
FOND Planning for Pure-Past Linear Temporal Logic
Goals

Luigi Bonassia, Giuseppe De Giacomob,c, Marco Favoritod;*, Francesco Fuggittic,e,f;**, Alfonso
Emilio Gerevinia and Enrico Scalaa

aUniversity of Brescia, Italy
bUniversity of Oxford, UK
cSapienza University, Italy

dBank of Italy
eYork University, Canada

fIBM Research, USA

Abstract. Recently, Pure-Past Temporal Logic (PPLTL) has proven
highly effective in specifying temporally extended goals in deter-
ministic planning domains. In this paper, we show its effectiveness
also for fully observable nondeterministic (FOND) planning, both for
strong and strong-cyclic plans. We present a notably simple encoding
of FOND planning for PPLTL goals into standard FOND planning for
final-state goals. The encoding only introduces few fluents (at most
linear in the PPLTL goal) without adding any spurious action and al-
lows planners to lazily build the relevant part of the deterministic
automaton for the goal formula on-the-fly during the search. We for-
mally prove its correctness, implement it in a tool called Plan4Past,
and experimentally show its practical effectiveness.

1 Introduction

Planning for temporally extended goals has a long tradition in AI
Planning, including pioneering work in the late ’90s [2, 3, 4, 5], work
on planning via Model Checking [15, 17, 20, 29, 34], and work on
declarative and procedural constraints [8, 9, 7], and many others.

The presence of trajectory constraints in PDDL3 [28] also wit-
nesses the relevance of temporally extended goals.

In fact, formalisms such as Linear Temporal Logic (LTL) have
been advocated by the Formal Methods community [6] as excellent
tools to express properties of processes. While these properties of
processes often have an infinite horizon, in AI Planning, tasks need
to terminate. Thus, a finite-trace variant of LTL, namely LTLf , is usu-
ally more appropriate [8, 9, 21, 22].

Although seminal works only focused on planning with deter-
ministic actions and LTL or LTLf goals as, e.g., in [8, 9, 21, 38],
more recently, there has been a surge of interest in the use of
LTLf goals in fully observable nondeterministic planning settings
(FOND) as demonstrated in [22, 13, 19, 12]. By now, we have a
clear picture. The complexity of FOND planning for LTLf goals is
EXPTIME-complete in the domain as for standard reachability goals
(i.e., final-state goals) [35] and 2EXPTIME-complete in the LTLf

goal formula [19]. Specifically, in nondeterministic domains, since

∗ Views and opinions expressed are of the author’s own and are not represen-
tative of the Bank of Italy’s official position.
∗∗ Corresponding Author. Email: francesco.fuggitti@gmail.com

LTLf goals can specify non-Markovian properties [25], the added
expressiveness of LTLf goals worsens the worst-case goal complex-
ity to 2EXPTIME-complete, compared to the EXPTIME-complete
of reachability goals. That is because, in FOND planning, LTLf

goals must be (implicitly or explicitly) translated into a Determin-
istic Finite-state Automaton (DFA), which is double exponential in
the worst case.

Interestingly, an alternative to LTLf is the Pure-Past Linear Tem-
poral Logic, or PPLTL [31, 18]. PPLTL evaluates traces backward
and expresses non-Markovian properties on traces using past oper-
ators only. While PPLTL and LTLf are equally expressive, translat-
ing one into the other (and vice versa) is generally prohibitive since
the best-known algorithms require 3EXPTIME [18]. However, due
to a property of reverse languages [14], the DFA corresponding to a
PPLTL formula can be computed in single exponential time directly
from the formula, or better, its corresponding Alternating Finite-state
Automaton (AFA) [18]. These unique characteristics have been ex-
ploited in [11] to devise a very effective technique to deal with PPLTL

goals in deterministic planning domains.
In this paper, we show that such effectiveness is actually general

and seamlessly extends also to nondeterministic planning domains,
giving formal foundations for the solution technique. Specifically,
we introduce an approach for PPLTL goals that sidestep altogether
the construction of the DFA by introducing few new fluents (at most
linear in the PPLTL goal) without adding any spurious action. The
technique allows planners to lazily build the relevant part of the DFA

on-the-fly symbolically during the planning search. To do so, we ex-
ploit the fixpoint characterization [26, 32, 23] of PPLTL formulas that,
similarly to the one of LTL [10, 4], recursively splits the formula into
a propositional formula on the current instant and a temporal for-
mula on the past to be checked at the previous instant. The solution
to this recursion can be obtained by storing previous values of a small
number of formulas (at most linear in the original formula), à la dy-
namic programming. We formally show the correctness of such an
approach and demonstrate its effectiveness through a comprehensive
experimental evaluation.

The fixpoint characterization of PPLTL formulas [26, 32, 23] has
also been exploited in early research [2, 3, 37] within the context of
(factorized) MDPs with PPLTL rewards. However, while these previ-

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230281

279

ous works primarily focused on MDPs, this paper addresses the prob-
lem of FOND planning, where PPLTL is used to express temporally
extended goals. Furthermore, here we formally prove our solution
technique, which can be adapted to formally establish the correct-
ness of the aforementioned previous approaches.

Summarizing, the contributions of the paper are the following: we
devise an encoding of FOND planning for PPLTL goals into standard
FOND planning for reachability goals, which is at most linear in the
size of the formula, formally correct, and readily implementable in
PDDL. Moreover, we devise a variant of the encoding that avoids
the use of derived predicates, which are difficult to handle for some
FOND planners. Also, for this variant, we prove that it is still poly-
nomial in the size of the formula, correct, and readily implementable
in PDDL. We implemented both encodings in the tool Plan4Past,
which can be used along with state-of-the-art FOND planners, and
we empirically demonstrate its practical effectiveness.

2 FOND Planning for Temporally Extended Goals

A Fully Observable NonDeterministic (FOND) domain model can
be formalized as a tuple D = 〈F ,Fder,X , A, pre, eff 〉 where F is
a set of positive literals, Fder is a set of derived predicates, X is a set
of axioms, A is a set of action labels, pre and eff are two functions
that define the preconditions and effects of each action a ∈ A. A
planning state s is a subset of F , and a positive literal f holds true in
s if f ∈ s; otherwise, f is false in s. Axioms have the form d ← ψ
where d ∈ Fder and ψ is a formula overF∪Fder . An axiom d← ψ
specifies that d is derived to be true from a state s if and only if we
can prove that s |= ψ, possibly using other axioms from X . We
assume the set of axioms X is stratified [30]; this guarantees that
given a state s and a derived predicate d, it is possible to efficiently
and uniquely determine whether d holds true in s. Thus, it is always
possible to determine whether a formula ψ over F ∪Fder is satisfied
by a state s. Both functions pre and eff take an action label a ∈ A as
an input and return a propositional formula over F ∪ Fder and a set
{eff1, . . . , effn} of effects, respectively. Each effect effi ∈ eff (a)
is a set of conditional effects each of the form c � e, where c is a
propositional formula over F ∪Fder and e ⊆ F ∪ {¬f | f ∈ F} is
a set of literals from F .

