
Automata Cascades: Expressivity and Sample Complexity

Alessandro Ronca1, Nadezda Alexandrovna Knorozova2,3, Giuseppe De Giacomo1,4

1DIAG, Sapienza University of Rome
2RelationalAI

3IFI, University of Zurich
4Computer Science Department, University of Oxford

ronca@diag.uniroma1.it, nadezda.knorozova@relational.ai, giuseppe.degiacomo@cs.ox.ac.uk

Abstract
Every automaton can be decomposed into a cascade of basic
prime automata. This is the Prime Decomposition Theorem
by Krohn and Rhodes. Guided by this theory, we propose au-
tomata cascades as a structured, modular, way to describe
automata as complex systems made of many components,
each implementing a specific functionality. Any automaton
can serve as a component; using specific components allows
for a fine-grained control of the expressivity of the resulting
class of automata; using prime automata as components im-
plies specific expressivity guarantees. Moreover, specifying
automata as cascades allows for describing the sample com-
plexity of automata in terms of their components. We show
that the sample complexity is linear in the number of compo-
nents and the maximum complexity of a single component,
modulo logarithmic factors. This opens to the possibility of
learning automata representing large dynamical systems con-
sisting of many parts interacting with each other. It is in
sharp contrast with the established understanding of the sam-
ple complexity of automata, described in terms of the overall
number of states and input letters, which implies that it is only
possible to learn automata where the number of states is lin-
ear in the amount of data available. Instead our results show
that one can learn automata with a number of states that is
exponential in the amount of data available.

Introduction
Automata are fundamental in computer science. They are
one of the simplest models of computation, with the ex-
pressive power of regular languages, placed at the bot-
tom of the Chomsky hierarchy. They are also a mathemat-
ical model of finite-state dynamical systems. In learning
applications, automata allow for capturing targets that ex-
hibit a time-dependent behaviour; namely, functions over
sequences such as time-series, traces of a system, histo-
ries of interactions between an agent and its environment.
Automata are typically viewed as state diagrams, where
states and transitions are the building blocks of an automa-
ton, cf. (Hopcroft and Ullman 1979). Accordingly, classes
of automata are described in terms of the number of states
and input letters. Learning from such classes requires an
amount of data that is linear in the number of states and let-
ters (Ishigami and Tani 1997). Practically it means that, in

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

order to learn large dynamical systems made of many com-
ponents, the amount of data required is exponential in the
number of components, as the number of states of a system
will typically be exponential in the number of its stateful
components.

We propose automata cascades as a structured, modular,
way to describe automata as complex systems made of many
components connected in an acyclic way. Our cascades are
strongly based on the theory of Krohn and Rhodes, which
says that every automaton can be decomposed into a cas-
cade of basic components called prime automata (Krohn and
Rhodes 1965). Conversely, the theory can be seen as pre-
scribing which components to use in order to build certain
classes of automata, and hence obtain a certain expressivity.
For example, we can cascade so-called flip-flop automata in
order to build all noncounting automata, and hence obtain
the expressivity of well-known logics such as monadic first-
order logic on finite linearly-ordered domains (McNaughton
and Papert 1971) and the linear temporal logic on finite
traces LTLf (De Giacomo and Vardi 2013).

We focus on cascades as a means to learn automata. Our
cascades are designed for a fine control of their sample com-
plexity. We show that—ignoring logarithmic factors—the
sample complexity of automata cascades is at most linear in
the product of the number of components and the maximum
complexity of a single component. Notably, the complexity
of a single component does not grow with the number of
components in the cascade. We carry out the analysis both
in the setting where classes of automata cascades are finite,
and in the more general setting where they can be infinite.
For both cases, we obtain bounds of the same shape, with
one notable difference that for infinite classes we incur a
logarithmic dependency on the maximum length of a string.
Overall, our results show that the sample complexity of au-
tomata can be decoupled from the the number of states and
input letters. Rather, it can be described in terms of the com-
ponents of a cascade capturing the automaton. Notably, the
number of states of such an automaton can be exponential in
the number of components of the cascade.

We see the opportunity for cascades to unlock a greater
potential of automata in learning applications. On one hand,
automata come with many favourable, well-understood, the-
oretical properties, and they admit elegant algorithmic so-
lutions. On the other hand, the existing automata learning

algorithms have a complexity that depends directly on the
number of states. This hurts applications where the num-
ber of states grows very fast, such as non-Markov reinforce-
ment learning (Toro Icarte et al. 2018; De Giacomo et al.
2019; Gaon and Brafman 2020; Brafman and De Giacomo
2019; Abadi and Brafman 2020; Xu et al. 2020; Neider
et al. 2021; Jothimurugan et al. 2021; Ronca and De Gia-
como 2021; Ronca, Paludo Licks, and De Giacomo 2022).
Given our favourable sample complexity results, automata
cascades have a great potential to extend the applicability of
automata learning in large complex settings.

Before concluding the section, we introduce our running
example, that is representative of a class of tasks commonly
considered in reinforcement learning. It is based on an ex-
ample from (Andreas, Klein, and Levine 2017).

