
Reactive Synthesis of Dominant Strategies

Benjamin Aminof, 1,3 Giuseppe De Giacomo, 2,3 Sasha Rubin 4

1 TU Wien
2 University of Oxford

3 Università degli Studi di Roma “La Sapienza”
4 University of Sydney

aminof@forsyte.at, giuseppe.degiacomo@cs.ox.ac.uk, degiacomo@diag.uniroma1.it, sasha.rubin@sydney.edu.au

Abstract

We study the synthesis under environment specifications
problem for LTL/LTLf which, in particular, generalizes
FOND (strong) planning with these temporal goals. We con-
sider the case where the agent cannot enforce its goal —
for which the argument for using best-effort strategies has
been made — and study the intermediate ground, between
enforcing and best-effort strategies, of dominant strategies.
Intuitively, such strategies achieve the goal against any en-
vironment for which it is achievable. We show that domi-
nant strategies may exist when enforcing ones do not, while
still sharing with the latter many desirable properties such as
being interchangeable with each other, and being monotone
with respect to tightening of environment specifications. We
give necessary and sufficient conditions for the existence of
dominant strategies, and show that deciding if they exist is
2EXPTIME-complete — the same as for enforcing strategies.
Finally, we give a uniform, optimal, game-theoretic algorithm
for simultaneously solving the three synthesis problems of
enforcing, dominant, and best-effort strategies.

Introduction
In Reasoning about Actions, the agent has an explicit rep-
resentation of the environment, corresponding to what it
knows about the behavior of the environment it is operating
in (McCarthy and Hayes 1969; Green 1969). Nondetermin-
istic environments are often represented as nondeterministic
domains, e.g., in Planning on Fully Observable Nondeter-
ministic Domains (FOND) (Geffner and Bonet 2013).

Planning on nondeterministic domains can be seen as a
prominent case of Reactive Synthesis (Church 1963) un-
der environment specifications (Aminof et al. 2018, 2019),
which is the problem of automatically constructing a reac-
tive system from a logical specification. That is, environ-
ments can be specified as sets of environment strategies that
enforce a given temporal logic formula and the computed re-
active system is the sought after plan. In this paper, we con-
sider specifications expressed in linear-time temporal logic
over infinite traces (LTL) and finite traces (LTLf), c.f. (Pnueli
and Rosner 1989; De Giacomo and Vardi 2015).

The standard solution concept in Reactive Synthesis is
that of an enforcing strategy (Pnueli and Rosner 1989) (cf.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

strong policy in FOND planning), i.e., an agent strategy that
achieves the goal against all the environment strategies that
conform to the environment specification. However, often
an enforcing strategy does not exist, leading to the intro-
duction of other solution concepts, including strong-cyclic
policies, which exploit the fact that often the environment
resolves nondeterminism stochastically (Daniele, Traverso,
and Vardi 1999; Cimatti et al. 2003), and more recently best-
effort strategies, i.e., those that achieve the goal against a
maximal set of environment strategies that conform to the
specification (Berwanger 2007; Faella 2009; Aminof et al.
2020, 2021; Aminof, De Giacomo, and Rubin 2021).

In this work we study dominant agent strategies, i.e., those
that achieve the goal against the maximum set of environ-
ment strategies that conform to the specification. Clearly,
enforcing strategies are dominant, and dominant strategies
are best-effort. However, while best-effort strategies always
exist, neither dominant nor enforcing strategies always ex-
ist. Intuitively, an enforcing strategy ensures getting the best
imaginable outcome, a best-effort strategy ensures that one
has made the best possible decision (given that the decision
has to be made before the exact environment is known), and
a dominant strategy ensures that one will always get the best
possible outcome. Our contributions are as follows:

1. We show that dominant strategies, like enforcing ones,
are (i) interchangeable with each other and (ii) monotone
with respect to tightening of environment specifications.

2. We provide a local characterization of the dominant
strategies in terms of what the strategy should achieve
from any given history. The characterization is inspired
by a similar characterization of the best-effort strate-
gies (Berwanger 2007; Aminof et al. 2020).

3. We study the problem of finding a dominant strategy
given goals and environments specified in LTL/LTLf .
We prove that the corresponding realizability problem
is 2EXPTIME-complete, the same as that for enforcing
strategies. Based on the local characterization, we give a
uniform, optimal, game-theoretic algorithm for simulta-
neously solving the three synthesis problems of enforc-
ing, dominant, and best-effort strategies. The algorithm
generalizes the one for best-effort strategies (Aminof, De
Giacomo, and Rubin 2021).

Preliminaries
For a sequence x, we write xi for its ith element; the first
element is x0; the length of x is |x| ∈ N ∪ {∞} (with the
convention that∞− 1 = ∞); the prefix of x of length 0 ≤
i ≤ |x| is denoted by x<i or x≤i−1.

Linear-time Temporal Logic (LTL) For a set AP of
atomic propositions, formulas of LTL over AP are defined
by the following BNF (where p ∈ AP):

ϕ ::=p |ϕ ∨ ϕ |¬ϕ |Xϕ |ϕUϕ

We use the usual abbreviations, ϕ ⊃ ϕ′
.
= ¬ϕ ∨ ϕ′, true .

=
p ∨ ¬p, Fϕ .

= trueUϕ, Gϕ .
= ¬F¬ϕ, etc. The size |ϕ|

of a formula ϕ is the number of symbols in it. A trace τ ∈
(2AP)ω is an infinite sequence of valuations of the atoms.
For n ≥ 0, write τn for the valuation at position n. Given a
trace τ , an integer n, and an LTL formula ϕ, the satisfaction
relation (τ, n) |= ϕ, stating that ϕ holds at step n of the
sequence τ , is defined as follows:

• (τ, n) |= p iff p ∈ τn;
• (τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕ1 or (τ, n) |= ϕ2;
• (τ, n) |= ¬ϕ iff it is not the case that (τ, n) |= ϕ;
• (τ, n) |= Xϕ iff n < |τ | − 1 and (τ, n+ 1) |= ϕ;
• (τ, n) |= ϕ1 Uϕ2 iff (τ,m) |= ϕ2 for some n ≤ m <
|τ |, and (τ, j) |= ϕ1 for all n ≤ j < m.