An action a can be applied in a state s if pre(a) holds true in s
(i.e., s |= pre(a)). A conditional effect c � e is triggered in a state s
if c is true in s. Applying a in s yields a successor state s′ determined
by an outcome nondeterministically drawn from eff (a). Let effi ∈
eff (a) be the chosen nondeterministic effect, the new state s′ is such
that ∀f ∈ F , f holds true in s′ if and only if either (i) f was true
in s and no conditional effect c � e ∈ effi triggered in s deletes it
(¬f ∈ e) or (ii) there is a conditional effect c � e ∈ effi triggered
in s that adds it (f ∈ e). In case of conflicting effects, similarly to
other works [36], we assume delete-before-adding semantics. We use
tr(s, a) to denote the set of possible successor states {s′1, . . . , s′n}
obtained by executing a in s. Note that if s 	|= pre(a) then tr(s, a) =
∅. A FOND planning problem is a tuple Γ = 〈D, s0, G〉, where D is
a domain model, s0 ⊆ F is the initial state, and G is a formula over
F ∪ Fder , also called the reachability goal.

Solutions to Γ are strategies (aka policies). A strategy is defined as
a partial function π : (2F)∗ → A mapping a sequence of non-goal
states into an applicable action. A strategy π for Γ, starting from the
initial state s0, induces a set of (possibly infinite) state trajectories
(or executions) Λ of the form τ = s0, s1, . . . , where s0 is the initial
state, si+1 ∈ tr(si, ai), and ai = π(s0, . . . , si) for i ≥ 0. If for
a certain sequence of states τ = s0, . . . , sn we have that π(τ) is

undefined (no action prescribed), then the generated execution τ is a
finite trace. As usual, we consider two kinds of solutions to FOND
planning problems: strong solutions and strong-cyclic solutions [16].
A strategy π is a strong solution to Γ if every generated execution
is a finite trace τ such that sn |= G. A strategy is a strong-cyclic
solution to Γ if every generated execution that is a stochastic-fair
trace is also a finite trace such that sn |= G, cf. [1]. When a strategy
π is a solution (either strong or strong-cyclic, depending on the kind
of solution we are interested in), we say that π is winning.

Many real-world scenarios require achieving more general goals
than just reachability goals. In most cases, realistic goals require
properties to hold over time on a sequence of planning states. These
types of temporal goals, also called temporally extended goals, are
often expressed using temporal logics on finite or infinite sequences
of states. FOND planning for temporally extended goals has been
recently studied, e.g., in [13, 19, 12]. Here, we consider goals ex-
pressed in Pure-Past Linear Temporal Logic (PPLTL), which we re-
view in the next section.

Definition 1. A FOND planning problem for temporally extended
goals is a tuple Γ = 〈D, s0, ϕ〉, where D is a nondeterministic do-
main model, s0 is the initial state, and ϕ is a temporal formula de-
fined over F .

In the case of temporally extended goals, the definition of strategy
changes to a partial function π : (2F)+ → A mapping traces into
applicable actions. Hence, given a temporal goal ϕ, π is a solution to
Γ if every state trajectory induced by π is finite and satisfies ϕ. When
the strategy needs only finite memory, then it can be represented as a
finite-state transducer [19].

3 Pure-Past Linear Temporal Logic

PPLTL is the variant of LTLf that refers to the past only. A survey on
PPLTL can be found in [18], where it is denoted as PLTLf . Given a
set P of propositions, PPLTL formulas are defined as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Yϕ | ϕSϕ

where p ∈ P , Y is the yesterday operator and S is the since operator.
We define the following common abbreviations: ϕ1∨ϕ2 ≡ ¬(¬ϕ1∧
¬ϕ2), the once operator Oϕ ≡ true Sϕ, the historically operator
Hϕ ≡ ¬O¬ϕ, the weak-yesterday operator WYϕ ≡ ¬Y¬ϕ, and
the propositional Boolean constants true ≡ p ∨ ¬p, false ≡ ¬true .
Also, start ≡ ¬Y(true) expresses that the trace has started.

PPLTL formulas are interpreted on finite nonempty traces, also
called histories, τ = s0, . . . , sn where si at instant i is a proposi-
tional interpretation over the alphabet 2P . We denote by length(τ)
the length n+1 of τ , and by last(τ) the last element of the trace.
Given a trace τ = s0, . . . , sn, we denote by τi,j , with 0 ≤ i ≤ j ≤
n, the sub-trace si, . . . , sj obtained from τ starting from position i
and ending in position j. We define the satisfaction relation τ, i |= ϕ,
stating that ϕ holds at instant i, as follows:

• τ, i |= p iff length(τ) ≥ 1 and p ∈ si (for p ∈ P);
• τ, i |= ¬ϕ iff τ, i 	|= ϕ;
• τ, i |= ϕ1 ∧ ϕ2 iff τ, i |= ϕ1 and τ, i |= ϕ2;
• τ, i |= Yϕ iff i ≥ 1 and τ, i− 1 |= ϕ;
• τ, i |= ϕ1 Sϕ2 iff there exists k, with 0 ≤ k ≤ i < length(τ)

such that τ, k |= ϕ2 and for all j, with k < j ≤ i, we have that
τ, j |= ϕ1.

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals280

A PPLTL formulaϕ is true in τ , denoted τ |= ϕ, if τ, length(τ)−1 |=
ϕ. We denote by sub(ϕ) the set of all subformulas of ϕ [21]. For
instance, if ϕ = a ∧ ¬Y(b ∨ c), where a, b, c are atomic, then
sub(ϕ) = {a, b, c, (b ∨ c),¬Y(b ∨ c),Y(b ∨ c), a ∧ ¬Y(b ∨ c)}.
Subformulas correspond to the nodes of the syntactic tree of the for-
mula, so they are linearly many. Also, |sub(ϕ)| defines the size of a
PPLTL formula ϕ.

Theorem 1 ([18]). PPLTL is as expressive as LTLf , i.e., as star-free
regular expressions and first-order logic on finite sequences.

Now, we review the theoretical foundations and properties of
PPLTL, presented in [18, 11], that we exploit later in the paper. While
PPLTL is as expressive as LTLf , it gives an exponential worst-case
theoretical computational advantage in several applications. In fact,
both LTLf and PPLTL can be translated into an equivalent AFA in
linear time. However, given that an AFA can be directly transformed
in single exponential time into a DFA recognizing the reverse lan-
guage [14], the conversion of PPLTL formulas to their corresponding
DFAs is worst-case single exponential time (vs. double exponential
time for LTLf formulas) [18]. To exploit such an interesting compu-
tational advantage, properties of interest should naturally be express-
ible in PPLTL, as the best-known algorithms to translate LTLf into
PPLTL (and vice-versa) are 3EXPTIME [18], and no automated tool
exists. Nevertheless, many interesting properties expressed in LTLf ,
including the well-known DECLARE templates [39] and PDDL3
operators [28], are actually polynomially related to their translation
into PPLTL (and vice versa) [11, 27].