Example 1. Consider a Minecraft-like domain, where an
agent has to build a bridge by first collecting some raw ma-
terials, and then using a factory. The agent has two options.
The first option is to complete the tasks {getWood, getIron,
getFire} in any order, and then {useFactory}. The second
option is to complete {getSteel}, and then {useFactory}.

A formal description of the example as well as full proofs
of all our technical results are given in the extended version
(Ronca, Knorozova, and De Giacomo 2022).

Preliminaries
Functions. For f : X → Y and g : Y → Z, their compo-
sition f ◦ g : X → Z is defined as (f ◦ g)(x) = g(f(x)).
For f : X → Y and h : X → Z, their cross product
f×h : X → Y ×Z is defined as (f×h)(x) = 〈f(x), h(x)〉.
A class of functions is uniform if all functions in the class
have the same domain and codomain. Given a tuple t =
〈x1, . . . , xn〉, and a subset J ⊆ [1, n], the projection πJ(t)
is 〈xj1 , . . . , xjm〉 where j1, . . . , jm is the sorted sequence
of elements of J . Furthermore, πam denotes the class of all
projections πJ for J a subset of [1, a] of cardinality m. We
write I for the identity function, and log for log2.

String Functions and Languages. An alphabet Σ is a set
of elements called letters. A string over Σ is an expression
σ1 . . . σ` where each letter σi is from Σ. The empty string
is denoted by ε. The set of all strings over Σ is denoted by
Σ∗. A factored alphabet is of the form Xa for some set X
called the domain and some integer a ≥ 1 called the arity.
A string function is of the form f : Σ∗ → Γ for Σ and Γ
alphabets. Languages are a special case of string functions;
namely, when f : Σ→ {0, 1} is an indicator function, it can
be equivalently described by the set {x ∈ Σ∗ | f(x) = 1},
that is called a language.

Learning Theory
We introduce the problem of learning, following the classi-
cal perspective of statistical learning theory (Vapnik 1998).

Learning Problem. Consider an input domain X and an
output domain Y . For example, in the setting where we clas-
sify strings over an alphabet Σ, the input domain X is Σ∗

and the output domain Y is {0, 1}. The problem of learn-
ing is that of choosing, from an admissible class F of func-
tions from X to Y , a function f that best approximates an
unknown target function f0 : X → Y , not necessarily in-
cluded in F . The quality of the approximation of f is given
by the overall discrepancy of f with the target f0. On a sin-
gle domain element x, the discrepancy between f(x) and
f0(x) is measured as L(f(x), f0(x)), for a given loss func-
tion L : Y × Y → {0, 1}. The overall discrepancy is the
expectation E[L(f(x), f0(x))] with respect to an underly-
ing probability distribution P , and it is called the risk of
the function, written R(f). Then, the goal is to choose a
function f ∈ F that minimises the risk R(f), when the un-
derlying probability distribution P is unknown, but we are
given a sample Z` of ` i.i.d. elements xi ∈ X drawn accord-
ing to P (xi) together with their labels f0(xi); specifically,
Z` = z1, . . . , z` with zi = 〈xi, f0(xi)〉.
Sample Complexity. We would like to establish the min-
imum sample size ` sufficient to identify a function f ∈ F
such that

R(f)−min
f∈F

R(f) ≤ ε

with probability at least 1 − η. We call such ` the sample
complexity of F , and we write it as S(F , ε, η). When ε and
η are considered fixed, we write it as S(F).

Sample Complexity Bounds for Finite Classes. When
the set of admissible functions F is finite, its sample com-
plexity can be bounded in terms of its cardinality, cf.
(Shalev-Shwartz and Ben-David 2014). In particular,

S(F , ε, η) ∈ O
(
(log |F| − log η)/ε2

)
.

Then, for fixed ε and η, the sample complexity S(F)
is O(log |F|), and hence finite classes can be compared in
terms of their cardinality.

Automata
This section introduces basic notions of automata theory,
with some inspiration from (Ginzburg 1968; Maler 1990).

An automaton is a mathematical description of a state-
ful machine that returns an output letter on every input
string. At its core lies the mechanism that updates the in-
ternal state upon reading an input letter. This mechanism
is captured by the notion of semiautomaton. An n-state
semiautomaton is a tuple D = 〈Σ, Q, δ, qinit〉 where: Σ
is an alphabet called the input alphabet; Q is a set of n
elements called states; δ : Q × Σ → Q is a function
called transition function; qinit ∈ Q is called initial state.
The transition function is recursively extended to non-empty
strings as δ(q, σ1σ2 . . . σm) = δ(δ(q, σ1), σ2 . . . σm), and
to the empty string as δ(q, ε) = q. The result of execut-
ing semiautomaton D on an input string is D(σ1 . . . σm) =
δ(qinit, σ1 . . . σm). We also call such function D : Σ∗ → Q
the function implemented by the semiautomaton.

