
Compositional Approach to Translate LTLf /LDLf into Deterministic Finite
Automata

Giuseppe De Giacomo and Marco Favorito
DIAG - University of Rome “La Sapienza”, Italy

{lastname}@diag.uniroma1.it

Abstract
The translation from temporal logics to automata is the
workhorse algorithm of several techniques in computer sci-
ence and AI, such as reactive synthesis, reasoning about ac-
tions, FOND planning with temporal specifications, and re-
inforcement learning with non-Markovian rewards, just to
name a few. Unfortunately, the problem is computationally
intractable, requiring the implementation of several heuris-
tics to make it usable in practice. In this paper, following the
recent interest in temporal logic formalisms over finite traces,
we present a compositional approach for dealing with trans-
lations of Linear Temporal Logic and Linear Dynamic Logic
(LDLf) on finite traces into Deterministic Finite Automata
DFA. That is, we inductively transform each LTLf /LDLf sub-
formula into a DFA, and combine them through automata op-
erators. By relying on efficient semi-symbolic automata rep-
resentations, we empirically show the effectiveness of our ap-
proach and the competitiveness with similar tools. Moreover,
this is the first work that provides a scalable and practical tool
supporting the translation to DFA not only for LTLf but also
for full LDLf .

Introduction
Linear Temporal Logics over finite traces (LTLf), and its
extension with regular expression, Linear Dynamic Logic
(LDLf) (De Giacomo and Vardi 2013), are important logic
formalisms extensively used in Artificial Intelligence and
Computer Science. For example, it is used in reactive syn-
thesis (De Giacomo and Vardi 2015, 2016; Camacho et al.
2018; Zhu et al. 2017), in FOND planning with tempo-
ral specifications (Brafman and De Giacomo 2019a; Cama-
cho and McIlraith 2019), to express trajectory constraints
in PDDL 3.0 (Bacchus and Kabanza 1998; Gerevini et al.
2009), in the theory of Markov Decision Processes to cap-
ture non-Markovian rewards (Bacchus, Boutilier, and Grove
1996; Brafman, De Giacomo, and Patrizi 2018; Brafman
and De Giacomo 2019b) with applications in reinforcement
learning (Camacho et al. 2019; De Giacomo et al. 2019,
2020a), to specify business processes (Pešić, Bošnački, and
van der Aalst 2010), and many others.

Reasoning over LTLf /LDLf is usually done by relying
on automata theory. In particular, from a LTLf /LDLf for-
mula ϕ, we can build a deterministic finite automaton (DFA)

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Aϕ, whose alphabet is the set of propositional interpreta-
tions P of ϕ, that is semantically equivalent to the original
formula (De Giacomo and Vardi 2013, 2015). The compu-
tational complexity of such translation has been shown to
be doubly exponential time in the worst case, and indeed
Aϕ can be double-exponentially larger than the original for-
mula ϕ. Nevertheless, in most cases the resulting DFA is ac-
tually manageable, a phenomenon often observed when de-
terminization is applied to automata finite words. (Tabakov
and Vardi 2005). This puts working in the finite traces in
sharp contrast with working with infinite ones, which are
hampered by the notorious intractability of determinization
of nondeterministic Büchi automata (Fogarty et al. 2015).

One of the ingredients of the translation from such log-
ics to DFAs is the Mona tool (Henriksen et al. 1995; Klar-
lund 1997; Klarlund, Møller, and Schwartzbach 2001). The
tool implements the translation from First-Order Logic (FO)
and Monadic Second-Order Logic on finite strings (MSO)
to deterministic finite automata. Thanks to its novel and
efficient semi-symbolic representation, still explicit in the
state space’s representation but symbolic in the transitions’,
Mona has become widely used in the research community.
One of the best practical implementation of the translation
from LTLf to DFA, proposed by (Zhu et al. 2017). Their
tool Syft encodes LTLf formulae into First-Order Logic
formulae, represented as Mona programs, and uses Mona
to perform the actual translation. The Mona output is then
post-processed to produce a fully symbolic representation
(i.e. both in the state space and in the transitions) to per-
form LTLf synthesis. A more recent work (Bansal et al.
2020) proposed a hybrid approach to the problem of DFA
construction from LTLf formulae: first, they decompose the
outermost conjunction in ϕ, where ϕ is assumed to be in
the form ϕ =

∧n
i=1 ϕi, in n-subformulae ϕ1 . . . , ϕn. Then,

they transform each ϕi into DFAsAϕi in explicit-state repre-
sentation using Mona. Finally, they start doing the product
between all the automata Aϕi ; if at some point the size of
the partial automaton becomes too large and exceeds a user-
defined threshold, the approach converts all the explicit-state
automata in symbolic representation and continues with the
products, though forgoing minimization. In this way the tool
is able to scale even in the case the automaton becomes
prohibitively large to be represented explicitly, although not
producing a minimal automaton anymore in this case. Both

tools in (Zhu et al. 2017) and in (Bansal et al. 2020) perform
much better than state of the art tools, such as SPOT (Duret-
Lutz et al. 2016), which implement procedures to translate
LTL formulae to automata on infinite words, and can also
be used for LTLf by exploiting its encoding into LTL (De
Giacomo and Vardi 2013). They implemented a tool called
Lisa and LisaSynt, for DFA translation and synthesis,
respectively.

Observe that both tools make use of the translation of FO
into DFA, provided by Mona, which is nonelementary 1 in
the worst case, due to the necessity of multiple determiniza-
tions (each exponential in the worst case) and projections
(which introduces nondeterminism) needed to handle quan-
tifiers and negations. Still, this non-elementariness does not
show in practice (again for the phenomenon of deteminiza-
tion of automata on finite words mentioned above).

In this work, we take a step further from the composi-
tional approach proposed in (Bansal et al. 2020). In partic-
ular, our contribution is a fully compositional approach to
handle both LTLf formulae and LDLf formulae. That is, we
don’t make any assumption on the structure of the formula,
as done by Bansal et al. which stops the decomposition step
at the outermost conjunction. We process all the subformu-
lae recursively up to the leaves of the syntax tree, and then
we compose the partial DFAs of the subformulae using com-
mon operations over automata (e.g. union, intersecion, con-
catenation), according to the LTLf /LDLf operator being pro-
cessed.

