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Abstract. This paper introduces Behavioral QLTL, a “behavioral” vari-
ant of Linear Temporal Logic (ltl) with second-order quantifiers. Behav-
ioral qltl is characterized by the fact that the functions that assign the
truth value of the quantified propositions along the trace can only depend
on the past. In other words, such functions must be “processes” [1]. This
gives the logic a strategic flavor that we usually associate with planning.
Indeed we show that temporally extended planning in nondeterministic
domains and ltl synthesis are expressed in Behavioral qltl through for-
mulas with a simple quantification alternation. While as this alternation
increases, we get to forms of planning/synthesis in which contingent and
conformant planning aspects get mixed. We study this logic from the
computational point of view and compare it to the original qltl (with
non-behavioral semantics) and simpler forms of behavioral semantics.

1 Introduction

Since the very early time of AI, researchers have tried to reduce planning to
logical reasoning, i.e., satisfiability, validity, logical implication [29]. However as
we consider more and more sophisticated forms of planning this becomes more
and more challenging, because the logical reasoning required quickly becomes
second-order. One prominent case is if we want to express the model of the
world (aka the environment) and the goal of the agent directly in Linear Tem-
poral Logic (ltl). ltl has been often adopted also in Artificial Intelligence.
Examples are the pioneering work on using temporal logic as a sort of program-
ming language through the MetateM framework [7], the work on temporally
extended goals and declarative control constraints [5,6], the work on planning
via model-checking [9,17,18,20], the work on adopting ltl logical reasoning
(plus some meta-theoretic manipulation) for certain forms of planning [10,12].
More recently the connection between planning in nondeterministic domains and
(reactive) synthesis [35] has been investigated, and in fact it has been shown that
planning in nondeterministic domains can be seen in general terms as a form of
synthesis in presence of a model of the environment [3,11], also related to syn-
thesis under assumptions [13,14].

However the connection between planning and synthesis also clarifies formally
that we cannot use directly the standard forms of reasoning in ltl, such as
satisfiability, validity, or logical implication, to do planning. Indeed the logical
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reasoning task we have to adopt is a nonstandard one, called “realizability” [16,
35], which is inherently a second-order form of reasoning on ltl specifications.
So one question comes natural: can we use the second-order version of ltl, called
qltl (or qptl) [40] and then use its classic reasoning tasks, such as satisfiability,
validity and logical implication, to capture planning and synthesis?

In [10] a positive answer was given limited to conformant planning [37], in
which we have partial observability on the environment and, in particular, we
cannot fully observe the initial state and the environment response to agent
actions, which however are deterministic. Hence, in conformant planning we
need to synthesize plans/strategies that work (in the deterministic domain) in
spite of the lack of knowledge. [10] shows that exploiting existential and universal
quantifications, to account for the lack of knowledge, qltl could actually capture
conformant planning through standard satisfiability.

However, the results there do not apply when the environment is nondeter-
ministic, as in contingent planning (with or without full observability) [37]. The
reason for this is very profound. Any plan/strategy must be a “process”, i.e.,
a function that observes what has happened so far (the history), observes the
current state, and takes a decision (conditional on what observed) on the next
action to do [1]. qltl instead interprets quantified propositions (i.e., in the case
of planning, the actions to be chosen) through functions that have access to the
whole traces, i.e., also the future instants, hence they cannot be considered pro-
cesses. This is a clear mismatch that makes standard qltl unsuitable to capture
planning through standard reasoning tasks.