Automata are obtained from semiautomata by adding an
output function. An n-state automaton is a tuple A =
〈Σ, Q, δ, qinit,Γ, θ〉 where: DA = 〈Σ, Q, δ, qinit〉 is a semi-
automaton, called the core semiautomaton of A; Γ is an al-
phabet called output alphabet, θ : Q × Σ → Γ is called

wood

fire

fire,
steel

iron

iron,
steel

wood

wood,
steel

fire

iron

fire

steel steel

steel

steel

iron

wood

factorysteel,
wood,
iron,
fire

factory,
fire

factory,
wood

factory

factory,
iron

factory,
wood,
iron

factory,
wood,
fire

factory,
fire,
iron

Figure 1: State diagram of the automaton for Example 2.

output function. An acceptor is a special kind of automa-
ton where the output function is an indicator function θ :
Q × Σ → {0, 1}. The result of executing autmaton A on
an input string isA(σ1 . . . σm) = θ(DA(σ1 . . . σm−1), σm).
We also call such function A : Σ∗ → Γ the function imple-
mented by the automaton. The language recognised by an
acceptor is the set of strings on which it returns 1. When two
automata A1 and A2 implement the same function, we say
thatA1 is captured byA2, or equivalently thatA2 is captured
by A1.

The expressivity of a class of automata is the set of func-
tions they implement. Thus, for acceptors, it is the set of
languages they recognise. The expressivity of all acceptors
is the regular languages (Kleene 1956), i.e., the languages
that can be specified by regular expressions. We will often
point out the expressivity of acceptors because the classes of
languages they capture are widely known.
Example 2. The automaton for our running example reads
traces generated by the agent while interacting with the en-
vironment. The input alphabet is Σ = {blank, wood, iron,
fire, steel, factory}, where blank describes that no relvant
event happened. The automaton returns 1 on traces where
the agent has completed the task. The state diagram is de-
picted in Figure 1, where transitions for blank are omitted
and they always yield the current state. The output is 1 on all
transitions entering the double-lined state, and 0 otherwise.

The automaton in the example has to keep track of the
subset of tasks completed so far, requiring one state per sub-
set. In general, the number of states can grow exponentially
with the number of tasks.

Existing Sample Complexity Results
Classes of automata are typically defined in terms of the car-
dinality k of the input alphabet (assumed to be finite) and the

number n of states. The existing result on the sample com-
plexity of automata is for such a family of classes.
Theorem 1 (Ishigami and Tani, 1997). Let A(k, n) be the
class of n-state acceptors over the input alphabet [1, k].
Then, the sample complexity of A(k, n) is Θ(k · n · log n).1

Consequently, learning an acceptor from the class of all
acceptors with k input letters and n states requires an amount
of data that is at least k · n. Such a dependency is also ob-
served in the existing automata learning algorithms, e.g.,
(Angluin 1987; Ron, Singer, and Tishby 1996, 1998; Clark
and Thollard 2004; Palmer and Goldberg 2007; Balle, Cas-
tro, and Gavaldà 2013, 2014). More recently, there has been
an effort in overcoming the direct dependency on the car-
dinality k of the input alphabet, through symbolic automata
(Mens and Maler 2015; Maler and Mens 2017; Argyros and
D’Antoni 2018), but their sample complexity has not been
studied.

Automata Cascades
We present the formalism of automata cascades, strongly
based on the cascades from (Krohn and Rhodes 1965)—
see also (Ginzburg 1968; Maler 1990; Dömösi and Nehaniv
2005). The novelty of our formalism is that every cascade
component is equipped with mechanisms for processing in-
puts and outputs. This allows for (i) controlling the complex-
ity of components as the size of the cascade increases; and
(ii) handling large (and even infinite) input alphabets.
Definition 1. An automata cascade is a sequence of au-
tomata A1 n · · ·nAd where each Ai is called a component
of the cascade and it is of the form

〈Σ1 × · · · × Σi, Qi, δi, q
init
i ,Σi+1, θi〉.

The function implemented by the cascade is the one im-
plemented by the automaton 〈Σ1, Q, δ, q

init,Σd+1, θ〉 hav-
ing set of states Q = Q1 × · · · × Qd, initial state qinit =
〈qinit

1 , . . . , qinit
d 〉, transition and output functions defined as

δ(〈q1, . . . , qd〉, σ) = 〈δ1(q1, σ1), . . . , δd(qd, σd)〉,
θ(〈q1, . . . , qd〉, σ) = θd(qd, σd),

where each component reads the recursively-defined input

σ1 = σ, and σi+1 = 〈σi, θi(qi, σi)〉.
A cascade is simple if θi(q, σ) = q, for every i ∈ [1, d− 1].
An acceptor cascade is a cascade where Γd+1 = {0, 1}.

The components of a cascade are arranged in a sequence.
Every component reads the input and output of the preced-
ing component, and hence, recursively, it reads the external
input together with the output of all the preceding compo-
nents. The external input is the input to the first component,
and the overall output is the one of the last component.

As components of a cascade, we consider automata on
factored alphabets that first apply a projection operation on
their input, then apply a map to a smaller internal alpha-
bet, and finally transition based on the result of the previous
operations.

1The original result is equivalently stated in terms of the VC
dimension, introduced later in this paper.

set

resetread,
reset

read,
set

0 1

2

0

1

+1

+2
+2

+2

+1

+1

0

0

0

Figure 2: State diagrams of some of the simplest prime au-
tomata: a flip-flop on the left, and a 3-counter on the right.