Our contribution is both theoretical and practical. On the
theoretical side, we observe that so far the theory of the
correspondence between LTLf /LDLf and automata theory
relied on the transformation of LTLf /LDLf formulae into
Alternating Automata on finite words (AFA), which can
be eventually transformed into Nondeterministic Finite Au-
tomata (NFA), and in turn determinized into DFAs (De Gi-
acomo and Vardi 2013). Instead, we provide a sound and
complete technique to directly transform a formula into a
DFA. Despite the worst-case complexity of such technique is
again nonelementary, as Mona’s, we show that it has several
practical advantages with respect to the previous ones, pri-
marily due to the possibility to apply aggressive minimiza-
tion to the partial automata, which has already been argued
to be indispensable for scalability (Klarlund, Møller, and
Schwartzbach 2001; Zhu et al. 2020). On the practical side,
we provide an implementation that employs such a compo-
sitional technique, and showing its competitiveness with ex-
isting tools (Bansal et al. 2020; Henriksen et al. 1995). Our
tool can be used both for LTLf /LDLf -toDFA construction,
and as a LTLf /LDLf synthesis tool. Crucially, this is the first
work that provides a scalable and practical tool supporting
the translation to DFA and synthesis not only for LTLf but
also for full LDLf .

1In computational complexity theory, a nonelementary problem
is a problem that is not a member of the ELEMENTARY class. In
other words, the computational time cost of such problems has an
unbounded number of exponentiations.

Preliminaries
LTLf and LDLf . LTLf and LDLf are, respectively, Linear
Temporal Logic and Linear Dynamic Logic with finite trace
semantics, proposed in (De Giacomo and Vardi 2013). LTLf
shares the same syntax of LTL (Pnueli 1977). It is as expres-
sive as First-Order Logic over finite traces, so strictly less
expressive than regular expressions, which, in turn, are as
expressive as Monadic Second-Order logic over finite traces.

The semantics of LTLf (and LDLf) is given in terms
of finite traces denoting a finite, possibly empty, sequence
π = π0, . . . , πn of elements from the alphabet 2P , contain-
ing all possible propositional interpretations of the proposi-
tional symbols in P . We denote the length of the trace π as
length(π) =̇ n + 1, and with last(π)=̇n the last index. We
denote as π(i) =̇ πi the i-th step in the trace. If the trace
is shorter and does not include an i-th step, π(i) is unde-
fined. We denote by π(i, j) =̇ πi, πi+1, . . . , πj−1 the seg-
ment of the trace π starting at the i-th step and ending at
the j-th step (excluded). If j > length(π) then π(i, j) =
π(i, length(π)). For every j ≤ i, we have π(i, j) = ε, i.e.,
the empty trace. Notice that, differently from (De Giacomo
and Vardi 2013), we allow the empty trace as in (Brafman,
De Giacomo, and Patrizi 2018).

Given a set P of propositional symbols, LTLf formulae
are built as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

where φ is a propositional formula over P , ◦ is the next
operator, and U is the until operator. In addition, we have
common abbreviations. For example, • is the weak next op-
erator, for which we have the equivalence •ϕ ≡ ¬◦¬ϕ (no-
tice that in the finite trace case ¬◦¬ϕ 6= ◦ϕ), R is release
operator, for which we have the equivalence ϕ1Rϕ2 ≡
¬(¬ϕ1 U ¬ϕ2). eventually ♦ϕ abbreviates trueU ϕ; and al-
ways abbreviates falseRϕ or equivalently ¬♦¬ϕ. Given
a finite trace π, we inductively define when an LTLf formula
ϕ is satisfied at an instant i ∈ N, in symbols π, i |= ϕ, as
follows:

• π, i |= φ iff 0 ≤ i ≤ length(π) and π(i) |= φ;

• π, i |= ¬ϕ iff π, i |= ϕ;

• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;

• π, i |= ◦ϕ iff 0 ≤ i < length(π)− 1 and π, i+ 1 |= ϕ;

• π, i |= ϕ1 U ϕ2 iff for some j s.t. 1 ≤ i ≤ j < length(π),
we have π, j |= ϕ2, and for all k, i ≤ k < j, we have
π, k |= ϕ1;

LDLf is a temporal logic as natural as LTLf , but with the
full expressive power of Monadic Second-Order logic over
finite traces. LDLf is obtained by merging LTLf with regu-
lar expressions (REf) through the syntax of the well-know
logic of programs PDL, Propositional Dynamic Logic (Fis-
cher and Ladner 1979; Harel 1984), but adopting a semantics
based on finite traces. LDLf is an adaptation of LDL intro-
duced in (Vardi 2011), which, like LTL, is interpreted over
infinite traces. Formally, given a set of propositional sym-
bols P , LDLf formulae are built as follows:

ϕ ::= tt | ff | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where tt and ff denote respectively the true and the false
LDLf formula (not to be confused with the propositional
formula true and false); φ denotes propositional formulae
over P; ρ denotes path expressions, which are regular ex-
pressions over propositional formulae φ over P with the ad-
dition of the test construct ϕ? typical of PDL and are used to
insert into the execution path checks for satisfaction of addi-
tional LDLf formulae; and ϕ stand for LDLf formulae built
by applying boolean connectives and the modal operators
〈ρ〉ϕ and [ρ]ϕ, Where [ρ]ϕ is an abbreviation for ¬〈ρ〉¬ϕ.
We also introduce the abbreviations end = [true]ff and
last = 〈true〉end.

Intuitively,〈ρ〉ϕ states that, from the current step in the
trace, there exists an execution satisfying the regular expres-
sion ρ such that its last step satisfies ϕ, while [ρ]ϕ states that,
from the current step, all executions satisfying the regular
expression ρ are such that their last step satisfies ϕ. Also,
note that given a regular expression ρ, the LDLf formula
〈ρ〉end is semantically equivalent to it.