This mismatch is not only a characteristic of qltl, but, interestingly, even of
logics that have been introduced specifically for strategic reasoning such as Strat-
egy Logic (sl) [15,32]. This has led to investigating the “behavioral” semantics
in these logics, i.e., a semantics based on processes. In their seminal work [32],
Mogavero et al. introduce and analyze the behavioral aspects of quantification in
sl: a logic for reasoning about the strategic behavior of agents in a context where
the properties of executions are expressed in ltl. They show that restricting to
behavioral quantification of strategies is a way of both making the semantics
more realistic and computationally easier. In addition, they proved that behav-
ioral and non-behavioral semantics coincide for certain fragments, including the
one corresponding to the well known atl� [2], but diverge for more interesting
classes of formulas, e.g., the ones that can express game-theoretic properties such
as Nash Equilibria and the like. This has started a new line of research that aims
at identifying new notions of behavioral and non-behavioral quantification, as
well as characterize the syntactic fragments that are invariant to these semantic
variations [24,25,33].

In this paper, inspired by the study of behavioral semantics in Strategy Logic,
we introduce a simple and elegant variant of qltl with a behavioral semantics.
The resulting logic, called Behavioral-qltl (qltlB), maintains the same syntax
of qltl, but is characterized by the fact that the functions that assign the truth
value of the quantified propositions along the trace can only depend on the past.
In other words such functions must indeed be “processes”. This makes qltlB
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perfectly suitable to capture extended forms of planning and synthesis through
standard reasoning tasks (satisfiability in particular).

In qltlB, planning for temporally extended goals in nondeterministic
domains, as well as ltl synthesis, are expressed through formulas with a simple
quantification alternation. While, as this alternation increases, we get to forms
of planning/synthesis in which contingent and conformant planning aspects get
mixed by controlling via quantification what is visible of the current history
to take a decision on. For example, the qltlB formula of the form ∃Y ∀Xψ
represents the conformant planning over the ltl specification (of both envi-
ronment model and goal) ψ, as it is intended in [37]. Here we use ∀X to
hide in the history the propositions (a.k.a. fluents) that are not visible to
the agent. Note that this could be done also with standard qltl, since ∃Y
is put upfront as it cannot depend on the nondeterministic evolution of X.
The qltlB formula ∀X∃Y ψ represents contingent planning in fully observable
domains [37], also known as Strong Planning in Fully Observable Nondetermin-
istic Domains (FOND) [19,26], as well as ltl synthesis [35]. The qltlB for-
mula ∀X1∃Y ∀X2ϕ represents the problem of contingent planning under partial
observability [37], also known as Strong Planning in Partially Observable Non-
deterministic Domains (POND) [26]. Here, X1 and X2 are, respectively, the
visible and hidden propositions controlled by the environment and the strategy
corresponding to the Skolem function assigning the values to Y depends on the
values of X1 in the history so far but not on the values of X2, which indeed
remain non-observable to the agent. By going even further in alternation, we get
a generalization of POND where a number the controllable variables of the agent
depend individually on more and more environment variables. In other words,
we have a hierarchy of partial observability over the whole history on which the
various variable under the control of the agent can depend upon. Interestingly,
if we consider the agent controlled variables as independent actuators, then this
instantiates the problem of distributed synthesis with strictly decreasing levels
of information studied in formal methods [22,31,36].

We study qltlB by introducing a formal semantics that is Skolem-based,
meaning that we assign existential values through Skolem-like functions that
depend on the universal (adversarial) choice of the variables of interest. Specif-
ically we restrict such Skolem function to depend only on the past and hence
behave as processes/strategies/plans. As a matter of fact, such Skolem functions
can be represented as suitable labeled trees, describing all the possible execu-
tions of a given process that receive inputs from the environment. We then study
satisfiability in qltlB and characterize its complexity as (n + 1)-EXPTIME-
complete, with n being the number of quantification blocks of the form ∀Xi∃Yi

in the formula. Note that this is substantially lower than the complexity of sat-
isfiability for classic qltl, which depends on the overall quantifier alternation
in the formula, and in particular is 2(n − 1)-EXSPACE-complete. Interestingly,
instantiating our satisfiability procedure we get an optimal technique for solving
synthesis, and planning in nondeterministic domains, for ltl goals in the case of
full observability and partial observability. Indeed, both the formula ∀X∃Y ψ for
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the case of full observability and the formula ∀X1∃Y ∀X2ϕ for the case of partial
observability, include a single block of the form ∀Xi∃Yi, and hence satisfiability
can be checked in 2-EXPTIME, thus matching the 2-EXPTIME-completeness
of the two problems [30,35].