Definition 2. An n-state automaton is a tuple A =
〈Xa, J,Π, φ,Q, δ, qinit,Γ, θ〉 whereXa is the factored input
alphabet; J ⊆ [1, a] is the dependency set and its cardinal-
ity m is the degree of dependency; Π is the finite internal
alphabet; φ : Xm → Π is an input function that oper-
ates on the projected input tuples; Q is a set of n states;
δ : Q × Π → Q is the transition function on the internal
letters; qinit ∈ Q is the initial state; Γ is the output al-
phabet; and θ : Q × Xm → Γ is an output function that
operates on the projected input tuples. The automaton in-
duced by A is the automaton A′ = 〈Σ, Q, δJ,φ, qinit,Γ, θJ〉
where the input alphabet is Σ = Xa, the transition function
is δJ,φ(q, σ) = δ(q, φ(πJ(σ))), and the output function is
θJ(q, σ) = θ(q, πJ(σ)). The core semiautomaton ofA is the
core semiautomaton of A′. The string function implemented
by A is the one implemented by the induced automaton.

The above definition adds two key aspects to the standard
definition of automaton. First, the projection operation πJ ,
that allows for capturing the dependencies between the com-
ponents in a cascade. Although every component receives
the output of all the preceding components, it may use only
some of them, and hence the others can be projected away.
The dependency set J corresponds to the indices of the in-
put tuple that are relevant to the component. Second, the in-
put function φ, that maps the result of the projection oper-
ation to an internal letter. The rationale is that many inputs
trigger the same transitions, and hence they can be mapped
to the same internal letter. This particularly allows for de-
coupling the size of the core semiautomaton from the car-
dinality of the input alphabet—in line with the mechanisms
of symbolic automata (Maler and Mens 2017; Argyros and
D’Antoni 2018).

Expressivity of Automata Cascades
Cascades can be built out of any set of components. How-
ever, the theory by Krohn and Rhodes identifies a set of
prime automata that is a sufficient set of components to build
cascades, as it allows for capturing all automata. They are,
in a sense, the building blocks of automata. Moreover, using
only some prime automata, we obtain specialised expressiv-
ity results.

Prime Components
Prime automata are partitioned into two classes. The first
class of prime automata are flip-flops, a kind of automaton

that allows for storing one bit of information.
Definition 3. A flip-flop is a two-state automaton
〈Xa, J,Π, φ,Q, δ, qinit,Γ, θ〉 where Π = {set, reset, read},
Q = {0, 1} and the transition function satisfies the follow-
ing three identities:

δ(q, read) = q, δ(q, set) = 1, δ(q, reset) = 0.

We capture the task of our running example with a cas-
cade where each task is captured exactly by a flip-flop.
Example 3. The sequence task of our running example is
captured by the cascade

Awood nAiron nAfire nAsteel nAfactory

where each component is a flip-flop that outputs its cur-
rent state. The diagram for the cascade is shown in Fig-
ure 3, where getWood corresponds to Awood, and similarly
for the other components. All components read the input,
and only Afactory also reads the output of the other com-
ponents. Thus, the dependency set of Awood, Airon, Afire,
and Asteel is the singleton {1}, and the dependency set of
Afactory is {1, 2, 3, 4, 5}—note that the indices correspond
to positions of the components in the cascade. Then, Awood

has input function φwood(x) that returns set if x = wood,
and returns read otherwise. Similarly, Airon, Afire, and
Asteel. Instead, the component Afactory has input function
φfactory(x,wood , iron,fire, steel) that returns set if

(x = factory) ∧ [(wood ∧ iron ∧ fire) ∨ steel]

and returns read otherwise.

The second class of prime automata is a class of automata
that have a correspondence with simple groups from group
theory. Their general definition is beyond the scope of this
paper. For that, see (Ginzburg 1968). Here we present the
class of prime counters, as a subclass that seems particularly
relevant from a practical point of view.
Definition 4. An n-counter is an n-state automaton
〈Xa, J,Π, φ,Q, δ, qinit,Γ, θ〉 where Π = Q = [0, n − 1],
and the transition function satisfies the following identity:

δ(i, j) = i+ j (modn).

An n-counter is prime if n is a prime number.

An n-counter implements a counter modulo n. The in-
ternal letters correspond to numbers that allow for reaching
any value of the counter in one step. In particular, they also
allow for implementing the functionality of decreasing the
counter, e.g., adding n − 1 amounts to subtracting 1. Note
also that the internal letter 0 plays the same role as read does
in a flip-flop. When we are interested just in counting—i.e.,
increment by one—the modulo stands for the overflow due
to finite memory. On the other hand, we might actually be
interested in counting modulo n; for instance, to capture pe-
riodic events such as ‘something happens every 24 hours’.
A 3-counter, that is a prime counter, is depicted in Figure 2.
Example 4. Resuming our running example, say that now,
in order to use the factory, we need (i) 13 pieces of wood,
5 pieces of iron, and fire, or alternatively (ii) 7 pieces of

steel. From the cascade in Example 3, it suffices to change
the cascade components Awood, Airon, Asteel into counters
(e.g., 16-counters) and change the input function of Afactory

so that φfactory(x,wood , iron,fire, steel) returns set if
(x = factory) ∧[(

(wood ≥ 13) ∧ (iron ≥ 5) ∧ fire
)
∨ (steel ≥ 7)

]
,

and it returns read otherwise. The rest is left unchanged. The
cascade, despite its simplicity, corresponds to an automaton
that has over 700 states. Furthermore, suppose that we need
to learn to detect wood, iron, fire, steel from video frames
represented as vectors of Ra. It suffices to replace the input
function of the corresponding components with a function
over Ra such as a neural network.