Here X is read ”next” and U is read ”until”. Write τ |= ϕ
if (τ, 0) |= ϕ, read τ satisfies ϕ. We also consider the vari-
ant LTLf (Bacchus and Kabanza 2000; Baier and McIlraith
2006; De Giacomo and Vardi 2013). It has the same syntax
and semantics as LTL above except that τ is a finite sequence.
Observe that the satisfaction of X and U on finite traces is
defined “pessimistically”, i.e., a trace cannot end before the
promised eventuality holds. We use the following conven-
tion for interpreting LTLf formulas ψ over infinite traces τ :
write τ |= ψ to mean that some finite prefix of τ satisfies ψ
(analogous to the agent using an explicit “stop” action).

Reactive Synthesis The problem of (reactive) synthesis
is to construct an agent that achieves a goal while con-
tinually interacting with its environment. We specify goals
and environments with LTL formulas. Let X and Y be dis-
joint finite sets of Boolean variables, called the environment
variables and agent variables, respectively. Then 2X (resp.
2Y) is the set of environment (resp. agent) moves. A play
π
.
= X0 · Y0 ·X1 · Y1 · · · is an element of (2X · 2Y)ω . The

trace induced by π is the infinite sequence (Xi∪Yi)i≥0, i.e.,
position i of the trace consists of both Xi and Yi. A play π
satisfies an LTL/LTLf formula ϕ over AP = X ∪ Y, writ-
ten π |= ϕ, if the trace induced by π satisfies ϕ. A history
h is a finite prefix of a play. An agent strategy is a function
σag : (2X ·2Y)∗ ·2X → 2Y that maps histories ending in en-
vironment moves to agent moves. Similarly, an environment
strategy is a function σenv : (2X · 2Y)∗ → 2X that maps
histories ending in agent moves (including, since the envi-
ronment moves first, the empty history λ) to environment
moves. We let Σallag denote the set of all agent strategies.

A strategy σ is called oblivious if its output only depends
on the length of the input history, i.e., if |h| = |h′| ⇒

σ(h) = σ(h′). Intuitively, an oblivious strategy is blind to
the actions of the other side, and only sees the passage of
time; it is thus equivalent to an infinite string of moves.

For an agent (resp. env) strategy σ and a play/history ρ,
say that σ and ρ are consistent, if for every proper prefix
ρ<i of odd (resp. even) length we have that ρi = σ(ρ<i). Let
PLAY(σag, σenv) be the unique play consistent with both σag
and σenv. An agent strategy σag enforces ψ, written σag B
ψ, iff PLAY(σag, σenv) |= ψ for every environment strategy
σenv; if such a strategy exists we say the agent can enforce
ψ. A symmetric definition holds for environment strategies.

Let E be an LTL/LTLf formula. We write ΣEenv for the
set of environment strategies that enforce E . If ΣEenv 6= ∅
we say that E is an environment specification (aka assump-
tion). The idea of requiring environment specifications to
be environment-enforceable formulas is justified in (Aminof
et al. 2018). Write ΣE,henv for those environment strategies that
enforce E and are consistent with a history h. For the rest
of this paper, we use E to denote an environment specifica-
tion. The synthesis under environment specifications prob-
lem1 asks, for an LTL goal ϕ and an LTL environment speci-
fication E , to find (if there is one) an agent strategy σag such
that PLAY(σag, σenv) |= ϕ for every σenv that enforces E ; and
in this case we say that σag enforcesϕ under E . This problem
is 2EXPTIME-complete (Aminof et al. 2019, 2018). The
case E = true, called the synthesis problem, was pioneered
in (Pnueli and Rosner 1989) and has the same complexity.

Defining Dominant Strategies
To formalize the notion of dominant strategies, we first de-
fine what it means for an agent strategy to dominate another.
Let E be an environment specification, and let ϕ be an agent
goal. Define a binary relation ≥ϕ|E on agent strategies:
Definition 1 (Dominance). σ1 ≥ϕ|E σ2 iff for every σenv B
E , PLAY(σ2, σenv) |= ϕ implies PLAY(σ1, σenv) |= ϕ. In
this case we say that σ1 dominates σ2 (for goal ϕ under
environment specification E).

As usual, write σ1 >ϕ|E σ2 iff σ1 ≥ϕ|E σ2 and σ2 �ϕ|E
σ1. If σ1 >ϕ|E σ2 we say that σ1 strictly dominates σ2
(for goal ϕ under environment specification E). Intuitively,
σ1 >ϕ|E σ2 means that σ1 does at least as well as σ2 against
every environment strategy enforcing E , and strictly better
against at least one such strategy. The relation≥ϕ|E is a pre-
order, and>ϕ|E is a strict partial order. A maximum element
(if it exists) in the preorder ≥ϕ|E is called dominant:
Definition 2 (Dominant). An agent strategy σ1 is dominant,
aka maximum, for the goal ϕ under the environment speci-
fication E , iff σ1 ≥ϕ|E σ2 for every agent strategy σ2.

If there is no environment specification, i.e., E = true,
we say that σ2 is dominant for the goal ϕ. A slightly weaker
notion than being dominant is being best-effort (Berwanger
2007; Aminof, De Giacomo, and Rubin 2021):
Definition 3 (Best-effort). An agent strategy σ1 is best-
effort, aka maximal, for the goal ϕ under the env. specifi-
cation E , iff there is no agent strategy σ2 s.t. σ2 >ϕ|E σ1.

1In the literature this is sometimes called the synthesis under
assumptions problem.