Given a finite trace π, we inductively define when an
LDLf formula ϕ is satisfied at an instant i ∈ N, in symbols
π, i |= ϕ, as follows:

π, i |= tt

π, i |= ¬ϕ iff π, i 6|= ϕ

π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 ∧ π, i |= ϕ2

π, i |= 〈ρ〉ϕ iff ∃j ≥ i s.t. (i, j) ∈ R(ρ, π) ∧ π, j |= ϕ

where the relationR(ρ, π) is defined inductively as follows:

• R(φ, π) = {(i, i+ 1) | i ≤ length(π) ∧ π(i) |= φ}
• R(ϕ?, π) = {(i, i) | π, i |= ϕ}
• R(ρ1 + ρ2, π) = R(ρ1, π) ∪R(ρ2, π)

• R(ρ1; ρ2, π) = {(i, j) | ∃k s.t. (i, k) ∈ R(ρ1, π) ∧
(k, j) ∈ R(ρ2, π)}

• R(ρ∗, π) = {(i, i)}∪{(i, j) | (i, k) ∈ R(ρ, π)∧ (k, j) ∈
R(ρ∗, π) ∧ k > i}

From LTLf to LDLf . It is easy to encode LTLf into LDLf :
we can define a translation function tr defined by induction
on the LTLf formula as follows:

tr(φ) = 〈φ〉tt (φ propositional)

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

tr(◦ϕ) = 〈true〉(tr(ϕ) ∧ ¬end)

tr(ϕ1 U ϕ2) = 〈(tr(ϕ1)?; true)∗〉(tr(ϕ2) ∧ ¬end)

It is also easy to encode regular expressions, used as a
specification formalism for traces into LDLf : ρ translates to
〈ρ〉end. With nnf(ϕ), where ϕ is either an LTLf or LDLf
formula, we mean the function that transforms ϕ by pushing
negation inside until it is just used in front of atomic propo-
sitions, by applying the duality of the operators.

Automata theory. A deterministic finite automaton (DFA)
(Rabin and Scott 1959)A is a tuple (Q,Σ, q0, δ, F) whereQ
is a finite set of states, Σ is the alphabet, q0 is the initial state,
and F ⊆ Q is the set of accepting states. δ : Q× Σ→ Q is
the transition relation. A nondeterministic finite automaton
(NFA) is defined as the DFA except for δ, which becomes a
relation rather than a function, i.e. δ ⊆ Q × Σ × Q. An al-
ternating finite automaton (AFA) (Chandra and Stockmeyer
1976; Vardi 1996) is defined as DFA and NFA, except for δ
that is defined as δ : Q × Σ → B+(Q), where B+(Q) is
a set of positive boolean formulas whose atoms are states of
Q. ByL(A) we mean the set of all traces over Σ accepted by
an automaton A. DFAs are closed under boolean operations.
A DFA A can be minimized, obtaining another DFA with the
minimum number of states, in such a way that they are se-
mantically equivalent. It can be shown that if a DFA is min-
imal, it is unique for the language it accepts. The DFAs are
also closed under the following operations: concatenation,
Kleene closure, existential and universal projection. Due to
lack of space, we do not specify other details on these oper-
ations, and how to compute the actual automata. Any other
detail can be found in any textbook of automata theory (e.g.
see (Hopcroft, Motwani, and Ullman 2006)).

Compositional Translation
In this section, we describe the technique inductively trans-
late each basic LTLf /LDLf formula and operators over them
into (minimal) DFAs. We call the technique “compositional”
due to its focusing on smaller subproblems and in the suc-
cessive composition of partial results. We provide direct
transformations from LDLf to automata; for what concerns
LTLf , we apply the transformation rules explained in the
“Preliminaries” section. Finally, we will provide theoretical
analysis of the technique.

The technique
In what follows, we describe the transformation for each el-
ementary formula and operator of LDLf into an equivalent
DFA. The approach is “bottom-up”: it computes the DFA of
the deepest subformulae, and combines the partial results de-
pending on the LDLf operator under transformation. This is
in contrast with the previous techniques known in the liter-
ature that are “top-down”: they proceed from the root oper-
ator of the formula in order to compute the next states (see
e.g. LDLf2NFA in (De Giacomo and Vardi 2013, 2015; Braf-
man, De Giacomo, and Patrizi 2018)).
tt and ff : the logical true formula tt is equivalent to a DFA
with an unique accepting state and a loop that accepts all
symbols (Figure 1a). In other words, it is the minimal au-
tomaton that accepts the language Σ∗. Its dual, ff , is the au-
tomaton of the empty language (Figure 1b).
ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ: The boolean operations
over LDLf formulae are processed with the corresponding
boolean operations over automata. For conjunction and dis-
junction, we use the product construction with respectively
conjunction or disjunction of states as accepting conditions;
for negation, we use the complementation of automata. The

q0

>

(a) DFA associated to tt

q0

>

(b) DFA associated to ff

q0

Aϕ q1

φ

φ̄
>

(c) DFA associated to 〈φ〉ϕ

q0

Aϕ q1
φ

φ̄
>

(d) DFA associated to [φ]ϕ

Figure 1: DFAs of elementary LDLf formulae.

output of these operations might require a further minimiza-
tion and completion step.
〈φ〉ϕ: the diamond formula with a propositional formula as
regular expression is equivalent to the automaton in Figure
1c. With the empty trace, the run fails. Otherwise, the next
input symbol of the trace is read; if it satisfies φ, then the run
proceeds with the simulation of the automaton associated to
ϕ (starting from the state labelled withAϕ), else the run fails
and goes to the sink state. Observe that the operation might
require a further minization step, even ifAϕ is minimal; e.g.
take ϕ = ff as example.
[φ]ϕ: the box formula with a propositional formula as reg-
ular expression is equivalent to the automaton in Figure 1d.
With the empty trace, the run succeeds. Otherwise, the next
input symbol of the trace is read; if it satisfies φ, then the run
proceeds with the simulation of the automaton associated to
ϕ (starting from the state labelled withAϕ), else the run suc-
ceeds and goes to the sink accepting state. Observe that the
operation might require a further minimization step, even if
Aϕ is minimal; e.g. take ϕ = tt as example.
〈ψ?〉ϕ and [ψ?]ϕ: The formulae can be reduced to ψ ∧ ϕ
and ¬ψ ∨ ϕ, respectively.
〈ρ1;ρ2〉ϕ and [ρ1;ρ2]ϕ: Both formulae are reducible to
〈ρ1〉〈ρ2〉ϕ and [ρ1][ρ2]ϕ, respectively.
〈ρ1 + ρ2〉ϕ and [ρ1 + ρ2]ϕ: These formulae can be re-
duced to 〈ρ1〉ϕ ∨ 〈ρ2〉ϕ and [ρ1]ϕ ∧ [ρ2]ϕ, respectively.
〈ρ∗〉ϕ and [ρ∗]ϕ: It is enough to translate 〈ρ∗〉ϕ and get
the other by duality of the diamond operator, i.e. [ρ∗]ϕ ≡
¬〈ρ∗〉¬ϕ. Hence, we will only consider 〈ρ∗〉ϕ. To com-
pute the automaton A〈ρ∗〉ϕ, we first consider the case in
which ρ does not contain any test. In this case, we have that
the automaton Aρ of ρ, is equivalent to the automaton of
〈ρ〉end, i.e. Aρ = A〈ρ〉end, as the semantics of LDLf for-
mulae of the form 〈ρ〉end is the same of REf formulae ρ.
Hence, the automaton A〈ρ〉end can be computed using the
well-known construction of DFA from regular expressions
(See, e.g. (Hopcroft, Motwani, and Ullman 2006)). Then,