Given these observations, we can implicitly and incrementally
build a DFA for the PPLTL formula while looking for a strategy (i.e.,
during the search). To do so, we exploit the well-known fixpoint
characterization of LTL and variants [26, 32, 23]. For PPLTL, such
a fixpoint characterization splits the formula into a propositional for-
mula on the current instant and a temporal formula on the past to
be checked at the previous instant. In particular, PPLTL formulas
can be decomposed into present and past components, given the fix-
point characterization of the since operator: φ1 Sφ2 ≡ φ2 ∨ (φ1 ∧
Y(φ1 Sφ2)). Given this equivalence, the formula decomposition can
be computed by recursively applying the following transformation
function pnf(·):
• pnf(p) = p;
• pnf(Yφ) = Yφ;
• pnf(φ1 Sφ2) = pnf(φ2) ∨ (pnf(φ1) ∧ Y(φ1 Sφ2));
• pnf(φ1 ∧ φ2) = pnf(φ1) ∧ pnf(φ2);
• pnf(¬φ) = ¬pnf(φ).

A formula resulting from the application of pnf(·) is in Previous
Normal Form (PNF). Formulas in PNF have proper temporal subfor-
mulas (i.e., subformulas whose main construct is a temporal opera-
tor) appearing only in the scope of the Y operator. Also, observe that
the formulas of the form Yφ in pnf(ϕ) are such that φ ∈ sub(ϕ). It
is easy to see that the following proposition holds:

Proposition 1. Every PPLTL formula ϕ can be converted to its PNF

form pnf(ϕ) in linear-time in the size of the formula (i.e., |sub(ϕ)|).
Moreover, pnf(ϕ) is equivalent to ϕ.

Interestingly, the PNF decomposition allows evaluating PPLTL for-
mulas by only knowing the truth value of some of its subformu-
las, those that are within the Y-scope. We interpret these specific
subformulas as atomic propositions, denoting them with quotes,
and collecting them in a set denoted as Σϕ. Specifically, these

propositions are: (i) “Yφ” for each subformula of ϕ of the form
Yφ, and (ii) “Y(φ1 Sφ2)” for each subformula of ϕ of the form
φ1 Sφ2. For instance, for the formula a SYb, we only have Σϕ =
{“Y(a SYb)”, “Yb”}. To evaluate the truth value of propositions in
Σϕ, we use the interpretation σ : Σϕ → {�,⊥}, and characterize
the evaluation of subformulas at a certain instant i ≤ n with σi. In-
tuitively, given an instant i, σi tells us which propositions related to
the previous instant (i.e., in Σϕ) are true at the instant i. Therefore,
a PPLTL formula can simply be evaluated by using the propositional
interpretation in the current instant i and the truth value assigned by
σi to propositions related to the previous instant.

Definition 2 ([11]). Let si be a propositional interpretation over P ,
σi a propositional interpretation over Σϕ, and φ a PPLTL subformula
in sub(ϕ), the predicate val(φ, σi, si) is recursively defined as:

• val(p, σi, si) iff si |= p;
• val(Yφ′, σi, si) iff σi |= “Yφ′”;
• val(φ1 Sφ2, σi, si) iff val(φ2, σi, si) ∨ (val(φ1, σi, si) ∧ σi |=
“Y(φ1 Sφ2)”);

• val(φ1 ∧ φ2, σi, si) iff val(φ1, σi, si) ∧ val(φ2, σi, si);
• val(¬φ′, σi, si) iff ¬val(φ′, σi, si).

The val(φ, σi, si) predicate determines what is the truth value of
any PPLTL formula φ ∈ sub(ϕ) by reading a propositional inter-
pretation si from trace τ and keeping track of the truth value of
propositions in Σϕ by means of σi. Now, consider a trace τ =
s0, . . . , sn over P , we can always compute a corresponding trace
τ [ϕ] = σ0, . . . , σn over Σϕ, where σ0(“Yφ”)

.
= ⊥ for each

“Yφ” ∈ Σϕ and σi(“Yφ”)
.
= val(φ, σi−1, si−1), for all i with

0 < i ≤ n. The following result holds.

Theorem 2 ([11]). Let ϕ be a PPLTL formula over P , φ ∈ sub(ϕ) a
subformula of ϕ, τ a trace over P , and τ [ϕ] the corresponding trace
over Σϕ. Then, τ |= φ iff val(φ, σn, sn).

Theorem 2 states that a PPLTL formula can be evaluated on the
last instant of a trace τ by computing the val(·) predicate on the last
propositional interpretation of τ and on what propositions are true in
Σϕ at the last instant. Moreover, as previously mentioned, Theorem 2
can be seen as another way to build the DFA corresponding to the
PPLTL formula ϕ. In fact, by computing which subformulas of ϕ are
true at every instant while scanning a given trace τ , one is implicitly
building the states of the DFA corresponding to ϕ on-the-fly.

4 FOND Planning for PPLTL Goals

We devise a particularly effective technique for FOND planning for
PPLTL goals by exploiting the result in Theorem 2. Given that PPLTL

formulas can be evaluated on traces generated by sequences of plan-
ning actions, the key idea is to keep track of the truth of the (quoted)
propositions representing subformulas of the PPLTL goal in each
planning state and update them correspondingly while the planning
process goes on. In this way, we sidestep altogether the standard con-
struction based on computing the automaton for the PPLTL goal ϕ
and then building the cross-product between such an automaton and
the automaton corresponding to the domain, e.g., see [19].

Given a FOND planning problem Γ = 〈D, s0, ϕ〉, where D =
〈F ,Fder,X , A, pre, eff 〉 is a nondeterministic domain, s0 the initial
state and ϕ a PPLTL goal, the encoded FOND planning problem is
Γ′ = 〈D′, s′0, G

′〉, where D′ = 〈F ′,F ′
der,X ′, A, pre, eff ′〉 is the

encoded FOND planning domain, s′0 is the new initial state andG′ is

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals 281

Table 1. Components of the encoded FOND planning problem
Γ′ = 〈〈F ′,F ′

der,X ′, A, pre, eff ′〉, s′0, G′〉 using axioms for a given
FOND planning problem Γ = 〈〈F ,Fder,X , A, pre, eff 〉, s0, ϕ〉.