Given ϕ, E , and an agent strategy σ, let ΣEenv(ϕ, σ) ⊆
ΣEenv be the set of environment strategies σenv ∈ ΣEenv
such that PLAY(σ, σenv) |= ϕ, i.e., the set of environment
strategies σenv that enforce E and against which σ achieves
the goal. Using this notation we can characterize enforc-
ing, dominant, and maximal strategies (for a goal ϕ under
the environment specification E) as follows: σ is enforc-
ing iff ΣEenv(ϕ, σ) = ΣEenv; it is dominant iff ΣEenv(ϕ, σ

′) ⊆
ΣEenv(ϕ, σ) for every σ′; and it is maximal iff ΣEenv(ϕ, σ) 6⊂
ΣEenv(ϕ, σ

′) for every σ′. In particular, if σ2 is not maximal,
say σ1 strictly dominates it, then an agent that uses σ2 is not
doing its “best”: if it used σ1 instead it could achieve the goal
against a strictly larger set of environment strategies. This
explains why, within this framework, maximal strategies are
called “best-effort”. When the goal ϕ and the env. specifica-
tion E are clear from the context we may say “enforcing”,
“dominant”, and “best-effort” without explicitly saying “for
the goal ϕ under the environment specification E”.

An easy consequence of the definitions is the following:
Theorem 1 (Hierarchy). For a goal ϕ and environment
specification E , every enforcing strategy is dominant, and
every dominant strategy is best-effort. Moreover:
1. If there exists an enforcing agent strategy then the domi-

nant agent strategies are exactly the enforcing ones.
2. If there exists a dominant agent strategy then the best-

effort agent strategies are exactly the dominant ones.
Best-effort strategies always exist, and finding them is not

harder than solving the classic synthesis problem.
Theorem 2. (Aminof, De Giacomo, and Rubin 2021) Given
LTL formulas ϕ, E , there exists a best-effort strategy for ϕ
under E . Furthermore, finding such a strategy can be done
in 2EXPTIME.

The following example shows that dominant strategies
(and thus also enforcing strategies) do not always exist.
Example 1. Let the environment and the agent each have
a single variable (x, y, respectively), and consider a ‘match-
ing pennies’ game where the agent moves first. This can be
encoded by the goal ϕ .

= y ⇔ Xx. The environment is
E .

= true. Clearly, the agent has no strategy that enforces
the goal. Moreover, there is no dominant strategy since the
two agent strategies, i.e., σi in which the agent’s first move
is y = i for i ∈ {false, true}, are incomparable (techni-
cally, there are infinitely many agent strategies; however, ef-
fectively there are only two since only the first agent move is
meaningful for the given goal). Indeed, let δi be the environ-
ment strategy that always does x = i, for i ∈ {false, true},
and note that PLAY(σi, δj) |= ϕ iff i = j. Finally, note that
all agent strategies are best-effort.

The following example shows a case where enforcing
strategies do not exist, but dominant ones do.
Example 2. Consider a robotic vacuum cleaner which at
each time step cleans one of two possible rooms. This is en-
coded using the agent variable Y = {CA}, where CA =
true (resp. CA = false) means that the robot cleans room A
(resp. B). Also, at each time step, the environment can op-
tionally add dirt to each room. This is encoded using the en-
vironment variables X = {DA, DB}, where a true variable

means that dirt is added to the corresponding room. Con-
sider the goal ϕ .

= G((DA ⊃ CA) ∧ (DB ⊃ ¬CA)) stat-
ing that when dirt is added to a room it should be cleaned
in the same time step. The environment is E .

= true. The
agent has no enforcing strategy since the goal is violated
if at any time both environment variables are true; how-
ever, it has dominant strategies: e.g., the strategy σ that
at every time step cleans room A if dirt was added to it,
and otherwise cleans room B. Finally, note that if we take
E .

= F(DA ∧ XDA) ⊃ G¬DB , then more agent strategies
become dominant: e.g., the strategy σ′ that behaves like σ
except that once it sees that DA holds for two consecutive
time steps always cleans room A.

In Theorem 10 we show that finding a dominant strategy
is 2EXPTIME hard. This fact, combined with Theorem 1
and Theorem 2, imply that from a practical standpoint —
at least when viewing things through the lens of complexity
classes — one should always look for a best-effort strategy,
instead of a dominant or an enforcing one. Indeed, the cost
of finding a best-effort strategy is not higher than looking for
a dominant or enforcing one, and in case a dominant (resp.
enforcing) strategy exists, the returned best-effort strategy
will be dominant (resp. enforcing). Hence, the main interest
when it comes to dominant strategies (or enforcing ones for
that matter) is deciding or characterizing when they exist.

Characterizing Dominant Strategies
While the appeal of enforcing strategies is obvious, and
the appeal of best-effort strategies was argued before –
see (Berwanger 2007; Aminof, De Giacomo, and Rubin
2021) for more on this – one may justifiably ask what is the
appeal of dominant strategies. One answer is the following:
dominant strategies (like enforcing strategies) have the prop-
erty that they are interchangeable. In other words, two dom-
inant agent strategies σ1 and σ2 perform exactly the same in
all environments: they either both achieve the goal or both
fail to do so. On the other hand, choosing between two best-
effort strategies σ1 and σ2 (that are not dominant) is always
a gamble in the sense that against some non-empty set of en-
vironment strategies, σ1 achieves the goal and σ2 does not,
while against another non-empty set of environment strate-
gies the situation will be reversed. Thus: selecting an en-
forcing strategy ensures always getting the best imaginable
outcome; selecting a dominant strategy ensures that one will
always get the best possible outcome, whereas selecting a
best-effort strategy ensures that one has made the best pos-
sible decision (given that the decision has to be made before
the exact environment is known).

Hopeful characterization Another answer to the question
of why dominant strategies are appealing is given by the fol-
lowing characterization which states, intuitively, that a dom-
inant strategy achieves the goal in all cases except when it is
absolutely impossible.

Call an environment strategy σenv hopeless (wrt ϕ) if it
enforces ¬ϕ; otherwise call it hopeful. Thus, the agent has
no way of achieving ϕ against hopeless environments.

Proposition 3. Given ϕ, E , an agent strategy σ is dominant
(wrt ≥ϕ|E) iff PLAY(σ, σenv) |= ϕ for every hopeful environ-
ment strategy σenv ∈ ΣEenv.