Expressivity Results
A key aspect of automata cascades is their expressivity. As
an immediate consequence of the Krohn-Rhodes theorem
(Krohn and Rhodes 1965)—see also (Ginzburg 1968; Maler
1990; Dömösi and Nehaniv 2005)—we have that simple cas-
cades of prime automata capture all automata, and simple
cascades of flip-flops capture the so-called group-free au-
tomata.
Theorem 2. Every automaton is captured by a simple cas-
cade of prime automata. Furthermore, every group-free au-
tomaton is captured by a simple cascade of flip-flops. The
converse of both claims holds as well.

Group-free automata are important because they capture
noncounting automata, c.f. (Ginzburg 1968), whose expres-
sivity is the star-free regular languages (Schützenberger
1965)—i.e., the languages that can be specified by regular
expressions without using the Kleene star but using com-
plementation. This is the expressivity of well-known logics
such as monadic first-order logic on finite linearly-ordered
domains (McNaughton and Papert 1971), and the linear tem-
poral logic on finite traces LTLf (De Giacomo and Vardi
2013). This observation, together with the fact that the ex-
pressivity of all acceptors is the regular languages, allows us
to derive the following theorem from the one above.
Theorem 3. The expressivity of simple acceptor cascades of
prime automata is the regular languages. The expressivity of
simple acceptor cascades of flip-flops is the star-free regular
languages.

Sample Complexity of Automata Cascades
We study the sample complexity of classes of automata (and
cascades thereof) built from given classes of input functions,
semiautomata, and output functions. This allows for a fine-
grained specification of automata and cascades.
Definition 5. The class A(Φ,∆,Θ) over a given input al-
phabet Xa consists of each automaton with input function
from a given class Φ, core semiautomaton from a given class
∆, and output function from a give class Θ. The classes Φ,
∆, Θ are uniform, and hence all automata in A(Φ,∆,Θ)
have the same degree of dependency m, same internal al-
phabet Π, and same output alphabet Γ; hence, sometimes we
write A(Φ,∆,Θ; a,m) and A(Φ,∆,Θ; a,m,Π,Γ) to have
such quantities at hand.

getSteel

getWood

getIron

getFire

useFactory

Figure 3: Diagram for the cascade of the running example.

Results for Finite Classes of Cascades
The following two theorems establish upper bounds on the
cardinality and sample complexity of finite classes of au-
tomata, and finite classes of cascades, respectively. The re-
sults are obtained by counting the number of ways in which
we can instantiate the parts of a single automaton.
Theorem 4. The cardinality of a class of automata A =
A(Φ,∆,Θ; a,m) is bounded as

|A| ≤ |πam| · |Φ| · |∆| · |Θ| ,
and its sample complexity is asymptotically bounded as

S(A) ∈ O
(

log |πam|+ log |Φ|+ log |∆|+ log |Θ|
)
.

Theorem 5. The cardinality of a class of automata cascades
C = A1 n · · · n Ad where the automata classes are Ai =
A(Φi,∆i,Θi; ai,mi) is bounded as

|C| ≤
d∏
i=1

∣∣πaimi

∣∣ · |Φi| · |∆i| · |Θi| ,

and its sample complexity is asymptotically bounded as

S(C) ∈ O
(
d · (log |πam| + log |Φ| + log |∆| + log |Θ|)

)
,

where dropping the indices denotes the maximum.
Consequently, the complexity of a cascade is bounded by

the product of the number d of components and a second
factor that bounds the complexity of a single component.

Aspects and Implications of The Results
The term log |πam|, accounting for the projection functions,
ranges from 0 to min(m, a1 + d −m) · log(a1 + d) where
a1 is the input arity of the first component, and hence of the
external input. In particular, it is minimum when we allow
each component to depend on all or none of its preceding
components, and it is maximum when each component has
to choose half of its preceding components as its dependen-
cies.

The term log |Φ| plays an important role, since the set of
input functions has to be sufficiently rich so as to map the ex-
ternal input and the outputs of the preceding components to

the internal input. First, its cardinality can be controlled by
the degree of dependencym; for instance, taking all Boolean
functions yields log |Φ| = 2m. Notably, it does not depend
on d, and hence, the overall sample complexity grows lin-
early with the number of cascade components as long as
the degree of dependency m is bounded. Second, the class
of input functions can be tailored towards the application at
hand. For instance, in our running example, input functions
are chosen from a class Φ for which log |Φ| is linear in the
number of tasks—see Example 5 below.

The term log |∆| is the contribution of the number of
semiautomata—note that the number of letters and states of
each semiautomaton plays no role. Interestingly, very small
classes of semiautomata suffice to build very expressive cas-
cades, by the results in Section . In general, it is sufficient
to build ∆ out of prime components. But we can also in-
clude other semiautomata implementing some interesting
functionality.

The term log |Θ| admits similar considerations as log |Φ|.
It is worth noting that one can focus on simple cascades, by
the results in Section , where output functions of all but last
component are fixed. Then, the contribution to the sample
complexity is given by the class of output functions of the
last component.