2 Quantified Linear Temporal Logic

Linear Temporal Logic (ltl) was originally proposed in Computer Science as a
specification language for concurrent programs [34]. Formulas of ltl are built
from a set Var of propositional variables (or simply variables), together with
Boolean and temporal operators. Its syntax can be described as follows:

ψ ::= x | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

where x ∈ Var is a propositional variable.
Intuitively, the formula Xψ says that ψ holds at the next instant. Moreover,

the formula ψ1Uψ2 says that at some future instant ψ2 holds and until that point,
ψ1 holds. We also use the standard Boolean abbreviations true := x∨¬x (true),
false := ¬true (false), and ψ1 → ψ2 := ¬ψ1 ∨ ψ2 (implication). In addition,
we also use the binary operator ψ1Rψ2

.= ¬(¬ψ1U¬ψ2) (release) and the unary
operators Fψ := trueUψ (eventually) and Gψ := ¬F¬ψ (globally).

The classic semantics of ltl is given in terms of infinite traces, i.e., truth-
value assignments over the natural numbers. More precisely, a trace π ∈ (2Var)ω

is an infinite sequence of truth assignments over the set of variables Var, where
(·)ω is the classic omega operator used to denote such infinite sequences. By
π(i) ∈ 2Var, we denote the i-th truth assignment of the infinite sequence π.
Along the paper, we might refer to finite segments of a computation π. More
precisely, for two indexes i, j ∈ N, by π(i, j) .= π(i), . . . , π(j) ∈ (2Var)∗ we denote
the finite segment of π from it’s i-th to its j-th position, where (·)∗ is the classic
Kleene’s star used to denote finite sequences of any length. A segment π(0, j)
starting from 0 is also called a prefix and is sometimes denoted π≤j . Moreover,
we sometimes use πX to denote a trace over a subset X ⊆ Var of variables, that
is, we make explicit the range of variables on which the trace is defined.

We say that an ltl formula ψ is true on an assignment π at instant i, written
π, i |=LTL ψ, if:

– π, i |=LTL x, for x ∈ Var iff x ∈ π(i);
– π, i |=LTL ¬ψ iff π, i 	|=LTL ψ;
– π, i |=LTL ψ1 ∨ ψ2 iff either π, i |=LTL ψ1 or π, i |=LTL ψ2;
– π, i |=LTL ψ1 ∧ ψ2 iff both π, i |=LTL ψ1 and π, i |=LTL ψ2;
– π, i |=LTL Xψ iff π, i + 1 |=LTL ψ;
– π, i |=LTL ψ1Uψ2 iff for some j ≥ i, we have that π, j |=LTL ψ2 and for all

k ∈ {i, . . . j − 1}, we have that π, k |=LTL ψ1.

A formula ψ is true over π, written π |=LTL ψ, iff π, 0 |=LTL ψ. A formula ψ is
satisfiable if it is true on some trace and valid if it is true in every trace.
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Quantified Linear-Temporal Logic (qltl) is an extension of ltl with two
Second-order quantifiers [39]. Its formulas are built using the classic ltl Boolean
and temporal operators, on top of which existential and universal quantification
over variables is applied. Formally, the syntax is given as follows:

ϕ ::= ∃xϕ | ∀xϕ | x | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where x ∈ Var is a propositional variable.
Note that this is a proper extension of ltl, as qltl has the same expressive

power of mso [39], whereas ltl is equivalent to fol [23].
In order to define the semantics of qltl, we introduce some notation. For a

trace π and a set of variables X ⊆ Var, by Prj(π,X) we denote the projection
trace over X defined as Prj(π,X)(i) .= π(i) ∩ X at any time point i ∈ N.
Moreover, by Prj(π,−X) .= Prj(π, Var \ X) we denote the projection trace
over the complement of X. For a single variable x, we simplify the notation as
Prj(π, x) .= Prj(π, {x}) and Prj(π,−x) .= Prj(π, Var\{x}). Finally, we say that
π and π′ agree over X if Prj(π,X) = Prj(π′,X).