Components Encoding

Fluents F ′ F ′ := F ∪ Σϕ

Derived Predicates F ′
der F ′

der := Fder ∪ {valφ | φ ∈ sub(ϕ)}

Axioms X ′

X ′ := X ∪ {xφ | φ ∈ sub(ϕ)} where xφ is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

valp ← p (φ = p)

valYφ′ ← “Yφ′” (φ = Yφ′)
valφ1 Sφ2

← (valφ2
∨ (valφ1

∧ “Y(φ1 Sφ2)”)) (φ = φ1 Sφ2)

valφ1∧φ2
← (valφ1

∧ valφ2
) (φ = φ1 ∧ φ2)

val¬φ′ ← ¬valφ′ (φ = ¬φ′)

Action Labels A A := A, i.e., unchanged

Preconditions pre pre(a) := pre(a) for every a ∈ A, i.e., unchanged

Effects eff ′ eff ′(a) := {effi ∪ effval | effi ∈ eff (a)}, where
effval = {valφ � {“Yφ”},¬valφ � {¬“Yφ”} | “Yφ” ∈ Σϕ}

Initial State s′0 s′0 := σ0 ∪ s0

Goal G′ G′ := valϕ

the new reachability goal. The formal construction of Γ′ is reported
in Table 1.

In this encoding, we employ axioms to determine which subfor-
mula φ of the goal ϕ is true in a planning state s. In particular, the
new FOND domain includes an axiom valφ ← ψ for every subfor-
mula φ ∈ sub(ϕ). Given a sequence of states (σ0, s0), . . . , (σn, sn),
these axioms mimic rules in Definition 2 and are intended to be such
that the current state (σi, si) |= valφ iff val(φ, σi, si) (without loss
of generality, in this section, we assume that σ and s represent set
of positive literals, and we use (σi, si) to denote the state σi ∪ si).
Axioms not only elegantly model the mathematics behind Theorem 2
(i.e., the val(φ, σi, si)), but also simplify the action schema and goal
descriptions without adding control predicates among fluents.

From Table 1, it is also easy to see that no new action is added to
the encoded FOND domain and that the precondition function pre
remains unchanged. In fact, every domain’s action a ∈ A is only
modified on its effects eff (a) by adding a way to update the assign-
ments of propositions in Σϕ. These additional effects are exactly the
same for every action in A. Moreover, since σi maintains values of
“Yφ” in Σϕ, they are independent of the effect of the action on the
original fluents, which, instead, is maintained in the propositional in-
terpretation si. This means that we can compute the next value of σ
without knowing neither which action has been executed nor which
effect such action has had on the original fluents. Observe that the
auxiliary part effval in eff ′(a) deterministically updates subformu-
las values in Σϕ, without affecting any fluent f ∈ F of the original
domain model. This is crucial for the encoding’s correctness.

It is easy to see that our encoding is polynomially related to the
original problem and the satisfaction of the PPLTL goal ϕ on the trace
τ ′ corresponds to the satisfaction of valϕ in the last instant of τ ′.

Theorem 3. Let Γ be a FOND planning problem. The size of Γ′

obtained following the encoding of Table 1 is polynomial in the size
of Γ. In particular, it is linear in the size of the domain specification
and linear in the size of the goal.

Theorem 4. Let ϕ be a PPLTL formula over P , φ ∈ sub(ϕ) a sub-
formula of ϕ, τ a trace over P , and τ [ϕ] the corresponding trace
over Σϕ. Then, val(φ, σn, sn) iff (σn, sn) |= valφ.

Now, we examine the correctness. Let Γ = 〈D, s0, ϕ〉 be a FOND
planning problem, with a nondeterministic domainD, the initial state

s0, and a PPLTL goal formula ϕ, and let Γ′ = 〈D′, s′0, G
′〉 be the

corresponding encoded planning problem as previously defined.
Any trace τ ′ = s′0, . . . , s

′
n onD′ can be seen as τ ′ = zip(τ [ϕ], τ),

where τ = s0, . . . , sn ∈ (2F)+, τ [ϕ] = σ0, . . . , σn ∈ (2Σϕ)+,
where each element of τ ′ is of the form s′i = (σi, si) for all i ≥ 0.
Here, we use the zip(·, ·) function to represent the aggregation of
the two traces τ [ϕ] and τ . Given a trace τ ′ = s′0, . . . , s

′
n on the

encoded planning domain D′, there exists a single trace τ ′ |F=
τ = s0, . . . , sn on the original planning domain D. Conversely,
given a trace τ = s0, . . . , sn on the original planning domain D,
there exists a unique corresponding trace τ [ϕ], and hence a single
τ ′ = zip(τ [ϕ], τ) on the encoded domain D′.

For every strategy π : (2F)+ → A for the FOND planning prob-
lem Γwith PPLTL goalϕ, we can build the strategy π′ : (2F

′
)+ → A

for Γ′ as follows:

π′(τ ′) = a iff π(τ ′ |F) = a
π′(τ ′) is undefined iff π(τ ′ |F) is undefined.

Lemma 1. For every π : (2F)+ → A that is a (strong or strong-
cyclic) winning strategy for the FOND planning problem Γ with
PPLTL goal ϕ, the corresponding π′ : (2F

′
)+ → A is also a (strong

or strong-cyclic, respectively) winning strategy for the encoded plan-
ning problem Γ′.

Now we consider the converse. For every strategy π′ : (2F
′
)+ →

A for the encoded planning problem Γ′, we can build the strategy
π : (2F)+ → A for the original problem Γ with PPLTL goal ϕ as
follows (where τ ′ = zip(τ [ϕ], τ)):

π(τ) = a iff π′(τ ′) = a
π(τ) is undefined iff π′(τ ′) is undefined.

Lemma 2. For every π′ : (2F
′
)+ → A that is a (strong or strong-

cyclic) winning strategy for the encoded planning problem Γ′, the
corresponding π : (2F)+ → A is also a (strong or strong-cyclic, re-
spectively) winning strategy for the FOND planning problem Γ with
PPLTL goal ϕ.

By Lemma 1 and Lemma 2, we immediately get:

Theorem 5 (Correctness). Let Γ be a FOND planning problem with
a PPLTL goal ϕ, and Γ′ be the corresponding encoded FOND plan-
ning problem with reachability goal G′. Then, Γ has a (strong or
strong-cyclic) winning strategy iff Γ′ has a (strong or strong-cyclic,
resp.) winning strategy.

As a result, let Γ be a FOND (strong or strong-cyclic) planning
problem with a PPLTL goal ϕ, and Γ′ be the corresponding encoded
FOND (strong or strong-cyclic, resp.) planning problem with reach-
ability goal G′. Then, every sound and complete planner (FOND
strong or FOND strong-cyclic, resp.) returns a winning strategy π′

for Γ′ if a winning strategy π for Γ exists. If no solution exists for
Γ′, then there is no solution for Γ.

Here, it is important to observe that strategies returned by a FOND
planner for Γ′ are going to be memory-less policies of the form
Π′(s′) = a or Π′(s′) undefined at the goal. These can be imme-
diately transformed in trace-based strategies by defining:

π(τ ′) = a iff Π′(last(τ ′)) = a
π(τ ′) is undefined iff Π′(last(τ ′)) is undefined.