Overall, the sample complexity depends linearly on the
number d of components, if we ignore logarithmic factors.
Specifically, the term log |πam| has only a logarithmic depen-
dency on d, and the other terms log |Φ|, log |∆|, and log |Θ|
are independent of d.

Corollary 1. Let us recall the quantities from Theorem 5,
and fix the quantities a, m, Φ, ∆, and Θ. Then, the sample
complexity of C is bounded as S(C) ∈ O(d · log d).

In the next example we instantiate a class of cascades for
our running example, and derive its sample complexity.

Example 5. The cascade described in Example 3 has one
component per task, and all components have the same out-
put function and semiautomaton. The input function φfactory

is 2-term monotone DNF over 9 propositional variables. Ev-
ery other component has an input function that is 1-term
monotone DNF over 5 propositional variables. Using these
observations, we can design a class of cascades for similar
sequence tasks where the goal task depends on two groups of
arbitrary size, having d basic tasks overall. Such a class will
consist of cascades of d components. For every i ∈ [1, d−1],
the class of input functions Φi is the class of 1-term mono-
tone DNF over d variables; and Φd is the class of 2-term
monotone DNF over 2d− 1 variables. For all i ∈ [1, d], ∆i

is a singleton consisting of a flip-flop semiautomaton; and
Θi is a singleton consisting of the function that returns the
state. The cardinality of Φi is e2 ·2(4d−4), and hence its loga-
rithm is less than 4d—see Corollary 5 of (Schmitt 2004). By
Theorem 5, considering that we have d cascade components,
we obtain that our class of cascades has sample complexity
O(d2). At the same time, the minimum automaton for the
considered family of sequence tasks has Ω(2d) states. Go-
ing back to the bound of Theorem 1, if we had to learn from
the class of all automata with 2d states, we would incur a
sample complexity exponential in the number of tasks.

Learning Theory for Infinite Classes
Infinite classes of cascades naturally arise when the input al-
phabet is infinite. In this case, one may consider to pick input
and output functions from an infinite class. For instance, the
class of all threshold functions over the domain of integers,
or as in Example 4 the neural networks over the vectors of
real numbers.

When considering infinite classes of functions, the sam-
ple complexity bounds based on cardinality become trivial.
However, even when the class is infinite, the number of func-
tions from the class that can be distinguished on a given sam-
ple is finite, and the way it grows as a function of the sample
size allows for establishing sample complexity bounds. In
turn, such growth can be bounded in terms of the dimension
of the class of functions, a single-number characterisation of
its complexity. Next we present these notions formally.

Growth and Dimension. Let F be a class of functions
from a set X to a finite set Y . Let X` = x1, . . . , x` be a
sequence of ` elements from X . The set of patterns of a
class F on X` is

F(X`) = {〈f(x1), . . . , f(x`)〉 | f ∈ F},

and the number of distinct patterns of class F on X` is
N(F , X`) = |F(X`)|. The growth of F is

G(F , `) = supX`
N(F , X`).

The growth of F can be bounded using its dimension, writ-
ten as dim(F). When |Y | = 2, we define the dimension
of F to be its VC dimension (Vapnik and Chervonenkis
1971)—see also (Vapnik 1998). It is the largest integer h
such that G(F , h) = 2h and G(F , h + 1) < 2h+1 if
such an h exists, and infinity otherwise. When |Y | > 2,
we define the dimension of F to be its graph dimension
(Natarajan 1989; Haussler and Long 1995). It is defined by
first binarising the class of functions. For a given function
f : X → Y , its binarisation fbin : X × Y → {0, 1} is
defined as fbin(x, y) = 1[f(x) = y]. The binarisation of F
is Fbin = {fbin | f ∈ F}. Then, the graph dimension of F
is defined as the VC dimension of its binarisation Fbin.

The growth ofF can be bounded in terms of its dimension
(Haussler and Long 1995), as follows:

G(F , `) ≤ (e · ` · |Y |)dim(F)
.

Sample Complexity. The sample complexity can be
bounded in terms of the dimension, cf. (Shalev-Shwartz and
Ben-David 2014). In particular,

S(F , ε, η) ∈ O
(
(dim(F) · log |Y | − log η)/ε2

)
.

For fixed ε, η, and Y , the sample complexity is O(dim(F)),
and hence arbitrary classes over the same outputs can be
compared in terms of their dimension.

Results for Infinite Classes of Cascades
We generalise our sample complexity bounds to infinite
classes of automata and cascades. The bound have the same
shape of the bounds derived in Section for finite classes,

with the dimension replacing the logarithm of the cardinal-
ity. One notable difference is the logarithmic dependency on
the maximum length M of a string. It occurs due to the
(stateless) input and output functions. Their growth is on
single letters, regardless of the way they are grouped into
strings. Thus, the growth on a sample of ` strings is the
growth on a sample of ` ·M letters.

