts [Cest Deptg
Services =it Serviceg
Client; =;,;+ Clients
Dept; =int Deptsy

Figure 3. Domain Model of the example

checking whether a relation or a concept is satisfiable in the
DM, checking subsumption between relations or concepts
in the DM) can be reduced to checking satisfiability of the
DM. The reasoning tasks can in particular be exploited for
computing and incrementally maintaining the concept and
relation lattice of the DM, or more generally the lattice of
all concept and relation expressions.

The expressiveness of DLR, required for capturing
meaningful properties in the DM, makes reasoning a com-
plex task. We have devised a sound and complete pro-
cedure to decide the satisfiability of a DM which works
in worst-case deterministic exponential time in the size of
the DM. Indeed, this worst-case complexity is inherent to
the problem, therefore reasoning with respect to a DM is
EXPTIME complete. The inference method works in two
steps: first, reasoning on the DM is reduced to reasoning
on a knowledge base expressed in the Description Logic
CZQ [12]; then reasoning procedures for CZQ, based on
the correspondence with Propositional Dynamic Logics, are
exploited.

For reasoning at the logical level, we provide suitable
techniques for query containment. In particular, we have
developed an algorithm for deciding query containment
with respect to a DM, which exploits a reduction to unsatis-
fiability in CZQ, and which extends the one in [4, 5] to deal
with both intramodel and intermodel assertions.

Example. Figure 3 shows a DM, W =
(Mo, M1, M5,G), that represents an enterprise and
two sources containing information about contracts be-
tween clients and departments for services, and about
registration of clients at departments (in the figure

Service_0
Client_0 Department_0
A
PRDept_0
B 1 2
Client_1 Department_1
mowro s
PROMOTION LOCATION/
= String

Service_2

2
1 3
Department_2

Figure 4. Enterprise and source models as
Entity-Relationship diagrams

Client_2

($¢/n:C) is abbreviated by ($:: C')). Symbols subscripted
by ¢ refer to model M;. The intramodel assertions in
My, M1, My are visualized in Figure 4, using Entity-
Relationship diagrams, which are fully compatible with
DLR. Source 1 contains information about clients regis-
tered at public-relations departments. Source 2 contains
information about contracts and complete information
about services. The Enterprise Model provides a reconciled
conceptual description of the two sources. Note that, in
this example, such reconciled description is not complete
yet: e.g., the relation PROMOTION is not modeled in My
(recall that our approach to integration is incremental). The
various interdependencies among relations and concepts
in the Enterprise Model and the two Sources Models are
represented by the intermodel assertions on the right-hand
side of Figure 3.

As for the logical level representation, suppose, for ex-
ample, that the actual data in Source 1 are described by a
relational table Table; having three columns, one for the
client, one for the department which the client is registered
at, and one for the location of the department. Such a table
is specified in terms of the DM by means of the query:

Table;(z,y,2) < REG-AT;(z,y) A LOCATION;(y,2)

Using the reasoning services associated with DLR,
we can automatically derive logical consequences of
the DM. For instance, we can prove that the assertion
PROMOTION; C.,; REG-AT, N ($2: PrDept,) is a logi-
cal consequence of VW. Observe that, although M does not
contain a relation PROMOTION, the above assertion relates
PROMOTION; to M, in a precise way.

Next, consider, for instance, the following queries posed

to My:

qi(z,y) <+ Clientgy(xz) A CONTRACTy(z,y,z2)
g2(z,y) <+ Clientgy(z) A CONTRACTy(z,y,z2) A
REG-ATy(z,w) A PrDepty(w)

g2 1s obviously contained in ¢;. However, taking into ac-
count the assertions in Y/, we can also derive that ¢; is con-
tained in go wrt W.

4. The Methodology

We outline a methodology for Source Integration in Data
Warehousing, based on the techniques previously described.
The methodology deals with two scenarios, called source-
driven and client-driven.

4.1. Source-Driven Integration

Source-driven integration is triggered when a new source
or a new portion of a source is taken into account for inte-
gration. The steps to be accomplished in this case are:

1. Source Model construction. The Source Model cap-
turing the concepts and the relationships of the new source
that are critical for the enterprise is produced.

2. Source Model integration. The Source Model is in-
tegrated into the Domain Model. This can lead to changes
both to the Source Models, and to the Enterprise Model.
The specification of intermodel assertions and the deriva-
tion of implicit relationships by exploiting the reasoning
techniques, represent the novel part of the methodology.
Notably, not only assertions relating elements in one Source
Model with elements in the Enterprise Model, but also as-
sertions relating elements in different Source Models are
of importance. For example, inferring that the set of in-
stances of a relation in source S; is always a subset of those
in source S; can be important in order to infer that accessing
source S; for retrieving instances of the relation is useless.

3. Quality analysis. The Quality Factors of the resulting
Domain Model are evaluated and a restructuring is accom-
plished to match the required criteria. This step requires
the use of the reasoning techniques associated with our for-
malisms to check for quality factors such as consistency,
redundancy, readability, accessibility, believability [6].

4. Source Schema construction. The Source Schema,
i.e. the logical view of the new source or a new portion
of the source (expressed as a collection of queries over
the corresponding Source Model) is produced. The source
schemas are used in order to determine the sources relevant
for computing answers to queries, by exploiting the ability
to reason about queries.