This possibility is crucial since strategies for the original problem Γ
with a PPLTL goal ϕ must be memory-full strategies. In other words,

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals282

they need to be finite-state controllers or transducers. We can use
σi of s′i = (σi, si) as the state of the transducer, σi+1(“Yφ”) =
val(φ, σi, si) (for each “Yφ” ∈ Σϕ) as the factorized transition
function, and Π′(s′i) as the output function of the transducer.

5 Encoding without Derived Predicates

Here, we describe a variant of the encoding presented in Section 4
that does not add derived predicates. Like the previous encoding, this
variant introduces a fresh atom of the form “Yφ” for each temporal
component of ϕ. However, instead of using the val(·) predicates, it
combines quoted atoms with propositions of the original domain to
explicitly represent the PNF of a formula and does so by representing
the formula in PPNF (Propositional Previous Normal Form).

Definition 3. Let ϕ be a PPLTL formula. ppnf(ϕ) is a propositional
formula obtained by substituting every Y(φ) with “Y(φ)” in pnf(φ).

For example, if ϕ = a S b then ppnf(ϕ) = b ∨ (a ∧ “Y(a S b)”).
For any formula ϕ, the ppnf(ϕ) captures the truth of pnf(ϕ) without
using temporal operators, provided that every “Yφ” ∈ Σϕ reflects
the truth of Yφ. Most importantly, ppnf(ϕ) is linear in the size of ϕ.

Lemma 3. Let ϕ be a PPLTL formula. The size of ppnf(ϕ) is linear
in the size of ϕ.

Given a FOND planning problem Γ = 〈D, s0, ϕ〉 where D =
〈F ,Fder,X , A, pre, eff 〉 and ϕ is a PPLTL goal, Table 2 formalizes
the encoding of an equivalent FOND problem Γ′′ = 〈D′′, s′′0 , G

′′〉
withD′′ = 〈F ′′,Fder,X , A, pre, eff ′′〉 for a goalG′′. Compared to
the encoding of Table 1, the function eff ′′ uses the propositional for-
mula ppnf(φ) to update the truth of each quoted atom “Y(φ)” ∈ Σϕ

after every action. Intuitively, if ppnf(φ) holds in s, then Y(φ) will
hold in the successor state s′, and we keep track of this by ensuring
that “Y(φ)” holds true in s′, formalized via the conditional effect
ppnf(φ)�{“Yφ”}. Analogously, if a state s does not satisfy ppnf(φ),
then the conditional effect ¬ppnf(φ) � {¬“Yφ”} will make “Yφ”
false in s′. These effects are added to each outcome of an action a.
Finally, goal G′′ asks to satisfy ppnf(ϕ).

Table 2. Components of the encoded FOND planning problem
Γ′′ = 〈〈F ′′,Fder,X , A, pre, eff ′′〉, s′′0 , G′′〉 without additional derived

predicates for a given FOND planning problem
Γ = 〈〈F ,Fder,X , A, pre, eff 〉, s0, ϕ〉.

Components Encoding

Fluents F ′′ F ′′ := F ∪ Σϕ

Derived Predicates Fder Fder := Fder , i.e., unchanged

Axioms X X := X , i.e., unchanged

Action Labels A A := A, i.e., unchanged

Preconditions pre pre(a) := pre(a) for every a ∈ A, i.e., unchanged

Effects eff ′′ eff ′′(a) := {effi ∪ effppnf | effi ∈ eff (a)}, where
effppnf = {ppnf(φ) � {“Yφ”},¬ppnf(φ) � {¬“Yφ”} | “Yφ” ∈ Σϕ}

Initial State s′′0 s′′0 := σ0 ∪ s0

Goal G′′ G′′ := ppnf(ϕ)

Theorem 6 (Correctness). Let Γ be a FOND planning problem and
let Γ′′ be the problem encoded following Table 2. Then Γ has a win-
ning strategy π iff so does Γ′′.

Although this second encoding removes additional axioms that the
first encoding generates, it remains polynomially related to the orig-
inal problem.

Theorem 7. Let Γ be a FOND planning problem. The size of Γ′′

obtained following the encoding of Table 2 is polynomial in the size
of Γ. In particular, it is linear in the size of the domain specification
and quadratic in the size of the goal.

6 Experimental Evaluation

We implemented the approaches of Sections 4 and 5 in a tool called
Plan4Past1, which can be run with either the intensive conditional
effects compilation (P4P for short) or with derived predicates (P4PX
for short). Both configurations take as input a FOND planning prob-
lem written in PDDL and a PPLTL formula and give as output a
PDDL description of a new FOND problem.

Preliminary experiments revealed how current FOND planners
struggle to preprocess most problems compiled by P4P. To over-
come this issue, we further optimize this encoding by aggregating the
set effppnf of new conditional effects into a dummy action check.
Then, we force the encoding to always execute one occurrence of
check before any domain actions. Clearly, such a modification does
not undermine our theoretical results and instead proves to be much
more convenient with the current FOND planners. Thus, we will
hereinafter refer to P4P as the compilation with this modification.

We used two state-of-the-art FOND planners: PRP [33] and
Paladinus [24]. Both engines support basic conditional effects. How-
ever, although Paladinus fully support axioms, it does not sup-
port disjunctive conditional effects. Conversely, PRP supports con-
ditional effects with disjunctive conditions but does not support ax-
ioms. Hence, since P4P requires disjunctive conditional effects and
no axioms while P4PX requires conjunctive conditional effects and
axioms, we use P4P with PRP (P4PPRP for short), and Paladinus
with P4PX (P4PPal

X for short).
The empirical analysis aims to evaluate the effectiveness of tempo-

rally extended goals expressed in PPLTL and handled by Plan4Past,
and semantically equivalent (polynomially related) temporally ex-
tended goals expressed in LTLf and handled by ltlfond2fond [13]
(ltlf2f for short). ltlf2f is a compilation that explicitly computes an
automaton representing the LTLf temporal goal. To our knowledge,
this is the best approach for planning with LTLf goals in FOND do-
mains. The advantage of P4P seems clear: ltlf2f is exponential, while
both compilations performed by P4P and P4PX are polynomial in
the size of the PPLTL goals. Yet, from a practical standpoint, the im-
pact of this advantage in FOND planning is unclear. To this end, we
tested the three systems over a benchmark set and measured the num-
ber of problems solved (Coverage), the time taken to get a solution
(compilation plus search), and the size of the policies (number of
state-action pairs). Like for P4P, the problems encoded by ltlf2f are
supported by FOND planners with conditional effects, but our find-
ings show that ltlf2f performs significantly better with PRP. Hence,
we only present the results of ltlf2f with PRP. All experiments ran
up to 1800s on a Xeon-Gold 6140M 2.3 GHz with 8GB of memory.