we compute the Kleene closure ofAρ,Aρ∗ . Finally, we con-
catenate Aρ∗ and Aϕ to obtain the desired automaton. This
approach can be generalized to handle tests as well in some
cases, but not always, since it could happen that the verifica-
tion of a test ψ? could take more steps than the regular ex-
pression ρ itself. When this happens it is no longer true that
Aρ and A〈ρ〉end are equivalent since the presence of end in
the second one would stop the evaluation of the test ψ? too
early, changing the semantics of the formula. Hence when
we cannot guarantee that this does not happen, we simply
fall back to using the classical algorithm that computes the
AFA from 〈ρ∗〉ϕ (De Giacomo and Vardi 2013; Brafman, De
Giacomo, and Patrizi 2018), with the only difference that we
recursively pre-compute the DFAAψ for each test ψ? and the
DFA Aϕ for ϕ, and whenever we go to state ψ? or ϕ in the
AFA of 〈ρ∗〉ϕ we actually go to the initial state of the DFAs
Aψ and Aϕ Then we transform the AFA into a NFA as usual
and then determinize it to obtain the desired DFA. The rea-
son why we adopted two different approaches for 〈ρ∗〉ϕ is
that the case when ρ does not contain tests allows us to better
decompose the problem. Intuitively, this happens because of
the lack of universal transitions due to the absence of the test
expressions in ρ.

To summarize, in order to compute the DFAAϕ equivalent
to an LDLf formula ϕ, recursively apply the transformations
stated above, one for each syntactic construct of the formula.

Analysis
Now we analyze the technique, proving correctness, termi-
nation, and running time complexity.
Theorem 1. (Correctness) Let ϕ be an LDLf formula
and Aϕ the corresponding DFA. Then for every LTLf -
interpretation π we have that π |= ϕ ⇐⇒ π ∈ L(Aϕ).

Proof. We prove a more general statement, that is ∀i.π, i |=
ϕ ⇐⇒ π(i, length(π)) ∈ L(Aϕ). Clearly, the claim of
the theorem corresponds to the case i = 0. For i > 0, we
proceed by induction on the structure of ϕ.
ϕ = tt . Then, on the one hand, π, i |= tt . On the other

hand, π(i, length(π)) ∈ L(ϕtt), where L(ϕtt) = Σ∗.
ϕ = ff . Then, on the one hand, π, i 6|= ff . On the other

hand, π(i, length(π)) 6∈ L(ϕff), where L(ϕff) = ∅.
ϕ = ¬ϕ′. Then, π, i |= ϕ′, and, by definition, π, i 6|= ϕ.

By structural induction, we have that π(i, length(π)) ∈
L(Aϕ′) and so π(i, length(π)) 6∈ L(A¬ϕ), hence
π(i, length(π)) is not accepted by Aϕ = Aϕ′ .
ϕ = ϕ1 ∧ ϕ2. We have both π, i |= ϕ1 and π, i |= ϕ2.

By structural induction, we then have that π(i, length(π)) ∈
L(Aϕ1) and π(i, length(π)) ∈ L(Aϕ2), which is the condi-
tion of acceptance for π(i, length(π)) onAϕ = Aϕ1∩Aϕ2 .
ϕ = ϕ1 ∨ ϕ2. We have either π, i |= ϕ1 or π, i |= ϕ2. By

structural induction, we then have that π(i, length(π)) ∈
L(Aϕ1

) or π(i, length(π)) ∈ L(Aϕ2
), which is the condi-

tion of acceptance for π(i, length(π)) onAϕ = Aϕ1
∪Aϕ2

.
ϕ = 〈ρ〉ϕ′. We proceed by induction on ρ, and we show

that for every ϕ′, π, i |= 〈ρ〉ϕ′ ⇐⇒ π(i, length(π)) ∈
L(A〈ρ〉ϕ′).
• ρ = φ. We have that π, i |= 〈φ〉ϕ′ iff (i, i+ 1) ∈ R(φ, π)

and π, i + 1 |= ϕ. Notice also that A〈φ〉ϕ′ is of the

form shown in Figure 1c. Observe that if i ≥ length(π)
then π, i |= 〈φ〉ϕ′ is false, and indeed the empty trace
π(i, length(π)) = ε is not accepted by A〈φ〉ϕ′ . If i <
length(π), then π, i |= 〈φ〉ϕ′ iff π(i) |= φ and π, i+1 |=
ϕ′, which is iff the transition from q0 andAϕ is taken, and
then π(i+ 1, length(π)) ∈ L(Aϕ′).

• ρ = ψ?. Observe that 〈ψ?〉ϕ′ ≡ ψ ∧ ϕ′, thus this case is
addressed by applying the same reasoning as the one for
conjunction.

• ρ = ρ1+ρ2. Observe that 〈ρ1+ρ2〉ϕ′ ≡ 〈ρ1〉ϕ′∨〈ρ2〉ϕ′,
thus this case is addressed by applying the same reasoning
as the one for disjunction.

• ρ = ρ1; ρ2. Observe that 〈ρ1; ρ2〉ϕ′ ≡ 〈ρ1〉〈ρ2〉ϕ′. By
induction on ρ2 we have that π, i |= 〈ρ2〉ϕ′ ⇐⇒
π(i, length(π)) ∈ L(A〈ρ2〉ϕ′). By induction on ρ1,
we have that for all ψ, π, i |= 〈ρ1〉ψ ⇐⇒
π(i, length(π)) ∈ L(A〈ρ1〉ψ). By replacing ψ with
〈ρ2〉ϕ′, and considering that the automaton A〈ρ1;ρ2〉ϕ′ is
by definition A〈ρ1〉〈ρ2〉ϕ′ , the thesis follows.