Proof. For the “if” direction: clearly, for every agent strat-
egy σ′ we have that ΣEenv(ϕ, σ

′) does not contain any hope-
less strategy, and thus ΣEenv(ϕ, σ

′) ⊆ ΣEenv(ϕ, σ), so σ is
dominant. For the other direction, assume that σ is dominant
and consider a hopeful environment strategy σenv ∈ ΣEenv.
Being hopeful, there is an agent strategy σ′ such that σenv ∈
ΣEenv(ϕ, σ

′), and since σ is dominant then ΣEenv(ϕ, σ
′) ⊆

ΣEenv(ϕ, σ). Hence, σenv ∈ ΣEenv(ϕ, σ) as required.

When there is no environment specification, i.e., when we
take E = true, and there are no enforcing agent strategies,
then a somewhat surprising connection between the exis-
tence of dominant agent strategies and the existence of obliv-
ious hopeless environment strategies exists:

Proposition 4. Given a goal ϕ, if the agent has a domi-
nant strategy for ϕ, that does not enforce ϕ, then there is an
oblivious environment strategy enforcing ¬ϕ.

Proof. Let σag be a dominant but not enforcing strategy.
By Theorem 1, the agent cannot enforce ϕ and thus, by
the Borel-determinacy (Martin 1975), of the corresponding
game, the environment can enforce ¬ϕ, say using the strat-
egy σenv. Let π .

= PLAY(σag, σenv), and let σ′env be the obliv-
ious strategy defined by letting σ′env(h) = π|h|. Observe that
PLAY(σag, σ

′
env) = π, and that π 6|= ϕ. Since σag is dominant

it follows that PLAY(σ, σ′env) 6|= ϕ for every agent strategy
σ, so σ′env enforces ¬ϕ, i.e., is hopeless.

Proposition 4 gives a necessary condition — namely the
existence of an oblivious hopeless environment strategy —
for the existence of dominant non-enforcing strategies for a
goal ϕ. This condition is, however, not sufficient. To see that,
take Example 1 but modify the goal to be ϕ .

= x ∧ (y ⇔
Xx). Note that an environment strategy that starts with ¬x
is hopeless, but there is no dominant strategy (use the same
arguments as for the original goal in Example 1).

At first glance, Proposition 4 suggests that dominant
strategies may be somewhat rare: why should one expect
that ¬ϕ can be enforced by an oblivious environment that is
blind to the agent’s actions? Note, however, that this proposi-
tion only covers the case with no environment specification,
where it is quite likely that the modeling over-approximates
the possible environments so much that it admits spurious
oblivious hopeless strategies. Once an environment specifi-
cation is introduced, such strategies would most probably
fail to enforce it, and will be ignored by Definition 1.

Monotonicity wrt tightening Another desirable property
shared by enforcing and dominant strategies is monotonic-
ity with respect to tightening of environment specifications.
Given E1, E2, we say that E1 is a tightening of E2 if ΣE1env ⊆
ΣE2env. Proposition 3 implies that, given a goal ϕ, every dom-
inant strategy for ϕ under E2 is also dominant for ϕ under a
tightening E1 of E2. I.e., tightening the environment specifi-
cation cannot remove dominant strategies, but may add ones.

(The same holds for enforcing strategies, as can be easily de-
duced from the definition.)
Proposition 5. For a goal ϕ and env. specifications E1, E2
s.t. ΣE1env ⊆ ΣE2env, if σ is dominant (resp. enforcing) for ϕ
under E2 then it is dominant (resp. enforcing) forϕ under E1.

It is interesting to note that this monotonicity is not in
general true for best-effort strategies. That is, a strategy that
is best-effort for a goal under one environment specification
may or may not be best effort for the same goal under a
tightening of that specification. In fact, the situation is quite
intricate: (Aminof et al. 2021) show an example where tight-
ening the specification reduces the number of best-effort
strategies, as well as an example with three environments
ΣE1env ⊆ ΣE2env ⊆ ΣE3env and an agent strategy σ that is best-
effort for a goal ϕ under E1 as well as E3, but not under E2.

We remark that the possible lack of monotonicity for best-
effort strategies is mitigated by the following facts. First, by
Theorem 1, when dominant or enforcing strategies exist then
they are exactly the best-effort strategies. Second, it is shown
in (Aminof et al. 2021) that given a goal ϕ and a chain of
environment specifications ΣE1env ⊆ ΣE2env ⊆ · · · ⊆ ΣEnenv, one
can always find an agent strategy σ that is simultaneously
best-effort for ϕ under Ei for all 1 ≤ i ≤ n.

Local Characterization of Dominant Strategies
We now provide a local characterization of the dominant
strategies. Let HE(σag) be the set of histories h that are con-
sistent with the agent strategy σag and for which ΣE,henv 6= ∅.
Definition 4. Given ϕ, E , an agent strategy σag, and a his-
tory h ∈ HE(σag), define valϕ|E(σag, h) as follows:

• valϕ|E(σag, h) := 1 (winning) if PLAY(σag, σenv) |= ϕ

for every σenv ∈ ΣE,henv ;
• valϕ|E(σag, h) := −1 (losing) if PLAY(σag, σenv) |= ¬ϕ

for every σenv ∈ ΣE,henv ;
• valϕ|E(σag, h) := 0 (pending) otherwise.

We can compare agent strategies by looking at histories at
which they make a different decision, i.e., “split”. Formally,
σ1, σ2 split at a history h if h ends in an environment move,
is consistent with σ1 and with σ2, and σ1(h) 6= σ2(h). The
following proposition characterizes dominance by compar-
ing the values of agent strategies at their split points.
Proposition 6 (Characterization of Dominance). (Aminof
et al. 2020; Berwanger 2007) Given agent strategies σ1, σ2,
we have that σ1 ≥ϕ|E σ2 iff for every history h with ΣE,henv 6=
∅, at which σ1, σ2 split:

(1) valϕ|E(σ1, h) ≥ valϕ|E(σ2, h), and
(2) it does not hold that valϕ|E(σ1, h) = valϕ|E(σ2, h) = 0.