Observe that we can reverse the projection operation by combining traces
over disjoint sets of variables. More formally, for two disjoint sets X,X ′ ⊆ Var
and two traces πX and πX′ over X and X ′, respectively, we define the combined
trace πX �πX′ as the (unique) trace over X ∪X ′ such that its projections on X
and X ′ correspond to πX and πX′ , respectively.

The classic semantics of the quantifiers in a qltl formula ϕ over a trace π,
at instant i, denoted π, i |=C ϕ, is defined as follows:

– π, i |=C ψ iff π, i |=LTL ψ for every quantifier-free (ltl) formula ψ;
– π, i |=C ∃xϕ iff there exists π′ agreeing with π over −x s.t. π′, i |=C ϕ;
– π, i |=C ∀xϕ iff for each π′ agreeing with π over −x, it holds that π′, i |=C ϕ;

A variable x is free in ϕ if it occurs at least once out of the scope of either
∃x or ∀x in ϕ. By free(ϕ) we denote the set of free variables in ϕ.

As for ltl, we say that ϕ is true on π, and write π |=C ϕ iff π, 0 |=C ϕ.
Analogously, a formula ϕ is satisfiable if it is true on some trace π, whereas it is
valid if it is true on every possible trace π. Note that, as quantifications in the
formula replace the trace over the variables in their scope, we can assume that
π are traces over the set free(ϕ) of free variables in ϕ.

For convenience, and without loss of generality, qltl is typically used in
prenex normal form, i.e., according to the following syntax:

ϕ ::=∃xϕ | ∀xϕ | ψ

where ψ is an ltl formula over the the propositional variables Var. Hence a qltl
formula in prenex normal form has the form ℘ψ, where ℘ = Qn1x1 . . . Qnnxn

is a prefix quantification with Qni ∈ {∃,∀} and xi being a variable occurring
on a quantifier-free subformula ψ. Every qltl formula can be rewritten in
prenex normal form, meaning that such rewriting is true on the same set of
traces. Consider for instance the formula G(∃y(y ∧ X¬y)). This is equivalent to
∀x∃y(singleton(x) → (G(x → (y ∧ X¬y)))), with singleton(x) .= Fx ∧ G(x →
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XG¬x) expressing the fact that x is true exactly once on the trace1. A full proof
of the reduction to prenex normal form can be found in [41, Section 2.3].

Recall that for a formula ϕ = ℘ψ is easy to obtain the prefix normal form
of its negation ¬ϕ as ℘¬ψ, where ℘ is obtained from ℘ by swapping every
quantification from existential to universal and vice-versa. From now on, by ¬ϕ
we denote its prenex normal form transformation.

An alternation in a quantification prefix ℘ is either a sequence ∃x∀y or a
sequence ∀x∃y occurring in ℘. A formula of the form ℘ψ is of alternation-depth k
if ℘ contains exactly k alternations. Following the notation introduced in [39], by
k-qltl we denote the qltl fragment of formulas with alternation k. Moreover,
Σqltl

k and Πqltl
k denote the fragments of k-qltl of formulas starting with an

existential and a universal quantification, respectively.
Let ℘ be a quantification prefix. By ∃(℘) and ∀(℘) we denote the set of

variables that are quantified existentially and universally, respectively. We say
that two variables x and x′ belong to the same block X if no alternation occurs
between them, i.e., they are both of the same quantification type, together with
any other variable occurring in between them in ℘.