5. Data Warehouse Schema restructuring. On the
basis of the new source, an analysis is carried out on

whether the Data Warehouse Schema should be restruc-
tured and/or modified in order to better meet quality require-
ments. Again, the schema is constituted by a set of queries
over the Domain Model, and for its restructuring the use of
reasoning techniques is crucial. A restructuring of the Data
Warehouse Schema may require the design of new media-
tors.

4.2, Client-Driven Integration

The client-driven design strategy refers to the case when
a new query (or a set of queries) posed by a client is con-
sidered. The reasoning facilities are exploited to analyze
and systematically decompose the query and check whether
its components are subsumed by the views defined in the
various schemas. The analysis is carried out as follows:

1. By exploiting query containment checking, we verify
if and how the answer can be computed from the material-
ized views stored in the Data Warehouse.

2. In the case where the materialized information is not
sufficient, we verify if the answer can be obtained by mate-
rializing new concepts represented in the Domain Model.
In this case, query containment helps to identify the set
of subqueries to be issued on the sources and to extend
and/or restructure the Data Warehouse Schema. Different
choices can be identified, based on various preference crite-
ria (e.g. minimization of the number of sources [20]) which
take into account the above mentioned quality factors.

3. In the case where neither the materialized data nor
the concepts in the Domain Model are sufficient, the neces-
sary data should be searched for in new sources, or in new
portions of already analyzed sources. The new (portions of
the) sources are then added to the Domain Model using the
source-driven approach, and the process of analyzing the
query is iterated.

5. Conclusions

We have presented the fundamental features of a declar-
ative approach to Source Integration in Data Warehous-
ing based on an expressive conceptual modeling formal-
ism equipped with reasoning techniques. We are currently
applying the presented framework to the problem of Data
Warehouse design within the ESPRIT Project DWQ (Foun-
dations of Data Warehouse Quality).

References

[1] Y. Arens, C. A. Knoblock, and W. Shen. Query reformu-
lation for dynamic information integration. J. of Intelligent

Information Systems, 6:99-130, 1996.
[2] A. Borgida. Description logics in data management. /EEFE

Trans. on Knowledge and Data Engineering, 7(5):671-682,
1995.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

[20]

D. Calvanese, G. De Giacomo, and M. Lenzerini. Struc-
tured objects: Modeling and reasoning. In Proc. of DOOD-
95, number 1013 in LNCS, pages 229-246. Springer-Verlag,
1995.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the de-
cidability of query containment under constraints. In Proc.
of PODS-98, 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. Database integration for datawarehous-
ing. Technical Report DWQ-UNIROMA-001, DWQ Con-
sortium, Mar. 1997.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. Source integration in data warehousing. Techni-
cal Report DWQ-UNIROMA-002, DWQ Consortium, Oct.
1997.

D. Calvanese, M. Lenzerini, and D. Nardi. A unified frame-
work for class based representation formalisms. In Proc. of
KR-94, pages 109-120, 1994.

T. Catarci and M. Lenzerini. Representing and using inter-
schema knowledge in cooperative information systems. J. of
Intelligent and Cooperative Information Systems, 2(4):375—
398, 1993.

C. Collet, M. N. Huhns, and W.-M. Shen. Resource inte-
gration using a large knowledge base in Carnot. IEEE Com-
puter, 24(12):55-62, 1991.

G. De Giacomo and M. Lenzerini. Description logics with
inverse roles, functional restrictions, and n-ary relations. In
Proc. of JELIA-94, volume 838 of LNAI, pages 332-346.
Springer-Verlag, 1994.

G. De Giacomo and M. Lenzerini. What’s in an aggregate:
Foundations for description logics with tuples and sets. In
Proc. of JCAI-95, pages 801-807, 1995.

G. De Giacomo and M. Lenzerini. TBox and ABox rea-
soning in expressive description logics. In Proc. of KR-96,
pages 316-327, 1996.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A
hybrid system integrating Datalog and concept languages.
In Proc. of AI*IA-91, number 549 in LNAI. Springer-Verlag,
1991.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Rea-
soning in description logics. In G. Brewka, editor, Principles
of Knowledge Representation, pages 193-238. CSLI Publi-
cations, 1996.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and
Y. Zhuge. The Stanford data warehousing project. IEEE
Bull. on Data Engineering, 18(2):41-48, 1995.

R. Hull. Managing semantic heterogeneity in databases: A
theoretical perspective. In Proc. of PODS-97,1997.

R. Hull and G. Zhou. A framework for supporting data in-
tegration using the materialized and virtual approaches. In
Proc. of ACM SIGMOD, pages 481492, 1996.

W. H. Inmon. Building the Data Warehouse. John Wiley &
Sons, second edition, 1996.

A.Y. Levy and M.-C. Rousset. CARIN: A representation
language combining Horn rules and description logics. In
Proc. of ECAI-96, pages 323-327, 1996.

A.Y.Levy,D. Srivastava, and T. Kirk. Data model and query
evaluation in global information systems. J. of Intelligent
Information Systems, 5:121-143, 1995.