The next definition assigns values to histories alone:
Definition 5. (Aminof et al. 2020; Berwanger 2007)
For a history h, define valϕ|E(h) as the maximum of
valϕ|E(σag, h), where σag varies over all agent-strategies
for which h ∈ HE(σag); if there are no such strategies then
write valϕ|E(h) = und (which stands for “undefined”).

We also call a history h “winning”, “pending”, or “losing”
if valϕ|E(h) is 1, 0, or −1, respectively.

Proposition 7 (Local characterisation of best-effort).
(Aminof et al. 2020; Berwanger 2007) An agent strategy σ is
best-effort (wrt≥ϕ|E) iff valϕ|E(σ, h) = valϕ|E(h) for every
history h ∈ HE(σ) that ends in an environment move.

The following characterizes dominant strategies.
Theorem 8 (Local characterisation of dominant). An agent
strategy σ1 is dominant (wrt ≥ϕ|E) iff for every h ∈ HE(σ1)
that ends in an environment move:

(a) if valϕ|E(h) = 1 then valϕ|E(σ1, h) = 1, and
(b) if valϕ|E(h) = 0 then (i) valϕ|E(σ1, h) = 0, and (ii)

valϕ|E(h · Y ′) = −1 for every agent move Y ′ 6= σ1(h).

Proof. We start with the “if” direction. Let σ2 be any
agent strategy, and let h be any history with ΣE,henv 6= ∅
at which σ1, σ2 split. Note that this means, in particular,
that h ∈ HE(σ1), and thus conditions (a) and (b) above
apply to h. To show that σ1 is dominant it is enough to
show that the conditions (1) and (2) of Proposition 6 hold.
There are three cases to consider. First, if valϕ|E(h) = 1,
then by (a) also valϕ|E(σ1, h) = 1, and so (1) and (2)
hold. Second, if valϕ|E(h) = −1, then valϕ|E(σ1, h) =
valϕ|E(σ2, h) = −1, and so (1) and (2) hold. Third, if
valϕ|E(h) = 0 then by the first part of (b) we have that
valϕ|E(σ1, h) = 0 so (1) holds; since σ1, σ2 split at h we
have that σ1(h) 6= σ2(h) and thus by the second part of (b)
valϕ|E(σ2, h) = valϕ|E(σ2, h · σ2(h)) = −1 and (2) holds.

For the other direction, assume that σ1 is dominant and
let h be a history as defined in the condition of this the-
orem. Since a dominant strategy is in particular maximal
then by Proposition 7 valϕ|E(h) = valϕ|E(σ1, h), and thus
(a) and the first part of (b) hold. Assume by contradiction
that the second part of (b) does not hold, i.e., that there
is some Y ′ 6= σ1(h) with valϕ|E(h · Y ′) 6= −1. Since
h ends in an environment move then valϕ|E(h · Y ′) ≤
valϕ|E(h) and thus, since valϕ|E(h) = 0, it must be that
valϕ|E(h · Y ′) = 0. Let σ2 be an agent strategy that wit-
nesses the fact that valϕ|E(h ·Y ′) = 0 (i.e., h ·Y ′ ∈ HE(σ2)
and valϕ|E(σ2, h · Y ′) = 0), and note that h · Y ′ ∈ HE(σ2)
implies that σ2(h) = Y ′. It follow that valϕ|E(σ2, h) = 0
and that σ1, σ2 split at h. Recall that the assumption that σ1
is dominant implies that σ1 ≥ϕ|E σ2, and obtain a contra-
diction to item (2) in Proposition 6.

Theorem 8 highlights an interesting fact about dominant
strategies: all dominant strategies behave exactly the same
on pending histories (that do not extend winning ones). In
other words, the difference between two dominant strategies
is only in how they win from winning histories, or lose from
losing histories. This is the basis of the following character-
ization of when dominant strategies exist:
Theorem 9. The agent has a dominant strategy for ϕ under
E iff for every history h that ends in an environment move:

(a) either valϕ|E(h′) = 1 for some prefix h′ of h, or
(b) valϕ|E(h · Y ′) = 0 for at most one agent move Y ′.

Proof. For the forward direction, let σ be a dominant strat-
egy, and take some history h ending in an environment

move. Consider the longest prefix h′ ∈ HE(σ) of h ending
in an environment move (h′ always exists since the empty
history is in HE(σ)). If valϕ|E(h′) = 1 then (a) holds. If
valϕ|E(h

′) ∈ {−1, und} then the same is true for all of
the extensions of h′ and (b) holds. If valϕ|E(h′) = 0, by
Theorem 8 we have that valϕ|E(h′ · Y ′) = −1 for every
Y ′ 6= σ(h′), that valϕ|E(h′ · σ(h′)) = 0, and that if h = h′

then (b) holds and we are done. If, however, h 6= h′, then
either h extends h′ · Y ′ for Y ′ 6= σ(h′), in which case h
and all its extensions are also losing and (b) holds; or h
extends h′ · σ(h′) and thus (recall that h ends in an envi-
ronment move) there is some environment move X ′ such
that h′′ .= h′ · σ(h′) · X ′ is a prefix of h. Observe that h′′
is consistent with σ, and by our choice of h′ we have that
h′ 6∈ HE(σ). This implies that ΣE,h

′′

env = ∅, i.e., that h′′ is not
consistent with any strategy in ΣEenv. The same is obviously
true for any extension of h′′ and thus, for any agent move
Y ′, we have that valϕ|E(h · Y ′) = und, and (b) holds.

For the other direction, assume (a) and (b) above hold.
Given a history h, observe that †: if valϕ|E(h) = 0 then it
must be that (b) holds (since extensions of winning histories
cannot be pending). Let σ be a best-effort strategy (by The-
orem 2 there is such a strategy), and apply Proposition 7 to
σ in order to obtain, together with †, that the conditions of
Theorem 8 hold, and thus σ is dominant.

We remark that in the statement of Theorem 9, the case
where valϕ|E(h) is undefined falls under condition (b).

Computing Dominant Strategies
The main computational problem addressed in this work is
to establish the complexity and algorithms for deciding if a
dominant strategy exists and in this case finding one.