• ϕ = 〈ρ∗〉ϕ′. We first consider the case where ρ does not
contain tests. We prove this case by induction on n =
length(π(i, length(π))).
First, assume n = 0. This implies that i ≥ length(π),
and hence π(i, length(π)) = ε, i.e. is the empty trace.
Since we are out-of-bounds and no propositional formu-
lae can be executed, and the only case that matters is the
one with zero repetition of ρ in ρ∗: π, i |= 〈ρ∗〉ϕ′ holds
iff π, i |= ϕ′. By structural induction, π, i |= ϕ′ holds iff
Aϕ′ accepts π(i, length(π)) = ε. Now, consider the con-
struction of A〈ρ∗〉ϕ′ . It is the concatenation of A〈ρ∗〉end
and Aϕ′ . Since Aρ∗ accepts the empty trace by construc-
tion (it is the Kleene closure of A〈ρ〉end), A〈ρ∗〉ϕ′ accepts
the empty trace iff Aϕ′ accepts the empty trace.
Now, assume that n > 0 and the claim holds for every
n′ < n. From the semantics of 〈ρ∗〉ϕ, we have that π, i |=
〈ρ∗〉ϕ′ iff exists j ≥ i s.t. either j = i and π, j |= ϕ′ or
there exists j > i such that (i, k) ∈ R(ρ, π) and (k, j) ∈
R(ρ∗, π) and π, j |= ϕ′, with k > i. We want to prove
that for every ϕ′, π, i |= 〈ρ∗〉ϕ′ iff π(i, length(π)) ∈
L(A〈ρ∗〉ϕ′). We distinguish two cases; one in which there
are zero repetitions of ρ (j = i), and the other when there
are one or more (j > i).
In case there are zero repetitions, we have that
π(i, length(π)) ∈ L(A〈ρ∗〉ϕ′) iff π(i, length(π)) ∈
L(Aϕ′) by construction, and that π, i |= 〈ρ∗〉ϕ′. iff
π, i |= ϕ′ by the semantics, so now we need to prove
that π(i, length(π)) ∈ L(Aϕ′) iff π, i |= ϕ′, but this is
true by structural induction.
In the other case, j > i, we have one or more repeti-
tions of ρ. By construction, there exists a k > i such
that π(i, k) ∈ L(A〈ρ〉end), π(k, j) ∈ L(A〈ρ∗〉end), and
π(j, length(π)) ∈ L(Aϕ′). We have that π(i, k) ∈
L(A〈ρ〉end) iff (i, k) ∈ R(ρ, π) by construction,
π(k, j) ∈ L(A〈ρ∗〉end) iff (k, j) ∈ R(ρ∗, π) by induction
on the length of the trace, and π(j, length(π)) ∈ L(Aϕ′)
iff π, j |= ϕ′ by structural induction. Combining the
above equivalences, we get the thesis.

Let us now consider the case in which ρ instead contains

tests. Let ψ1?, . . . , ψn? be all tests in ρ. Let Aψi
be the

DFA associated to the test ψi?. Note that both these DFAs
as well as Aϕ′ are correct by structural induction. Then
we compute the AFAAalt〈ρ∗〉ϕ′ as in (De Giacomo and Vardi
2013; Brafman, De Giacomo, and Patrizi 2018), but with
the difference that states of the form ψi? or ϕ′ are re-
placed by the initial states of Aψi and Aϕ′ , respectively.
Moreover, the other states and transitions of these DFAs
are added to the states and transitions of Aalt〈ρ∗〉ϕ′ . Then,
we have that π, i |= 〈ρ∗〉ϕ π(i, length(φ)) ∈ L(Aalt〈ρ∗〉ϕ′),
and since from Aalt〈ρ∗〉ϕ′ we can obtain an equivalent DFA

we get the thesis.

It is also of interest to make some observations on the in-
termediate automata generated by the technique. The com-
putation of DFAs of simple formulae tt , ff , 〈φ〉ϕ and [φ]ϕ,
given the DFA for ϕ, can be done in constant time, since
they don’t depend directly on the size of φ nor ϕ. Nega-
tion consists in changing accepting states to rejecting states
and vice versa. The other boolean operations are translated
using products of DFAs, which are polynomial. The compu-
tation of A〈ρ〉ϕ without the occurrence of the ∗ operator can
be handled reducing recursively to the previous cases with-
out introducing any non-determinism. The occurrence of the
∗ instead prevents us to reduce to the previous cases, and
introduces non-determinism due to the Kleene closure and
the concatenation operations, and hence exponential steps
to determinize the resulting automaton (Maslov 1970; Yu,
Zhuang, and Salomaa 1994). More precisely, let us consider
a sub-formula 〈ρ∗〉ϕ. If ρ does not contain tests2 and does
not contains star operators, then computing the DFA A〈ρ〉end
is polynomial, and computing the DFA for the Kleene clo-
sure, A〈ρ∗〉end, is exponential w.r.t the size ofA〈ρ〉end. As it
is exponential doing the concatenation withAϕ, but w.r.t. the
size ofAϕ hence the total contribution is one exponential. If
ρ contains star operators, then for the arguments above those
sub-expressions already contribute with an arbitrary number
of exponentials, and the outermost star contributes with an-
other exponential for the same arguments. If ρ contains tests,
then we switch to the AFA construction which contributes
with a double-exponential cost due to transformation to NFA
and to determinization to obtain the DFA.

Summarizing, any nested star operation gives, in the worst
case, an exponential blow-up and hence is nonelementary.
Although this may sound discouraging, we observe that
practical tools like Mona (Henriksen et al. 1995) are nonele-
mentary; yet, they perform very well in practice. We show
that also our implementation of the technique is competitive
with Mona and other tools. Also, observe that in our imple-
mentation, like in Mona, we aggressively minimize the par-
tial DFA obtained after each compositional step. Since the
cost of DFA minimization for automata with explicit-state
representations can be done in O(n log n) (Hopcroft 1971),
this does not worsen the complexity of the technique, while

2Or we are guaranteed that the test is completed within the part
of the word scanned by ρ.

in practice enhances it substantially because often the mini-
mal DFA obtained from an NFA is of size comparable to the
NFA itself, instead of being exponential in it.

In any case, since the technique is correct (c.f., Theo-
rem 1), by the uniqueness of minimal DFAs, the returned
DFA (once minimized) is at most double-exponentially
larger than the LDLf formula (De Giacomo and Vardi 2013,
2015; Brafman, De Giacomo, and Patrizi 2018).