Note that a qltl formula ℘ψ is equivalent to any formula ℘′ψ where ℘′ is
obtained from ℘ by shuffling variables belonging to the same block. For this rea-
son, it is convenient to make use of the syntactic shortcuts ∃Xϕ

.= ∃x1 . . . ∃xkϕ
and ∀Xϕ

.= ∀x1 . . . ∀xkϕ with X = {x1, . . . , xk}, being a block of variables in
℘. Formulas can then be written in the form Qn1X1 . . . QnnXnψ with X1, . . . Xn

being maximal blocks, meaning that every two consecutive occurrences of them
are of different quantification type. More formally, it holds that Qni = ∃ iff
Qni+1 = ∀, for every i < n.

Note that also the semantics of prenex qltl formulas can easily be lifted in
terms of quantification blocks.

For a qltl formula ϕ, a trace π, and an instant i, we obtain that

– π, i |=C ψ iff π, i |=LTL ψ, for every quantifier-free formula ψ;
– π, i |=C ∃Xϕ iff there exists π′ agreeing with π over −X s.t. π′, i |=C ϕ;
– π, i |=C ∀Xϕ iff for each π′ agreeing with π over −X, it holds that π′, i |=C ϕ2.

From now on, we might refer to variable blocks, simply as blocks. Moreover,
with a slight overlap of notation, we write X ⊆ ∃(℘) to denote that the variables
of the block X are existentially quantified in ℘.

The satisfiability problem consists in, given a qltl formula ϕ, determining
whether it is satisfiable or not. Note that every formula ϕ is satisfiable if, and
only if, ∃free(ϕ)ϕ is satisfiable. This means that we can study satisfiability in
qltl for closed formulas, i.e., formulas where every variable is quantified.

Consider the formula ϕ = ∃y(y ↔ Gx) with free(ϕ) = {x}. This is satisfiable
as, for example, the trace π obtained by combining πx over {x} taking always

1 The reader might observe that pushing the quantification over y outside the temporal
operator does not work. Indeed, the formula ∃yG(y ∧ X¬y) is unsatisfiable.

2 Notice that now we are dealing with variable blocks and not single variables at the
time.
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the value true with the trace πy over {y} assigning true at the first instant
satisfies (y ↔ Gx). Notice that ϕ = ∃y(y ↔ Gx) is satisfiable if and only if the
close formula ∃x∃y(y ↔ Gx) is so. Analogously, ϕ is valid if and only if the close
formula ∀x∃y(y ↔ Gx) is so.

Such problem is decidable, though computationally highly intractable in gen-
eral [39]. For a given natural number k, by k-EXPSPACE we denote the lan-

guage of problems solved by a Turing machine with space bounded by 22
...2

n

,
where the height of the tower is k and n is the size of the input. By convention
0-EXPSPACE denotes PSPACE.

Theorem 1 [40]. Satisfiability for k-qltl is k-EXPSPACE-complete.

3 Skolem Functions for QLTL Semantics

We now give an alternative way to capture the semantics of qltl, which is in
terms of (second order) Skolem functions. This will allow us later to suitably
restrict such Skolem functions to capture behavioral semantics, by forcing them
to depend only on the past history and the current situation.

Consider two variable blocks X and Y . By X <℘ Y we denote the fact that
X occurs before Y in ℘. For a given existentially quantified block Y ∈ ∃(℘),
by Dep℘(Y ) = {X ∈ ∀(℘)|X <℘ Y } we denote the blocks to which Y depends
on in ℘. Moreover, for a given set F ⊆ Var of variables, sometimes referred as
the free variables block, by DepF

℘ (Y ) = F ∪ Dep℘(Y ) we denote the augmented
dependency, taking into account the additional free block. Whenever clear from
the context, we omit the subscript and simply write Dep(Y ) and DepF (Y ).

The relation defined above captures the concept of variable dependence gen-
erated by quantifiers and free variables in a qltl formula. Intuitively, whenever a
dependence occurs between two blocks X and Y , this means that the existential
choices of Y are determined by a function whose domain is given by all possible
choices available for X, be it universally quantified or free in the corresponding
formula. This dependence is know in first-order logic as Skolem function and can
be described in qltl as follows.