Definition 6 (Computational problem). Given an LTL/LTLf
goal ϕ and environment specification E , the dominant syn-
thesis problem under environment specifications is to find an
agent strategy that is dominant for ϕ under E , or say there
is none.

Theorem 10. The dominant synthesis problem for LTL/LTLf
goals, even without env. specifications, is 2EXPTIME hard.
This is true even for the problem of deciding the existence of
dominant strategies.

Proof. We will show the latter statement, from which the
former follows. The proof is by reduction the LTL/LTLf syn-
thesis problem, known to be 2EXPTIME hard (Pnueli and
Rosner 1989; De Giacomo and Vardi 2015). Assume w.l.o.g.
that x ∈ X and y, y′ ∈ Y are some of the agent and en-
vironment variables. Given a goal ϕ, consider the formula
ψ

.
= (y → Xϕ) ∧ (¬y → (y′ ⇔ Xx)). Intuitively, ψ

says that if the agent asserts y in his first move then he
wants to play for ϕ, and otherwise he wants to play “rigged
matching pennies”. Consider the history h .

= {x} of the sin-
gle environment move asserting x (this choice is arbitrary,
and any other move will do). Observe that this history is
winning for ψ iff the agent can enforce ϕ. Furthermore, if
the agent cannot enforce ϕ then there are at least two ac-
tions Y ′ (namely Y ′

.
= {¬y, y′}, Y ′ .

= {¬y,¬y′}) with

valϕ|E(h · Y ′) = 0. Hence, by Theorem 9, there is a dom-
inant strategy for ψ iff there is an enforcing strategy for ϕ.
Note that for LTLf , the agent may terminate the matching
pennies game too early, and thus we replace the second con-
junct by ¬y → (X true ∧ (y′ ⇔ Xx)).

In the remainder of this section we develop algorithms for
solving the dominant synthesis problem under environment
specifications for LTL/LTLf . Our algorithm returns an en-
forcing strategy if there is one, a dominant strategy if there
is one, and a best-effort strategy otherwise.

Deterministic Transition Systems. A deterministic tran-
sition system D = (Σ, Q, ι, δ) consists of a finite input al-
phabet Σ (typically, Σ = 2AP), a finite set Q of states, an
initial state ι ∈ Q, and a transition function δ : Q×Σ→ Q.
The size of D is the number of its states.

Let α = α0α1 · · · be a finite or infinite sequence of let-
ters in Σ. The run (aka path) induced by α is the sequence
q0q1 · · · of states where q0 = ι and qi+1 = δ(qi, αi) for ev-
ery i < |α|. We extend δ to the functionQ×Σ∗ → Q as fol-
lows: δ(q, λ) = q, and for n > 0, if qn = δ(q, α0 · · ·αn−1)
then δ(q, α0α1 · · ·αn) = δ(qn, αn).

Definition 7. The product of two transition systems Di =
(Σ, Qi, ιi, δi) (for i = 1, 2) over the same input alpha-
bet is the transition system D1 × D2 = (Σ, Q, ι, δ) where
Q = Q1 × Q2; ι = (ι1, ι2); and δ((q1, q2), x) =
(δ(q1, x), δ(q2, x)). The product D1 × D2 × · · · × Dk can
be similarly defined for any finite sequenceD1, D2, · · · , Dk

of transition systems over the same input alphabet Σ.

Automata. A Deterministic Finite Word automaton (DFA)
A = (D,F) consists of a deterministic transition system
D and a set F ⊆ Q of accepting states. A finite run
ρ = q0q1 · · · qn in D is called accepting if qn ∈ F . A fi-
nite string α ∈ Σ∗ is accepted by A iff its run is accepting.
The set of finite strings accepted by A is the language of A.
A Deterministic Parity Word automaton (DPA) A = (D, c)
consists of a deterministic transition system D and a color-
ing function c : Q → Z. The index of A is the number of
integers in the image of c, i.e., |{n ∈ Z | c−1(n) 6= ∅}|. An
infinite run ρ = q0q1 · · · in D satisfies c (aka accepted) iff
the smallest n such that c(qi) = n for infinitely many i is
even. An infinite string α ∈ Σω is accepted by A iff the run
induced by it satisfies c. The set of infinite strings accepted
by A is the language of the A.

Theorem 11 (Formulas to Automata). (cf. (Vardi 1995) and
(De Giacomo and Vardi 2013))

1. One can build a DFA Aϕ, accepting exactly the models
of an LTLf formula ϕ, whose size is at most 2EXP in |ϕ|.

2. One can build a DPA Aϕ, accepting exactly the models
of an LTL formula ϕ, whose size is at most 2EXP in |ϕ|
and whose index is at most EXP in |ϕ|.

We can lift the acceptance conditions of components ofD
to D as follows:

Definition 8. For k-many DPAs Ai = (Di, ci) (or DFAs
Ai = (Di, Fi)), and writing D for the product of their
transition systems D1, · · · , Dk, define the lifting of cj to

D (resp. lifting of Fj to D) to be the coloring function
dj : Q → Z defined by dj(q1, · · · , qk)

.
= cj(qj) (resp. the

set Q1 × · · · ×Qi−1 × Fi ×Qi+1 × · · · ×Qk).
Note that (D, dj) is a DPA (resp. (D,Fj) is a DFA), and

its language is the same as the language of the DPA (Dj , cj)
(resp. DFA (Dj , Fj)).

We sometimes limit the environment to moves that do not
leave a set Q′ of states. We do this by adding a sink-state,
and redirecting to it moves of the environment that start in
Q′ and for which some response of the agent leaves Q′:
Definition 9. Let D = (Σ, Q, ι, δ) be a transition sys-
tem and let Q′ ⊆ Q be a set of states. The environment-
restriction of D to Q′ is the transition system (Σ, Q ∪
{sink}, ι, δ′), where δ′ agrees with δ except that δ′(q, (X ′∪
Y ′)) = sink in case q = sink, or q ∈ Q′ and δ(q, (X ′ ∪
Z)) 6∈ Q′ for some Z ⊆ Y.