6.1 Benchmark Domains

Our benchmark suite features the FOND domains ROVERS, BLOCKS,
and COFFEE used in [13]. We tested all compilations on the same in-
stances by [13] (C17 for short). C17 temporally extended goals were
1 Source code, benchmarks and supplementary material are publicly available

at https://github.com/whitemech/Plan4Past

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals 283

originally specified in LTLf , and therefore, for comparison reasons,
we manually translated them to PPLTL. Recall that although LTLf

and PPLTL have the same expressiveness, no tool to translate one into
the other exists yet. Therefore, for each LTLf formula translated in
PPLTL, we formally and automatically proved their semantic equiva-
lence by verifying that the two formulations yield the same minimal
DFA (modulo state renaming). We observed that all C17 instances
were trivially solved by the three systems. Therefore, to study the
scalability of the compilations, we generated a new set of instances
of increasing dimensions for each domain (BF23 for short). The C17
instances are publicly available, while our newly generated instances
are described below, along with other information about the domain
and the translations from PPLTL and LTLf .

Blocksworld. In blocksworld, we want to arrange blocks in a par-
ticular configuration. An arm can pick-up and move blocks on top
of other blocks or on the table. Starting from the 24 C17 instances,
we generated bigger problems considering four types of formula em-
ployed by [13]:

F(a)U (F(b1) ∧ F(b2) ∧ . . . ∧ F(bn)) (1)

(F(b1) ∨ F(b2) ∨ . . . ∨ F(bn))UF(a) (2)

F(F(b1) ∧ F(b2) ∧ . . . ∧ F(bn) ∧ a) (3)

(aUF(b1)) ∧ (aUF(b2)) ∧ . . . ∧ (aUF(bn)) (4)

where atoms a and bi represent whether a block is on the table or
on top of another block. Formulas (1) and (4) require each atom bi
to eventually be true in some state, while (2) expresses that a even-
tually becomes true. In all three formulas, the “Until” (U) does not
add any semantic meaning (i.e., requirements to be satisfied by the
trace) to the formula. For this case, we can obtain the equivalent
PPLTL formulation by simply swapping the future temporal opera-
tors with the past ones. For instance, we write formula (4) in PPLTL

as (a SO(b1)) ∧ (a SO(b2)) ∧ . . . ∧ (a SO(bn)). (3) expresses that
“there exists a state where a is true, and each atom bi is true in the
same state or future states”. In this case, the translation in PPLTL

is not straightforward: we used the semantically equivalent formula
O(b1 ∧O(a))∧O(b2 ∧O(a))∧ . . .∧O(bn ∧O(a)). Each temporal
goal is used over 10 instances obtained by adding more blocks on the
table, resulting in 40 new instances.

To challenge the different compilations, for this domain, we also
designed a new type of formula, i.e., seqi,j where i is the number of
blocks, and j is the number of towers to build in a specific order. For
example, formula seq3,2 requires building two towers made of three
blocks. In the end, such blocks must be on the table (t). In LTLf , this
formula is expressed as:

F(ona,c ∧ onc,b ∧XF(onc,b ∧ onb,a ∧XF(ona,t ∧ onb,t ∧ onc,t))),

whereas in PPLTL it is expressed as:

O(ona,t∧onb,t∧onc,t∧YO(onc,b∧onb,a∧YO(ona,c∧onc,b))).

We generated a new instance with a goal seqi,j for i = 3, 4 and with
j = 1, . . . , i!, for a total of 30 “seq” problems. Therefore, the total
number of instances for BLOCKS sums up to 94 instances, 24 original
instances from [13], 40 instances that we generated by scaling the
temporal goals from [13], and 30 “seq” instances.

Rovers. Here, the goal is to gather data about soil, rocks, and im-
ages of a planet by planning the activities of one or more rovers. We

used the 9 instances in C17 and generated other larger instances with
4 types of formulas:

F(g1) ∧ F(g2) ∧ . . . ∧ F(gn) (1)

F(F(g1) ∧ F(g2) ∧ . . . ∧ F(gn)) (2)

F(F(g1) ∨ F(g2) ∨ . . . ∨ F(gn)) (3)

G(F(G(g1) ∨ G(g2) ∨ . . . ∨ G(gn))) (4)

where every gi is an atom representing the completion of a task, i.e.,
the communication of data about soil, rock, or image. The first two
formulas require that each task is accomplished in some state of the
trajectory induced by the execution of the policy. Formula (3) re-
quires that at least one task is eventually completed, while the last
formula requires that all tasks are satisfied in the last state. The trans-
lation for formulas (1), (2), and (3) is direct; we can simply swap
future operators with their past counterparts. For instance, we write
formula (2) in PPLTL as O(O(g1) ∧ O(g2) ∧ . . . ∧ O(gn)). The last
formula requires one of the goals to be achieved in the last state; this
could be represented in PPLTL without using any temporal operator.
However, for the sake of a fair comparison, we translated such LTLf

formula into a PPLTL formula with the same number of nested tem-
poral operators, i.e.,

H(H(H(g1) ∨ H(g2) ∨ . . . ∨ H(gn))) ∨ (g1 ∨ g2 ∨ . . . ∨ gn).
These constraints are used over 40 propositional problems of
ROVERS from the 5th IPC, giving us 160 instances, which, added
to the 9 C17 instances, gives a total of 169 instances.

Robot-Coffee. A robot has to deliver coffee to different offices
and can move between adjacent offices; coffee can be prepared in a
kitchen. We considered the 10 problems from C17 and generated fur-
ther larger instances with the following types of temporally extended
goals:

F(Co1) ∧ . . . ∧ F(Con) (1)

F(F(Co1) ∧ . . . ∧ F(Con)) (2)

F(Co1) ∧ . . . ∧ F(Con) ∧ G(Roi ⇒ X(¬Roj)) ∧ . . . (3)

X(X(. . .X(Rkitchen))) (4)

The first two formulas are satisfied by a policy delivering the cof-
fee to all offices. Formula (3) is as formula (1) but with the require-
ment that if the robot is in the office oi, then in the next state, it
cannot be in office oj . This in PPLTL can be easily expressed with
H(Y(Roi) ⇒ ¬(Roj)) ∧ ¬Roi . The last temporally extended goal
requires the robot to be in the kitchen in the k+1-th state, where k is
equal to the number of nested X operators. In PPLTL, this can be cap-
tured by O(Rkitchen ∧ Y(Y(. . .Y(start)))), where the number of
Y is equal to k. We generated a new set of instances, 15 for each type
of formula, increasing the number of offices. Formulas (1), (2), and
(3) scale with the number of offices, while formula of type (4) scales
with k ranging from 7 to 21. This gives us a total of 70 instances.

6.2 Experimental Results

Table 3 reports the overall results for all systems. The last three rows
are for C17, while BF23 is indicated by “domain-formula” (e.g.,
BLOCKS-1 refers to blocksworld with goals of type (1)). P4PPRP

achieves the highest coverage, followed by ltlf2f and P4PPal
X . C17

instances are small and trivially solved by all systems within seconds.
In contrast, BF23 instances are larger and designed to challenge the

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals284

Table 3. Coverage, average Run-Time (Avg RT), and Policy size (Avg |π|) achieved by P4P, P4PX , and ltlf2f. Averages are computed among instances
solved by all systems obtaining at least 25% of the total coverage compared to the best performer. The policy size is reported without counting spurious actions
added by compilations. Column I is the number of instances in a domain. “–” indicates a system excluded by the comparison. In bold are the best performers.