The bounds are derived using a functional description of
automata and cascades. It is a shift of perspective, from
stateful machines that process one letter at a time, to black-
boxes that process an entire input string at once. We first
introduce function constructors to help us to build such de-
scriptions.
Definition 6 (Function constructors). For f : Σ → Γ,
f∗ : Σ∗ → Γ is defined as f∗(σ1 . . . σn) = f(σn). For
g : Σ∗ → Γ, g : Σ∗ → Γ∗ is defined as g(σ1 . . . σn) =
g(σ1) . . . g(σ1 . . . σn); furthermore, g/ : Σ∗ → Γ∗ is de-
fined as g/(σ1 . . . σn) = g(σ1 . . . σn−1).

Lemma 1. The function A implemented by an automaton
〈Xa, J,Π, φ,Q, δ, qinit,Γ, θ〉 can be expressed as

A = π∗J ◦ ((φ∗ ◦D/)× I∗) ◦ θ,
where D is the function implemented by the semiautomaton
〈Π, Q, δ, qinit〉.

Note that I∗ propagates the projected input to the out-
put function. Also note that the output function reads the
state before the last update. The functional description al-
lows us to bound the growth, by making use of the fact that
the growth of composition and cross product of two classes
of functions is upper bounded by the product of their respec-
tive growths. From there, we derive the dimension, and the
sample complexity.
Theorem 6. LetA be a classA(Φ,∆,Θ; a,m,Π,Γ), letM
be the maximum length of a string, and let w = log |πam| +
log |∆|+ dim(Φ) + dim(Θ) ≥ 2.
(i) The growth of A is bounded as:

G(A, `) ≤ |πam| · |∆| ·G(Φ, ` ·M) ·G(Θ, `).

(ii) The dimension of A is bounded as:

dim(A) ≤ 2 · w · log(w · e ·M · |Π| · |Γ|).
(iii) The sample complexity of A is bounded as:

S(A) ∈ O
(
w · log(w ·M · |Π| · |Γ|)

)
.

Next we show the functional description of an automata
cascade. It captures the high-level idea that each component
of a cascade can be fully executed before executing any of
the subsequent automata, since it does not depend on them.
Lemma 2. The function implemented by an automata cas-
cade A1 n · · ·nAd with d ≥ 2 can be expressed as

(I∗ ×A1) ◦ · · · ◦ (I∗ ×Ad−1) ◦Ad.
The cross product with I∗ in the functional description

above captures the fact that the input of each component is
propagated to the next one.

Then, a bound on the growth is derived from the func-
tional description, and hence the dimension and sample
complexity bounds.

Theorem 7. Let C be a classA1n . . .nAd where automata
classes areAi = A(Φi,∆i,Θi; ai,mi,Πi,Γi), letM be the
maximum length of a string, and letw = log |πam|+log |∆|+
dim(Φ) + dim(Θ) ≥ 2 where dropping the indices denotes
the maximum.
(i) The growth of C is bounded as:

G(C, `) ≤
d∏
i=1

∣∣πaimi

∣∣ · |∆i| ·G(Φi, ` ·M) ·G(Θi, ` ·M).

(ii) The dimension of C is bounded as:

dim(C) ≤ 2 · d · w · log(d · w · e ·M · |Π| · |Γ|).

(iii) The sample complexity of C is bounded as:

S(C) ∈ O
(
d · w · log(d · w ·M · |Π| · |Γ|)

)
.

By a similar reasoning as in the results for finite classes,
the sample complexity has a linear dependency on the num-
ber d of cascade components, modulo a logarithmic factor.

Corollary 2. Let us recall the quantities from Theorem 7,
and fix the quantities a1,m, Φ, ∆, Θ,M , Π, and Γ. Then, the
sample complexity of C is bounded as S(C) ∈ O(d · log d).

Related Work
The main related work is the sample complexity bounds
from (Ishigami and Tani 1997), stated in Theorem 1. Our
bounds are qualitatively different, as they allow for describ-
ing the sample complexity of a richer variety of classes of
automata, and cascades thereof. With reference to Theo-
rem 4, their specific case is obtained when: the input alpha-
bet is non-factored and hence |πam| = 1; Φ = {I} and hence
|Π| = |Σ| = k; ∆ is the class of all semiautomata on k let-
ters and n states, and hence |∆| = nk·n; and Θ is the class
of all indicator functions on n states, and hence |Θ| = 2n. In
this case, it is easy to verify that our bound matches theirs.

Learning automata expressed as a cross product is con-
sidered in (Moerman 2018). They correspond to cascades
where all components read the input, but no component
reads the output of the others. The authors provide a so-
called active learning algorithm, that asks membership and
equivalence queries. Although it is a different setting from
ours, it is interesting that they observe an exponential gain in
some specific cases, compared to ignoring the product struc-
ture of the automata.

The idea of decoupling the input alphabet from the core
functioning of an automaton is found in symbolic automata.
The existing results on learning symbolic automata are in
the active learning setting (Berg, Jonsson, and Raffelt 2006;
Mens and Maler 2015; Maler and Mens 2017; Argyros and
D’Antoni 2018).

Conclusion
Given the favourable sample complexity of automata cas-
cades, the next step is to devise learning algorithms, able to
learn automata as complex systems consisting of many com-
ponents implementing specific functionalities.

Acknowledgments
This work has been supported by the ERC Advanced Grant
WhiteMech (No. 834228), by the EU ICT-48 2020 project
TAILOR (No. 952215), by the PRIN project RIPER (No.
20203FFYLK), by the EU’s Horizon 2020 research and in-
novation programme under grant agreement No. 682588.