Implementation
We have implemented the technique described in the pre-
vious section in a tool called Lydia3. Lydia is able to
parse LTLf and LDLf in a grammar defined by us, and rep-
resents the syntactic tree using n-ary trees. It uses the Mona
DFA library (Henriksen et al. 1995; Klarlund, Møller, and
Schwartzbach 2001) to represents DFAs and perform oper-
ations over them. Note that we don’t use other Mona fea-
tures related to the MSO logic parsing and manipulation.
LydiaSynt is the exension of Lydia that also uses the
Syft+ tool to perform LTLf /LDLf synthesis. Syft+ is an
enhanced version of Syft, that enables dynamic variable
ordering, used by Bansal et al.. That is, after the computa-
tion of the MONA-based DFA, the program passes it to the
Syft+ tool in order to compute the winning-set.
Semi-symbolic automata representation. Let A be a DFA
over the alphabet 2P , where P is a set of k atomic propo-
sitions. Note that such alphabet is isomorphic to Bk, where
the vector v ∈ Bk identifies a subset Π ⊆ P , such that
the bit vi is true iff pi ∈ Π. Due to exponential size of the
alphabet in the number of propositional symbols |P|, it is
crucial to adopt a concise representation of automata tran-
sitions. To achieve this goal, we leverage the Mona DFA li-
brary for automata construction and manipulation. In Mona,
the transitions of a DFA are symbolically represented as a
shared multi-terminal binary decision diagram (shMBDD),
where the transition relation of a DFA is encoded as a binary
decision diagram (BDD) with multiple terminal nodes. The
alphabets of these DFAs are the sets of bit vectors of length
k, i.e. Bk, for some k. In our case, each bit is associated to
an atomic proposition appearing in the LDLf formula. In ad-
dition to a compact representation on transitions of DFAs,
the Mona DFA library provides efficient implementations
of standard automata operations. These operations include
product, (existential) projection, determinization, and mini-
mization. We extended the library so to include the Kleene
closure, the concatenation, and the universal projection.
Existential and Universal Projections. In Mona, the exis-
tential projection of the ith bit (1 ≤ i ≤ k), and the deter-
minization of its result, denoted as EPROJECT(A, i) con-
verts a DFA A recognizing a language L to a DFA A′ recog-
nizing the language L′ where L′ is the existential projection
over bit i of L. The process consists of removing the ith
track of the MBDD and determinizing the resulting MBDD
via on-the-fly subset construction. The universal projection,
denoted as UPROJECT(A, i), is also based on the subset

3The source code of Lydia can be found at
https://github.com/whitemech/lydia

construction used by the existential one, however, while in
the existential projection the acceptance is true iff exists a
state in the subset that is accepting, whereas in the univer-
sal projection the acceptance is true iff all the states in the
subset are accepting. These two operations will be important
building blocks for other operations.

Concatenation and Kleene closure. The technique pre-
sented in the previous section requires adding nondetermin-
istic transitions to the DFA operands of certain operations. In
the case of concatenation between two DFAsA1 andA2, the
nondeterministic choice is made in the accepting states of
A1, F1, because these states should behave as if they were
the initial state of A2; this can be implemented by adding
all the transitions that leave the initial state of A2, q20 , to the
states of A1 in F1. Analogously, in the case of the Kleene
closure of A, the accepting states F should additionally be-
have as if they were the initial state of A, q0, and it can be
implemented by adding all the transitions that leave the ac-
cepting state q0 to the states in F .

In general, the new transitions might render the automaton
nondeterministic, which cannot be handled by Mona APIs.
Instead, we first add an auxiliary fresh bit e to the alpha-
bet, and in the states where the nondeterministic choice hap-
pens, we use e to resolve the non-determinism, so to make
the transitions deterministic. For example, in the concate-
nation described above, the transitions from each f ∈ F1

that belongs to A1 will have the bit e set to true, whereas
the new transitions will have the bit set to false, ē; sim-
ilarly, in the Kleene closure, the old transitions will have
the bit e set to true, and the new transitions will have it set
to false ē. This will ensure that the result of those opera-
tions is still a DFA, as eφ1 ∧ ēφ2 = ⊥, with φ1 and φ2 be-
ing propositional formulae. Finally, the desired automaton is
A = EPROJECT(A′, ie), where ie is the index of the bit e.

Construction of the AFA. When we handle the case of
〈ρ∗〉ϕ and ρ 6≡ 〈ρ〉end, because of tests, we need to resort to
constructing an AFA, and then determinizing it. Since Mona
does not provide constructs for a direct implementation of
AFAs, we rely on building intermediate DFAs, similarly to
what has been done for concatenation and Kleene closure,
on a bigger alphabet having two types of auxiliary bits: exis-
tential, to be projected via EPROJECT (as before) and uni-
versal, to be projected via UPROJECT. Let q be the current
state to expand in the computation of the AFA, and let φq the
formula overQ that determines the next transitions. Without
loss of generality, assume φq is in disjunctive normal form,
and assume that each clause is indexed across all the prod-
ucts and each atom occurrence is indexed within its clause.
Let us call such indices i and j, respectively. Then, the con-
struction adds a transition for each atom occurrence (i.e. an
AFA state), whose guard is determined by the AFA transfor-
mation rules (De Giacomo and Vardi 2013; Brafman, De Gi-
acomo, and Patrizi 2018) in conjunction with the instantia-
tion of the existential and universal bits, corresponding to
the binary representation of the indices i and j, respectively.

Intuitively, to obtain the DFA corresponding to the AFA,
instead of doing the subset construction on-the-fly (which
would need to keep track of sets of sets of states), we push

the representation of the alternation in the alphabet, through
the addition of universal and existential bits. This exploits
the asymmetry of the Mona DFA implementation, which is
symbolic in the transitions and explicit in the states. Hence,
it is less costly to add a transition rather than a state. More-
over, this also gives the opportunity to minimize the result-
ing DFA, hence saving computational resources for the fol-
lowing projections and determinizations.

A crucial difference with respect to the classic LDLf -to-
AFA transformation is that, whenever one of the atom occur-
rences we come across is either a test expression ψ? or ϕ,
instead of expanding those nodes as if they were states of
the AFA, we concatenate the current state to their DFAs. This
gives a good amount of compositionality also to this case,
which translates into more opportunity to minimize the par-
tial results, and hence in achieving greater performances.
Heuristics. As mentioned, we adopt aggressive minimiza-
tion after every step of the technique. Also, whenever the
technique starts computing a product between n automata,
we keep a priority queue to get the next two smallest
operands; the idea is to delay state blow-up of the partial
automaton as much as possible. This is a heuristics already
adopted by Bansal et al. and it is crucial for better scalability.