Definition 1 (Skolem function). For a given quantification prefix ℘ defined
over a set Var(℘) ⊆ Var of variables, and a free block F = Var \ Var(℘), a
function

θ : (2F∪∀(℘))ω → (2∃(℘))ω

is called a Skolem function over (℘, F ) if, for all traces π1, π2 ∈ (2F∪∀(℘))ω over
F ∪ ∀(℘) and for all blocks Y ∈ ∃(℘), it holds that

Prj(π1, Dep
F (Y )) = Prj(π2, Dep

F (Y )) implies Prj(θ(π1), Y ) = Prj(θ(π2), Y ).

In other words, whenever π1 and π2 are equal over the variables to which
block Y depends on, θ(π1) and θ(π2) are equal over the block Y .
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Intuitively, a Skolem function takes traces of the free variables and (the blocks
of) universally quantified variables and returns traces of (the blocks of) existen-
tially quantified variables so that they depend only on the free variables and the
universal variables that appear before them in the quantification prefix ℘.

Skolem functions can be used to give an alternative characterization of the
semantics of qltl formulas in prenex normal form. Given a trace π over F ∪ ∀(℘),
sometimes we denote the combined trace θ̂(π) .= π � θ(π), as if θ̂ combines the
inputs and outputs outcomes of θ together.

Definition 2 (Skolem semantics). A qltl formula ϕ = ℘ψ is Skolem true
over a trace π at an instant i, written π, i |=S ϕ, if there exists a Skolem function
θ over (℘, free(ϕ)) such that θ̂(π �π∀(℘)), i |=LTL ψ, for every possible trace π∀℘.

Intuitively, the Skolem characterizes the truth of a qltl formula with the
existence of a Skolem function that returns the traces of the existential quantifi-
cations as function of the variables to which they depend in the formula ϕ. The
following theorem shows, the Skolem semantics is equivalent to the classic one.
Therefore, for every formula ϕ and every trace π, it holds that π |=S ϕ if, and
only if, π 	|=S ¬ϕ.

Theorem 2. For every qltl formula ϕ = ℘ψ and every trace πF ∈ (2F )ω over
the free variables block F = free(ϕ) of ϕ, it holds that

π |=C ϕ if, and only if, π |=S ϕ.

Proof. The proof proceeds by induction on the length of ℘. For the case of |℘| = 0
it holds that ℘ = ε is the empty sequence. This means that ϕ = ψ is variable free
and the classic and Skolem semantics coincide with the ltl semantics. Therefore
we obtain πF |=C ψ iff πF |=S ψ.

For the case of |℘| > 0 we prove the two implications separately. From the
left to right direction, assume that πF |=C ϕ and distinguish two cases:

– ℘ = ∃X℘′. Thus, there exists a trace πX ∈ (2X)ω such that πF �πX |=C ℘′ψ.
By induction hypothesis, we have that πF �πX |=S ℘′ψ and so that there exists
a Skolem function θ′ over (℘′, F ∪{X}) such that θ̂′(πF �πX �π′) |=LTL ψ, for
every π′ ∈ (2∀(℘′))ω. Now, consider the Skolem function θ over (℘, F ) defined
as θ(πF � π′) = θ′(πF � πX � π′

−X) � πX for every π′ ∈ (2∀(℘))ω. This implies
that θ̂(πF � π′) |=LTL ψ for every π′ ∈ (2∀(℘))ω, and so that πF |=S ϕ.

– ℘ = ∀X℘′. Then, it holds that πF � πX |=C ℘′ψ for every πX ∈ (2X)ω. By
induction hypothesis, for every πX ∈ (2X)ω there exists a Skolem function
θπX over (℘′, F ∪ {X}) such that θ̂πX(πF � πX � π′) |=LTL ψ for every π′ ∈
(2∀(℘′))ω. Now, consider the Skolem function θ over (℘, F ) defined as θ(πF �
π′) = θπ′

X
(πF �π′

X�π′
−X). It holds that θ̂(πF �π′) |=LTL ψ for every π′ ∈ (2℘)ω,

which means that πF |=S ϕ.