Games on Deterministic Automata. It is known that
solving synthesis (without environment specifications) for
an LTL/LTLf goal ϕ can be reduced to solving a two-player
game of perfect information on the DPA/DFA corresponding
to ϕ. We describe this process below since we will later gen-
eralize it. The contents of this section are an adaptation of
standard material on games-graphs (Apt and Grädel 2011).

Informally, the current position in the game is a state q
of the automaton, first the environment moves by setting
X ′ ⊆ X, then the agent follows by setting Y ′ ⊆ Y, and the
position in the game is updated to the state δ(q, (X ′ ∪ Y ′)).
This interaction generates an infinite run, and the agent is
declared the winner if the run is accepting.

Formally, a DPA-game (resp. a DFA-game) is played on
a DPA A = (D, c) (resp. DFA A = (D,F)), by two
players: agent and environment. The transition system D =
(2X∪Y, Q, ι, δ) is called the arena, and the acceptance con-
dition of A is called the objective. An agent strategy σag
is winning if for every environment strategy σenv, the trace
PLAY(σag, σenv) is accepted byA. Similarly, an environment
strategy σenv is winning if for every agent strategy σag, the
trace PLAY(σag, σenv) is not accepted by A (the objective is
from the agent’s point of view). A player’s winning region in
the game onA is the set of states q for which that player has
a winning strategy in the game with the same objective but
on the arena (2X∪Y, Q, q, δ), i.e., starting from q. A strat-
egy winning from every state in the winning region is called
uniform winning.

If the agent makes its moves just by looking at the cur-
rent environment move and the current state of the automa-
ton (instead of the exact full history of environment moves),
then we say that the agent is using a positional strategy.
Formally, a function fag : Q × 2X → 2Y induces the
positional agent strategy σag: σag(X0) = fag(ι,X0), and
for n > 0 and α = X0Y0X1Y1 · · ·Xn−1Yn−1, define
σag(α · Xn) = fag(qn, Xn) where qn

.
= δ(ι, α). We can

similarly define environment positional strategies as func-
tions fenv : Q→ 2X.

The relevant computational problem associated with a
DPA/DFA-game is to compute, for a given player, that
player’s winning region W , as well as a uniform winning
positional strategy for that player. We call this solving the

game. This can be done for DPA/DFA games by a simple
fixed-point algorithm.

Theorem 12 (cf. (Apt and Grädel 2011)). DFA-games can
be solved in time polynomial in the size of the given DFAA;
DPA-games can be solved in time polynomial in the size, and
EXP in the index, of the given DPA A.

We also consider the case where the agent and environ-
ment co-operate. Formally, a pair of strategies σag, σenv is
co-operatively winning if the trace PLAY(σag, σenv) is ac-
cepted by the automaton A. The co-operative winning re-
gion W ′ of a DPA/DFA-game A is the set of states q for
which there is a pair of strategies that are co-operatively
winning in the game played on (Σ, Q, q, δ, c), i.e., start-
ing from q. Solving a co-operative DPA/DFA-game on A
means to find the set W ′, as well as a pair of uniform posi-
tional strategies (although we will only use the agent’s) that
co-operatively win from every state in W ′. Note that this
amounts to solving the emptiness problem for A.

Theorem 13 (cf. (Apt and Grädel 2011)). Co-operative
DFA-games can be solved in time polynomial in the size of
the given DFA A; Co-operative DPA-games can be solved
in time polynomial in the size and index of the given DPAA.

Unified Synthesis Algorithm
We now present our algorithms for solving the domi-

nant synthesis problem under environment specifications for
LTL/LTLf . We present both algorithms together as a single
algorithm since the steps are the same, and the only differ-
ence between LTL and LTLf is handled by the type of au-
tomata and games we use. The algorithm is an extension of
the best-effort synthesis algorithm from (Aminof, De Gia-
como, and Rubin 2021), and the fact that it correctly finds
a best-effort strategy is shown there. We enhance this algo-
rithm by adding checks to see if an enforcing or a dominant
strategy exist; by Theorem 1, if an enforcing (resp. dom-
inant) strategy exists then the best-effort strategy found is
enforcing (resp. dominant).
Unifying Algorithm. Given LTL/LTLf formulas ϕ, E :

1. Using Theorem 11, for every ξ ∈ {¬E , E ⊃ ϕ, E ∧ ϕ}
compute the DPAs (resp. DFAs) Aξ = (Dξ, Fξ).

2. Using Definition 7 form (in linear time) the product D =
D¬E ×DE⊃ϕ ×DE∧ϕ. Using Definition 8, lift the final
states of each component to the product, e.g., the lifted
condition G¬E consists of all states (q¬E , qE⊃ϕ, qE∧ϕ) ∈
Q s.t. q¬E ∈ F¬E . Let δ denote D’s transition function.

3. Use Theorem 12, compute a uniform positional winning
agent strategy fag in the DPA-game (resp. DFA-game)
(D,FE⊃ϕ). Let W ⊆ Q be the agent’s winning region.

4. If the initial state ofD is inW then set EnforceF lag =
true, and goto step 8.

5. Use Theorem 12, find the environment’s winning region
V ⊆ Q in the DPA-game (resp. DFA-game) (D,F¬E).

6. Using Definition 9, compute (in linear-time) the
environment-restriction D′ of D to the set V .

7. Using Theorem 13, compute a co-operatively winning
uniform positional strategy gag in the DPA-game (resp.

DFA-game) (D′, FE∧ϕ). Let W ′ ⊆ Q be the co-
operative winning region.

8. Compute the agent strategy σag induced by the positional
strategy kag : Q× 2X → 2Y defined as follows:

If EnforceF lag is true then define kag(q,X
′) =

fag(q,X
′) for q ∈ W , and kag(q,X ′) is arbitrary for

q 6∈ W ; otherwise, define kag(q,X ′) = fag(q,X
′) if

q ∈W , and kag(q,X ′) = gag(q,X
′) for q 6∈W .