Experimental evaluation
The evaluation has been designed to compare the perfor-
mance of Lydia and LydiaSynt against their respective
existing tools and approaches: Mona and Lisa for LTLf -to-
DFA conversion, and Syft+ and Lisa for synthesis. Both
LTLf -to-DFA conversion tools and synthesis tools are com-
pared on runtime and number of benchmarks solved within a
given timeout. We conduct our experiments on a benchmark
suite curated from prior works, spanning classes of realistic
and synthetic benchmarks: random conjunctions (400 cases)
(Zhu et al. 2017), single counters (20 cases), double coun-
ters (10 cases) etc. and Nim games (24 cases) (Tabajara and
Vardi 2019; Bansal et al. 2020) More details on each class
can be found in the supplementary material. In the case of
Lydia, the input LTLf formula is parsed and translated into
an LDLf formula. All experiments were conducted on a sin-
gle laptop equipped with an Intel Core i7-8665U CPU run-
ning at 1.90GHz with 16 GB of RAM.
Comparison with Syft+. Lydia has always better run-
times than Mona/Syft+, for DFA construction and there-
fore for the overall synthesis running time. This suggests
that working directly on LTLf /LDLf syntax, rather than pass-
ing first through MSO or FO and then to DFA, gives better
performances. This can be seen in particular for the DFA
construction runtime for single counter (Figure 2) and dou-
ble counter benchmarks (Figure 3) and, for what concerns
synthesis, in Figure 4, where the Mona-based approach, i.e.
Syft+, is never better than LydiaSynt, especially on the
Nim benchmark.
Comparison with Lisa. We observe that Lydia is often
better than Lisa. That suggests that for the explicit part of
Lisa, going fully compositional is a better idea. In fact, the
assumption that LTLf formulae are conjunctions of multi-
ple smaller subformulae might not hold in some cases, es-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Parameter: Number of bits

10−3

10−2

10−1

100

101

102

C
u

m
u

la
ti

ve
ti

m
e

(s
ec

on
d

s)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 2: DFA construction. Runtime for single-counter
benchmarks. Plots touching black line means time/memout.
Timeout is at 300 sec.

1 2 3 4 5 6 7 8 9 10

Parameter: Number of bits

10−3

10−2

10−1

100

101

102
C

u
m

u
la

ti
ve

ti
m

e
(s

ec
on

d
s)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 3: DFA construction. Runtime for double-counter
benchmarks. Plots touching black line means time/memout.
Timeout is at 300 sec.

pecially outside synthesis domains. This can be seen in the
running times for the DFA construction on Nim benchmark
(Table 1), the cactus plot in Figure 5, and in the first part
of the running time of single-counter (Figure 2) and double-
counter (Figure 3). However, we have to remark that for the
last benchmarks of both the single and double counter, Lisa
and Lisa-explicit manage to construct the DFA, whereas
Lydia fails due to memout errors. This is due to different
approaches in the computation of the DFA product: Whilst
Lydia uses only the Mona DFA library, Lisa relies on
Mona for the computation of each subautomaton and then
combines them with SPOT (Duret-Lutz et al. 2016). More-
over, since Lisa implements a hybrid approach, it is able to
choose adaptively the right approach. Nevertheless, as the
cactus plot in Figure 5 shows, Lydia yields better run-

Single Counter (20) Double Counter (10) Nim (24)

Benchmark set

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
N

u
m

of
b

en
ch

m
ar

ks
so

lv
ed

Lydia

Syft+

Lisa-symbolic

Lisa-explicit

Lisa

Figure 4: Number of benchmarks synthesized from each
non-random benchmark class. Each benchmark has a time-
out of 300 seconds.

Benchmark
Name Lydia Mona-

based
Lisa-
expl.

Lisa-
symb.

Lisa

nim 1 1 0.01 0.15 0.07 0.07 0.07
nim 1 2 0.02 — 0.15 0.16 0.16
nim 1 3 0.05 — 0.07 1.43 0.06
nim 1 4 0.09 — 0.14 267.23 0.13
nim 1 5 0.17 — 0.27 — 0.25
nim 1 6 0.30 — 0.63 — 0.54
nim 1 7 0.54 — 1.20 — 1.02
nim 1 8 0.82 — 1.87 — 1.83
nim 2 1 0.05 — 0.14 1.49 0.10
nim 2 2 0.20 — 0.84 — 0.81
nim 2 3 1.47 — 4.95 — 4.95
nim 2 4 7.00 — 26.07 — 24.33
nim 2 5 34.86 — 125.56 — 108.86
nim 2 6 114.87 — — — —
nim 2 7 — — — — —
nim 2 8 — — — — —
nim 3 1 0.40 — 3.15 — 2.67
nim 3 2 9.93 — 84.34 — 78.31
nim 3 3 142.16 — — — —
nim 3 4 — — — — —
nim 4 1 8.97 — 110.10 — 109.79
nim 4 2 — — — — —
nim 5 1 243.62 — — — —
nim 5 2 — — — — —

Table 1: Running time (in seconds) for DFA construction on
the Nim benchmark set. In bold the minimum running time
for a given benchmark. — means time/memout. Timeout at
300 sec.

ning times than Lisa in the majority of cases (given the
timeout of 300 seconds for each benchmark). In Figure 4,
LydiaSynt shows to be competitive with state-of-the-art
synthesis tools like Lisa. However, unsurprisingly, when

0 50 100 150 200 250 300 350 400

Number of benchmark solved.

0

100

200

300

400

500

T
im

eo
u

t
(s

ec
on

d
s)

Lisa

Lisa-explicit

Lydia

Lisa-symbolic

Syft+

Figure 5: DFA construction. Cactus plot indicating number
of benchmarks each tool can solve for a given timeout. Each
benchmark whose running time was greater than 300 sec-
onds was counted as∞.

the problem is too large, also Lydia suffers from the state-
space explosion, whereas Lisa are able to manage such in-
puts, thanks to their symbolic representation. Consequently,
LydiaSynt suffers from the same limitations of Syft+.

A crucial thing to keep in mind is that Lydia processes
the LTLf formula by translating it into LDLf and operat-
ing over it. Despite working on a more expressive logic for-
malisms, the overall performances are very good. That sug-
gests this approach is pretty promising, and we believe that
using direct transformations rules from LTLf to DFA would
give us even better performances.