Domain Coverage Avg RT Avg |π|
I P4PPRP P4PPal

X ltlf2f P4PPRP P4PPal
X ltlf2f P4PPRP P4PPal

X ltlf2f

BLOCKS-1 10 10 10 1 69.56 14.98 – 4.00 3.00 –
BLOCKS-2 10 10 10 10 27.11 10.99 2.72 2.00 1.00 2.00
BLOCKS-3 10 6 10 2 85.48 5.99 – 5.00 2.00 –
BLOCKS-4 10 6 10 4 30.04 11.47 19.56 3.00 3.00 3.00

BLOCKS-seq 30 30 8 20 2.16 32.25 2.29 14.12 14.00 13.75

COFFEE-1 15 12 5 4 5.14 53.99 53.34 56.00 50.50 56.00
COFFEE-2 15 11 5 2 14.96 361.63 – 60.00 54.00 –
COFFEE-3 15 2 0 1 – – – – – –
COFFEE-4 15 15 15 15 15.82 2.59 2.04 15.00 14.47 15.00
ROVERS-1 40 24 3 10 8.99 – 23.47 28.40 – 30.50
ROVERS-2 40 23 4 7 – – – – – –
ROVERS-3 40 37 20 40 27.37 258.75 2.81 6.05 5.90 5.30

ROVERS-4 40 23 16 7 32.97 52.34 – 5.62 5.06 –

BLOCKS 24 24 24 24 2.66 1.85 1.71 7.71 5.21 6.75
COFFEE 10 10 10 10 2.46 10.03 1.97 14.22 12.33 13.44
ROVERS 9 9 9 9 3.42 7.41 1.85 9.11 12.56 9.11

Total 252 159 166

0 250 500 750 1000 1250 1500 1750
Planning time

0

40

80

120

160

200

240

C
ov
er
ag
e

ltlf2f P4PPRP P4PPalX

0.1 1 10 100 1000
Planning time

0

40

80

120

160

200

240

C
ov
er
ag
e

ltlf2f

P4PPRP

P4PPalX

Figure 1. Survival plot in linear (lhs) and logarithmic (rhs) scale.

compilations. Indeed, we observe that P4PPRP solves 80.2% more
instances than P4PPal

X and 69.9% more instances than ltlf2f, yet
P4PPRP does not dominate the other compilations. P4PPal

X is effec-
tive in handling BLOCKS-3 and BLOCKS-4, while P4PPRP times out.
Instead, P4PPRP works better with goals of type “seq”. ltlf2f is ex-
tremely effective at handling ROVERS-3. Here, temporal goals can be
represented by a very compact automaton, enabling ltlf2f to quickly
solve all problems. This advantage can be exploited by neither P4P
nor P4PX ; such compilations work on the syntactic structure of for-
mulas and are unable to exploit the semantics of temporal goals. In-
stead, in rovers and robot-coffee, P4PPRP is more effective than ltlf2f
when temporal goals are of type (1) and (2). The automaton blows
up when such instances become larger, and ltlf2f either fails at com-
pilation time or produces problems too complex for PRP to handle.
In ROVERS-4, P4PPRP and P4PPal

X perform well, while we observed
that in many instances ltlf2f crashes during the automaton compu-
tation. COFFEE-4 is easily handled by all systems, while COFFEE-3
proved to be challenging for every compilation. Finally, all systems
computed policies of comparable dimensions.

On average, ltlf2f has the lowest runtime in 6 domains (3 are C17
domains featuring small instances), whereas P4PPRP and P4PPal

X
combined have the lowest runtime in 8 domains. To shed some light
on this aspect, Figure 1 displays coverage over time for all systems.
ltlf2f dominates the other compilations at the start (visible in the
logarithmic scale plot on the right). Instead, P4PPRP solves more

100 101 102 103

P4PPRP

100

101

102

103
lt
lf
2f

100 101 102 103

P4PPalX

100

101

102

103

lt
lf
2f

Figure 2. Run-Time comparison of ltlf2f vs P4PPRP and P4PPal
X .

instances than ltlf2f after 29.7 seconds. In an instance-by-instance
comparison (Figure 2, left), we observe that ltlf2f solves many prob-
lems (130) before P4PPRP does. P4PPRP introduces complex formu-
las in conditional effects and goals, and we observed that the pre-
processing of PRP often exceeds by orders of magnitude the com-
pilation time. Overcoming this issue without introducing axioms is
an open question for future work. The runtime pairwise compari-
son of ltlf2f with P4PPal

X (Figure 2, right), shows that ltlf2f is faster
than P4PPal

X in most instances, and this behavior can be attributed to
Paladinus being slower than PRP for those instances.

7 Conclusions

We study FOND planning for goals expressed in PPLTL. We prove
that the effectiveness of PPLTL in expressing temporal goals in deter-
ministic planning seamlessly extends to nondeterministic planning.
We prove that FOND planning for PPLTL goals can be polynomially
encoded into FOND planning for reachability goals. We present two
such encodings, which are able to solve a broader range of problems
compared to the state-of-the-art encoding supporting temporally ex-
tended goals expressed in LTLf . The general theoretical and practical
advantages of PPLTL observed so far may definitely pave the way for
more effective solution techniques in handling control knowledge in
planning. Future work concerns developing FOND planners that can
natively handle PPLTL goals and exploring PPLTL-aware heuristics.

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals 285

Acknowledgements

This work has been partially supported by the EU H2020 project
AIPlan4EU (No. 101016442), the ERC-ADG WhiteMech (No.
834228), the EU ICT-48 2020 project TAILOR (No. 952215), the
PRIN project RIPER (No. 20203FFYLK), and the PNRR MUR
project FAIR (No. PE0000013).

References

[1] Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin, ‘Stochas-
tic Fairness and Language-Theoretic Fairness in Planning in Nondeter-
ministic Domains’, in ICAPS, pp. 20–28. AAAI Press, (2020).

[2] Fahiem Bacchus, Craig Boutilier, and Adam Grove, ‘Rewarding Be-
haviors’, in AAAI, pp. 1160–1167, (1996).

[3] Fahiem Bacchus, Craig Boutilier, and Adam Grove, ‘Structured So-
lution Methods for non-Markovian Decision Processes’, in AAAI, pp.
112–117, (1997).

[4] Fahiem Bacchus and Froduald Kabanza, ‘Planning for Temporally Ex-
tended Goals’, Ann. Math. Artif. Intell., 22(1-2), 5–27, (1998).

[5] Fahiem Bacchus and Froduald Kabanza, ‘Using Temporal Logics to
Express Search Control Knowledge for Planning’, AIJ, 116(1-2), 123–
191, (2000).