For the right to left direction, assume that πF |=S ℘ψ. Then, there exists a
Skolem function θ over (℘, F ) such that θ̂(πF �π) |=LTL ψ for every π ∈ (2∀(℘))ω.
Here, we also distinguish the two cases.
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– ℘ = ∃X℘′. Observe that DepF (X) = F . Then it holds that θ(πF � π)(X) =
θ(πF ∪ π′)(X) = πX for every π, π′ ∈ (2∀(℘′))ω. Now, define the Skolem
function θ′ over (℘′, F ∪{X}) as θ′(πF �πX �π′) = Prj(θ(πF �πX �π′),−X)
outputting the same as θ except for the trace of the block variable X. It holds
that θ̂′(πF � πX � π′) |=LTL ψ for each π′ ∈ (2∀(℘′))ω and so, by induction
hypothesis, that πF � πX |=C ℘′ψ, which in turns implies that πF |=C ∃X℘′ψ
and so that πF |=C ϕ.

– ℘ = ∀X℘′. Observe that ∀(℘) = ∀(℘′) ∪ {X}, and so that θ is also a Skolem
function over (℘′, F ∪ {X}). This implies that, for each πX ∈ (2X)ω, it holds
that θ̂(πF �πX �π′) |=LTL ψ for every π′ ∈ (2∀(℘′))ω. By induction hypothesis,
we obtain that, for every πX ∈ (2X)ω, it holds that πF � πX |=C ℘′ψ, which
in turns implies that πF |=C ∃X℘′ψ and so that πF |=C ϕ.

4 Behavioral QLTL (QLTLB)

The classic semantics of qltl requires to consider at once the evaluation of
the variables on the whole trace. This gives rise to counter-intuitive phenomena.
Consider the formula ∀x∃y(Gx ↔ y). Such a formula is satisfiable. Indeed, on the
one hand, for the trace assigning always true to x, the trace that makes y true
at the beginning satisfies the temporal part. On the other hand, for every other
trace making x false sometimes, the trace that makes y false at the beginning
satisfies the temporal part. However, in order to correctly interpret y on the first
instant, one needs to know in advance the entire trace of x. Such requirement is
practically impossible to fulfill and does not reflect the notion of reactive systems,
where the agent variables at the k-th instant of the computation depend only
on the past assignments of the environment variables. Such principle is often
referred to as behavioral in the context of strategic reasoning, see e.g., [25,32].

Here, we introduce an alternative semantics for qltl, which is based on the
idea that the existential variables are controlled by the agent and the universally
quantified variables are controlled by the environment. We require such control
functions to be processes in the sense of [1], i.e., the next move depends only
on the past history and the present, but not the future. Moreover the choices of
the existential variables can depend only on the universal variables coming ear-
lier in the quantification prefix. In other words this semantics allows for partial
observability of the uncontrollable variables (i.e., the universally quantified vari-
ables). To formally define the semantics, we suitably constrain Skolem functions
to make them behavioral, i.e., processes.

Specifically we introduce behavioral qltl, denoted qltlB, a logic with the
same syntax as of prenex normal form qltl, namely:

ϕ ::=∃xϕ | ∀xϕ | ψ

where ψ is an ltl formula over the the propositional variables Var. However,
while the syntax is the same of qltl, the semantics of qltlB is defined in terms
of behavioral Skolem functions.
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Definition 3 (Behavioral Skolem function). For a given quantification pre-
fix ℘ defined over a blocks of propositional variables Var and a block F of free
variables, a Skolem function θ over (℘, F ) is behavioral if, for all π1, π2 ∈
(2F∪∀(℘))ω, k ∈ N, and Y ∈ ∃(℘), it holds that

Prj(π1(0, k), DepF (Y )) = Prj(π2(0, k), DepF (Y ))
implies

Prj(θ(π1)(0, k), Y ) = Prj(θ(π2)(0, k), Y ).