Conclusions
We proposed a fully compositional translation from
LTLf /LDLf to DFA. We do the transformation to DFA di-
rectly exploiting the structure of the formula, while previ-
ous work either relied on MSO/FO encoding, or they went
through the computation of AFA. Moreover, we have empir-
ically showed the advantages on the practical side. Indeed,
Lydia and LydiaSynt are competitive with state-of-the-
art tools for LTLf /LDLf -to-DFA translation and LTLf syn-
thesis. Also, to the best of our knowledge, ours is the first
work that provides a scalable and performant tool for the
translation of LDLf to DFAs, and so also for LDLf synthe-
sis, thanks to the integration with Syft+. As a future work,
we would like to provide direct transformations from LTLf
syntax to DFA, extend the approach to the pure-past versions
of LTLf and LDLf (De Giacomo et al. 2020b), and improve
the current implementation, in particular by implementing
more advanced simplification rules for the input formulae
and by exploiting an hash-consing data structure so to avoid
to compute multiple times the same sub-automaton, includ-
ing taking into account signature equivalences between for-
mulae (e.g. see (Klarlund, Møller, and Schwartzbach 2001)
about the DAG construction).

Acknowledgments
This work is partially supported by the ERC Advanced
Grant WhiteMech (No. 834228) and by the EU ICT-48 2020
project TAILOR (No. 952215).

References
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
Behaviors. In AAAI, 1160–1167.
Bacchus, F.; and Kabanza, F. 1998. Planning for temporally
extended goals. Ann. Math. Artif. Intel. 5–27.
Bansal, S.; Li, Y.; Tabajara, L.; and Vardi, M. 2020. Hybrid
compositional reasoning for reactive synthesis from finite-
horizon specifications. In AAAI, 9766–9774.
Brafman, R.; De Giacomo, G.; and Patrizi, F. 2018.
LTLf/LDLf Non-Markovian Rewards 1771–1778.
Brafman, R. I.; and De Giacomo, G. 2019a. Planning
for LTLf/LDLf Goals in Non-Markovian Fully Observable
Nondeterministic Domains. In IJCAI.
Brafman, R. I.; and De Giacomo, G. 2019b. Regular Deci-
sion Processes: A Model for Non-Markovian Domains. In
IJCAI, 5516–5522.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In ICAPS, 29–38.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, volume 19, 6065–6073.
Camacho, A.; and McIlraith, S. A. 2019. Strong Fully Ob-
servable Non-Deterministic Planning with LTL and LTLf
Goals. In IJCAI, 5523–5531.
Chandra, A. K.; and Stockmeyer, L. J. 1976. Alternation. In
FOCS, 98–108.
De Giacomo, G.; Favorito, M.; Iocchi, L.; Patrizi, F.; and
Ronca, A. 2020a. Temporal Logic Monitoring Rewards via
Transducers. In KR, 860–870.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for Restraining Bolts: Reinforcement
Learning with LTLf/LDLf Restraining Specifications. In
ICAPS, 128–136.
De Giacomo, G.; Stasio, A. D.; Fuggitti, F.; and Rubin, S.
2020b. Pure-Past Linear Temporal and Dynamic Logic on
Finite Traces. In IJCAI.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI,
854–860.
De Giacomo, G.; and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on Finite Traces. In IJCAI, 1558–1564.
De Giacomo, G.; and Vardi, M. Y. 2016. LTLf and LDLf
Synthesis Under Partial Observability. In IJCAI, IJCAI’16,
1044–1050.
Duret-Lutz, A.; Lewkowicz, A.; Fauchille, A.; Michaud, T.;
Renault, E.; and Xu, L. 2016. Spot 2.0—A Framework for
LTL and ω-Automata Manipulation. In ATVA, 122–129.

Fischer, M. J.; and Ladner, R. E. 1979. Propositional dy-
namic logic of regular programs. JCSS 194–211.
Fogarty, S.; Kupferman, O.; Vardi, M. Y.; and Wilke, T.
2015. Profile trees for Büchi word automata, with appli-
cation to determinization. Information and Computation .
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. AIJ 173(5-6): 619–668.
Harel, D. 1984. Dynamic Logic, 497–604.
Henriksen, J. G.; Jensen, J.; Jørgensen, M.; Klarlund, N.;
Paige, R.; Rauhe, T.; and Sandholm, A. 1995. Mona:
Monadic second-order logic in practice, 89–110.
Hopcroft, J. 1971. An n log n algorithm for minimizing
states in a finite automaton. In Theory of machines and com-
putations, 189–196.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2006. Introd.
to Automata Theory, Languages, and Computation.
Klarlund, N. 1997. Mona & Fido: The logic-automaton con-
nection in practice. In CSL, 311–326.
Klarlund, N.; Møller, A.; and Schwartzbach, M. I. 2001.
MONA Implementation Secrets, 65–89.
Maslov, A. 1970. Estimates of the number of states of finite
automata. In Doklady Akademii Nauk, 1266–1268.
Pešić, M.; Bošnački, D.; and van der Aalst, W. M. 2010.
Enacting declarative languages using LTL: avoiding errors
and improving performance. In SPIN, 146–161.
Pnueli, A. 1977. The temporal logic of programs. In SFCS,
46–57.
Rabin, M. O.; and Scott, D. 1959. Finite automata and their
decision problems. IBM J of Res. and Dev. 3: 114–125.
Tabajara, L. M.; and Vardi, M. Y. 2019. Partitioning Tech-
niques in LTLf Synthesis. In IJCAI, 5599–5606.
Tabakov, D.; and Vardi, M. Y. 2005. Experimental evalua-
tion of classical automata constructions. In LPAR, 396–411.
Vardi, M. 2011. The rise and fall of linear time logic. URL
http://www.cs.rice.edu/∼vardi/papers/gandalf11-myv.pdf.
Vardi, M. Y. 1996. An automata-theoretic approach to linear
temporal logic, 238–266. Springer Berlin Heidelberg.
Yu, S.; Zhuang, Q.; and Salomaa, K. 1994. The state com-
plexities of some basic operations on regular languages. TCS
315–328.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017. Symbolic LTLf Synthesis. In IJCAI, 1362–1369.
Zhu, S.; Tabajara, L. M.; Pu, G.; and Vardi, M. Y. 2020. On
the Power of Automata Minimization in Temporal Synthe-
sis. arXiv preprint arXiv:2008.06790 .