[6] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen, Prin-
ciples of Model Checking, MIT, 2008.

[7] Jorge A. Baier, Christian Fritz, Meghyn Bienvenu, and Sheila A. McIl-
raith, ‘Beyond Classical Planning: Procedural Control Knowledge and
Preferences in State-of-the-Art Planners’, in AAAI, pp. 1509–1512.
AAAI, (2008).

[8] Jorge A. Baier and Sheila A. McIlraith, ‘Planning with First-Order
Temporally Extended Goals using Heuristic Search’, in AAAI, pp. 788–
795. AAAI, (2006).

[9] Jorge A. Baier and Sheila A. McIlraith, ‘Planning with Temporally Ex-
tended Goals Using Heuristic Search’, in ICAPS, pp. 342–345. AAAI,
(2006).

[10] Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough,
and Richard Owens, ‘METATEM: A Framework for Programming in
Temporal Logic’, in REX Workshop, volume 430 of LNCS, pp. 94–129.
Springer, (1989).

[11] Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Francesco Fug-
gitti, Alfonso Emilio Gerevini, and Enrico Scala, ‘Planning for Tempo-
rally Extended Goals in Pure-Past Linear Temporal Logic’, in ICAPS,
volume 33, pp. 61–69, (Jul. 2023).

[12] Alberto Camacho, Meghyn Bienvenu, and Sheila A McIlraith, ‘To-
wards a Unified View of AI Planning and Reactive Synthesis’, in
ICAPS, volume 29, pp. 58–67, (2019).

[13] Alberto Camacho, Eleni Triantafillou, Christian J. Muise, Jorge A.
Baier, and Sheila A. McIlraith, ‘Non-Deterministic Planning with Tem-
porally Extended Goals: LTL over Finite and Infinite Traces’, in AAAI,
pp. 3716–3724. AAAI Press, (2017).

[14] A. Chandra, D. Kozen, and L. Stockmeyer, ‘Alternation’, J. of the ACM,
28(1), (1981).

[15] Alessandro Cimatti, Fausto Giunchiglia, Enrico Giunchiglia, and Paolo
Traverso, ‘Planning via Model Checking: A Decision Procedure for
AR’, in ECP, volume 1348 of LNCS, pp. 130–142. Springer, (1997).

[16] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso,
‘Weak, Strong, and Strong Cyclic Planning via Symbolic Model Check-
ing’, AIJ, 147(1-2), 35–84, (2003).

[17] Alessandro Cimatti, Marco Roveri, and Paolo Traverso, ‘Strong Plan-
ning in Non-Deterministic Domains Via Model Checking’, in AIPS, pp.
36–43. AAAI, (1998).

[18] Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, and
Sasha Rubin, ‘Pure-Past Linear Temporal and Dynamic Logic on Fi-
nite Traces’, in IJCAI, pp. 4959–4965. ijcai.org, (2020).

[19] Giuseppe De Giacomo and Sasha Rubin, ‘Automata-Theoretic Foun-
dations of FOND Planning for LTLf and LDLf Goals’, in IJCAI, pp.
4729–4735, (2018).

[20] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Automata-Theoretic Ap-
proach to Planning for Temporally Extended Goals’, in ECP, volume
1809 of LNCS, pp. 226–238. Springer, (1999).

[21] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Linear Temporal Logic
and Linear Dynamic Logic on Finite Traces’, in IJCAI, pp. 854–860.
IJCAI/AAAI, (2013).

[22] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Synthesis for LTL and
LDL on Finite Traces’, in IJCAI, pp. 1558–1564. AAAI Press, (2015).

[23] E. Allen Emerson, ‘Temporal and Modal Logic’, in Handbook of The-
oretical Computer Science, Chapter 16, (1990).

[24] Ramon Fraga Pereira, André Grahl Pereira, Frederico Messa, and
Giuseppe De Giacomo, ‘Iterative Depth-First Search for FOND Plan-
ning’, in ICAPS, pp. 90–99. AAAI Press, (2022).

[25] Alfredo Gabaldon, ‘Non-Markovian Control in the Situation Calculus’,
AIJ, 175(1), 25–48, (2011).

[26] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi, ‘On
the Temporal Analysis of Fairness’, in POPL, pp. 163–173. ACM Press,
(1980).

[27] Luca Geatti, Marco Montali, and Andrey Rivkin, ‘Reactive Synthe-
sis for DECLARE via Symbolic Automata’, CoRR, abs/2212.10875,
(2022).

[28] Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and
Yannis Dimopoulos, ‘Deterministic Planning in the Fifth International
Planning Competition: PDDL3 and Experimental Evaluation of the
Planners’, AIJ, 173(5-6), 619–668, (2009).

[29] Fausto Giunchiglia and Paolo Traverso, ‘Planning as Model Checking’,
in ECP, volume 1809 of LNCS, (1999).

[30] Jörg Hoffmann and Stefan Edelkamp, ‘The Deterministic Part of IPC-4:
An Overview’, JAIR, 24, 519–579, (2005).

[31] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck, ‘The Glory of
the Past’, in Logic of Programs, volume 193 of LNCS, pp. 196–218.
Springer, (1985).

[32] Zohar Manna, Verification of Sequential Programs: Temporal Axioma-
tization, 53–102, Springer Netherlands, 1982.

[33] Christian Muise, Sheila McIlraith, and Christopher Beck, ‘Improved
Non-Deterministic Planning by Exploiting State Relevance’, in ICAPS,
volume 22, pp. 172–180, (2012).

[34] Marco Pistore and Paolo Traverso, ‘Planning as Model Checking for
Extended Goals in Non-deterministic Domains’, in IJCAI, pp. 479–486.
Morgan Kaufmann, (2001).

[35] Jussi Rintanen, ‘Complexity of Planning with Partial Observability’, in
ICAPS, pp. 345–354, (2004).

[36] Gabriele Röger, Florian Pommerening, and Malte Helmert, ‘Optimal
Planning in the Presence of Conditional Effects: Extending LM-Cut
with Context Splitting’, in ECAI, volume 263, pp. 765–770, (2014).

[37] Sylvie Thiébaux, Charles Gretton, John K. Slaney, David Price, and
Froduald Kabanza, ‘Decision-Theoretic Planning with non-Markovian
Rewards’, JAIR, 25, 17–74, (2006).

[38] Jorge Torres and Jorge A. Baier, ‘Polynomial-Time Reformulations of
LTL Temporally Extended Goals into Final-State Goals’, in IJCAI, pp.
1696–1703. AAAI Press, (2015).

[39] W. van der Aalst, M. Pesic, and H. Schonenberg, ‘Declarative Work-
flows: Balancing Between Flexibility and Support’, Computer Science
- R&D, 23(2), 99–113, (2009).

L. Bonassi et al. / FOND Planning for Pure-Past Linear Temporal Logic Goals286