References
Abadi, E.; and Brafman, R. I. 2020. Learning and Solving
Regular Decision Processes. In IJCAI.
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular Mul-
titask Reinforcement Learning with Policy Sketches. In
ICML.
Angluin, D. 1987. Learning Regular Sets from Queries and
Counterexamples. Inf. Comput.
Argyros, G.; and D’Antoni, L. 2018. The Learnability of
Symbolic Automata. In CAV.
Balle, B.; Castro, J.; and Gavaldà, R. 2013. Learning proba-
bilistic automata: A study in state distinguishability. Theory
Comput. Sci.
Balle, B.; Castro, J.; and Gavaldà, R. 2014. Adaptively
learning probabilistic deterministic automata from data
streams. Mach. Learn.
Berg, T.; Jonsson, B.; and Raffelt, H. 2006. Regular Infer-
ence for State Machines with Parameters. In FASE.
Brafman, R. I.; and De Giacomo, G. 2019. Regular Decision
Processes: A Model for Non-Markovian Domains. In IJCAI.
Clark, A.; and Thollard, F. 2004. PAC-learnability of Proba-
bilistic Deterministic Finite State Automata. J. Mach. Learn.
Res.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for Restraining Bolts: Reinforcement
Learning with LTLf/LDLf Restraining Specifications. In
ICAPS.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI.
Dömösi, P.; and Nehaniv, C. L. 2005. Algebraic Theory of
Automata Networks: An Introduction. SIAM.
Gaon, M.; and Brafman, R. I. 2020. Reinforcement Learning
with Non-Markovian Rewards. In AAAI.
Ginzburg, A. 1968. Algebraic Theory of Automata. Aca-
demic Press.
Haussler, D.; and Long, P. M. 1995. A generalization of
Sauer’s lemma. J. Comb. Theory Ser. A.
Hopcroft, J.; and Ullman, J. 1979. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.
Ishigami, Y.; and Tani, S. 1997. VC-dimensions of Finite
Automata and Commutative Finite Automata with k Letters
and n States. Discret. Appl. Math.
Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional Reinforcement Learning from Logical Spec-
ifications. In NeurIPS.
Kleene, S. C. 1956. Representation of events in nerve nets
and finite automata. Automata studies.

Krohn, K.; and Rhodes, J. 1965. Algebraic Theory of Ma-
chines. I. Prime Decomposition Theorem for Finite Semi-
groups and Machines. Trans. Am. Math. Soc.
Maler, O. 1990. Finite Automata: Infinite Behaviour, Learn-
ability and Decomposition. Ph.D. thesis, The Weizmann In-
stitute of Science.
Maler, O.; and Mens, I. 2017. A Generic Algorithm for
Learning Symbolic Automata from Membership Queries. In
Models, Algorithms, Logics and Tools.
McNaughton, R.; and Papert, S. A. 1971. Counter-Free Au-
tomata. The MIT Press.
Mens, I.; and Maler, O. 2015. Learning Regular Languages
over Large Ordered Alphabets. Log. Methods Comput. Sci.
Moerman, J. 2018. Learning Product Automata. In ICGI.
Natarajan, B. K. 1989. On Learning Sets and Functions.
Mach. Learn.
Neider, D.; Gaglione, J.; Gavran, I.; Topcu, U.; Wu, B.; and
Xu, Z. 2021. Advice-Guided Reinforcement Learning in a
non-Markovian Environment. In AAAI.
Palmer, N.; and Goldberg, P. W. 2007. PAC-learnability of
probabilistic deterministic finite state automata in terms of
variation distance. Theory Comput. Sci.
Ron, D.; Singer, Y.; and Tishby, N. 1996. The Power of Am-
nesia: Learning Probabilistic Automata with Variable Mem-
ory Length. Mach. Learn.
Ron, D.; Singer, Y.; and Tishby, N. 1998. On the Learnabil-
ity and Usage of Acyclic Probabilistic Finite Automata. J.
Comput. Syst. Sci.
Ronca, A.; and De Giacomo, G. 2021. Efficient PAC Rein-
forcement Learning in Regular Decision Processes. In IJ-
CAI.
Ronca, A.; Knorozova, N. A.; and De Giacomo, G. 2022.
Automata Cascades: Expressivity and Sample Complexity.
CoRR, abs/2211.14028.
Ronca, A.; Paludo Licks, G.; and De Giacomo, G. 2022.
Markov Abstractions for PAC Reinforcement Learning in
Regular Decision Processes. In IJCAI.
Schmitt, M. 2004. An Improved VC Dimension Bound for
Sparse Polynomials. In COLT.
Schützenberger, M. P. 1965. On Finite Monoids Having
Only Trivial Subgroups. Inf. Control.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Using Reward Machines for High-Level
Task Specification and Decomposition in Reinforcement
Learning. In ICML.
Vapnik, V. N. 1998. Statistical learning theory. Wiley.
Vapnik, V. N.; and Chervonenkis, A. Y. 1971. On The
Uniform Convergence of Relative Frequencies of Events to
Their Probabilities. Theory Probab. its Appl.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint Inference of Reward Ma-
chines and Policies for Reinforcement Learning. In ICAPS.