9. If EnforceF lag is true, then return σag and the state-
ment “the strategy σag is enforcing”.

10. Otherwise, if there is some state q ∈ Q, reachable from
the initial state, such that (a) there is no path from the ini-
tial state to q that visits a state inW ; and (b) there is some
env. moveX ′ and two agent moves Y ′, Y ′′ such that both
δ(q,X ′ ∪ Y ′) and δ(q,X ′ ∪ Y ′′) are in W ′, then return
σag and the statement “the strategy σag is best-effort, and
there is no dominant strategy”. These conditions can be
checked in polynomial time in the size of D.

11. Otherwise return σag and the statement “the strategy σag
is dominant, and there is no enforcing strategy”.

The last two steps of the algorithm are correct by Theo-
rem 9 and Theorem 1.

The algorithm above, together with Theorem 10, give us:
Theorem 14. Dominant synthesis under environment spec-
ifications (for LTL/LTLf goals and environment specifica-
tions) is 2EXPTIME-complete.

Related Work
We have discussed the closely related work on (classic) syn-
thesis (Pnueli and Rosner 1989), synthesis under environ-
ment specifications (Aminof et al. 2019), and best-effort
synthesis (Aminof, De Giacomo, and Rubin 2021).

We now discuss trace-based variants of the notion of
dominant synthesis. (Damm and Finkbeiner 2011, 2014;
Finkbeiner and Passing 2020) study remorse-free dom-
inance, which can be expressed using our terminology
as follows: for an agent goal ϕ, define σ1 ≥tr σ2 if
PLAY(σ2, σenv) |= ϕ implies PLAY(σ2, σenv) |= ϕ for ev-
ery oblivious strategy σenv; and dominant strategies are de-
fined to be maximums wrt ≥tr. They provide an optimal
automata-theoretic algorithm that solves synthesis of dom-
inant strategies for LTL goals; prove that a dominant strat-
egy exists iff there is a unique weakest environment assump-
tion that would guarantee a winning strategy; and apply this
to provide an incremental algorithm for solving distributed
synthesis which finds a dominant strategy for one process
at a time and propagating the assumption to the processes
to be synthesized. An identical notion called good-enough
synthesis is studied in (Almagor and Kupferman 2020) (al-
though these papers define their notions differently, they can
be easily seen to be equivalent by a slight variant of Propo-
sition 3) mainly in a multi-valued setting, and in (Li et al.
2021) in the single-agent setting for LTLf goals.

We remark that the restriction to oblivious environment
strategies inherent in these trace-based works is severe, and
results in different properties then we have in our much
broader setting.

Acknowledgments
This work is partially supported by the Austrian Science
Fund (FWF) P 32021, by the ERC Advanced Grant White-
Mech (No. 834228), by the EU ICT-48 2020 project TAI-
LOR (No. 952215), and by the PRIN project RIPER (No.
20203FFYLK).

References
Almagor, S.; and Kupferman, O. 2020. Good-Enough Syn-
thesis. In Lahiri, S. K.; and Wang, C., eds., CAV, vol-
ume 12225 of Lecture Notes in Computer Science, 541–563.
Springer.
Aminof, B.; De Giacomo, G.; Lomuscio, A.; Murano, A.;
and Rubin, S. 2020. Synthesizing strategies under expected
and exceptional environment behaviors. In IJCAI.
Aminof, B.; De Giacomo, G.; Lomuscio, A.; Murano, A.;
and Rubin, S. 2021. Synthesizing Best-effort Strategies un-
der Hierarchical Environment Specifications. In KR.
Aminof, B.; De Giacomo, G.; Murano, A.; and Rubin, S.
2018. Synthesis under Assumptions. In KR.
Aminof, B.; De Giacomo, G.; Murano, A.; and Rubin, S.
2019. Planning under LTL Environment Specifications. In
ICAPS.
Aminof, B.; De Giacomo, G.; and Rubin, S. 2021. Best-
Effort Synthesis: Doing Your Best Is Not Harder Than Giv-
ing Up. In IJCAI.
Apt, K.; and Grädel, E. 2011. Lectures in game theory for
computer scientists. Cambridge.
Bacchus, F.; and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artif. Intell.,
116(1-2).
Baier, J. A.; and McIlraith, S. A. 2006. Planning with First-
Order Temporally Extended Goals using Heuristic Search.
In AAAI.
Berwanger, D. 2007. Admissibility in Infinite Games. In
STACS.
Church, A. 1963. Logic, arithmetics, and automata. In Proc.
Int. Cong. Mathematicians, 1962.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. AIJ, 1–2(147).
Damm, W.; and Finkbeiner, B. 2011. Does It Pay to Extend
the Perimeter of a World Model? In FM 2011. Springer.
Damm, W.; and Finkbeiner, B. 2014. Automatic Composi-
tional Synthesis of Distributed Systems. In FM.
Daniele, M.; Traverso, P.; and Vardi, M. 1999. Strong Cyclic
Planning Revisited. In ECP.
De Giacomo, G.; and Vardi, M. 2015. Synthesis for LTL and
LDL on finite traces. In IJCAI.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI.
Faella, M. 2009. Admissible Strategies in Infinite Games
over Graphs. In MFCS.
Finkbeiner, B.; and Passing, N. 2020. Dependency-Based
Compositional Synthesis. In ATVA.

Geffner, H.; and Bonet, B. 2013. A Coincise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool.
Green, C. 1969. Theorem Proving by resolution as basis
for question-answering systems. In Machine Intelligence,
volume 4, 183–205. American Elsevier.
Li, Y.; Turrini, A.; Vardi, M. Y.; and Zhang, L. 2021. Syn-
thesizing Good-Enough Strategies for LTLf Specifications.
In IJCAI, 4144–4151. ijcai.org.
Martin, D. A. 1975. Borel determinacy. Annals of Mathe-
matics, 363–371.
McCarthy, J.; and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the StandPoint of Artificial Intelligence.
Machine Intelligence, 4: 463–502.
Pnueli, A.; and Rosner, R. 1989. On the Synthesis of a Re-
active Module. In POPL.
Vardi, M. Y. 1995. An Automata-Theoretic Approach to
Linear Temporal Logic. In Moller, F.; and Birtwistle, G. M.,
eds., Logics for Concurrency - Structure versus Automata,
volume 1043 of LNCS.