The behavioral Skolem functions capture the fact that the trace of existen-
tially quantified variables depends only on the past and present values of free
and universally quantified variables. This offers a way to formalize the semantics
of qltlB as follows.

Definition 4. A qltlB formula ϕ = ℘ψ is true over a trace π in an instant
i, written π, i |=B ℘ψ, if there exists a behavioral Skolem function θ over
(℘, free(ϕ)) such that θ̂(π � π′), i |=C ψ for every π′ ∈ (2free(ϕ)∪∀(℘))ω.

A qltlB formula ϕ is true on a trace π, written π |=B ϕ, if π, 0 |=B ϕ. A formula
ϕ is satisfiable if it is true on some trace and valid if it is true in every trace.
Consider again the formula ϕ = ∃y(y ↔ Gx) with free(ϕ) = {x}, now in qltlB.
This is satisfiable again. Indeed, consider the behavioral Skolem function θ such
that θ(πx)(0, 0) = true and θ(πx)(0, k) = false for each k > 0. Now, for the
trace π obtained by combining πx over {x} taking always the value true with
the trace πy = θ(πx) over {y} generated by the Skolem function θ, we have that
π satisfies (y ↔ Gx).

Again, notice that ϕ = ∃y(y ↔ Gx) is satisfiable if and only if the close
formula ∃x∃y(y ↔ Gx) is so. Indeed, now notice that the Skolem function chose
both the values of x and y as needed in (y ↔ Gx). However, the formula ϕ is
not valid. Indeed, the closed formula ∀x∃y(y ↔ Gx) is neither satisfiable nor
valid in qltlB since, in order to set the value of y appropriately, one should
be able to observe the whole trace πx and, since behavioral Skolem functions
depend only on history, this cannot be done. Observe that also the negation of
∀x∃y(y ↔ Gx) is not satisfiable. Indeed, the formula ∃y∀x(x 	↔ Gy) cannot have
a Skolem function that sets the values of y appropriately without seeing x at the
first instant. This is a common phenomenon, as it also happens when considering
the behavioral semantics of logic for the strategic reasoning [25,32].

Consider instead the formula ϕ = ∃yG(y ↔ x). This is both satisfiable and
valid. Indeed, in the case of satisfiability, the closed formula ∃x∃yG(y ↔ x)
is satisfiable as the behavioral Skolem function can chose the values of x and
y appropriately. For the case of validity, the closed formula ∀x∃yG(y ↔ x) is
satisfiable, as the Skolem function can set the value of y in dependence of the
history of values for x (in particular, the last one) in a suitable way. Instead the
formula ∃y∀xG(y ↔ x) is not satisfiable (neither valid) since the Skolem function
needs to chose the values for y independently (i.e., without observing) the values
of x.
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5 Capturing Advanced Forms of Planning in QLTLB

In order to gain some intuition on qltlB, it is interesting to see how qltlB can
capture advanced forms of Planning. We assume some familiarity with Planning
in AI, see [26,27]. In planning, we typically have a: domain D (here including
the initial state) describing the dynamics of the environment, i.e., what happens
when the agent performs its actions; a goal G that the agent has to accomplish
in the domain. The various forms of planning can be seen as a game between
the agent controlling the actions and environment controlling the fluents. Given
an agent’s action, the environment responds by setting the fluents according to
the specification in D. The agent has to come up with actions that eventually
enforce the goal G. Typically the goal is reaching a state with certain properties
(values of fluents) but here we consider temporally extended goals, so the goal is
a specification of desirable traces rather than states [5]. Here we consider several
forms of planning where the fluents to the agent are: (i) totally invisible (con-
formant planning); (ii) totally visible –but not controllable (contingent planning
with full observability); (iii) or partially visible (contingent planning with partial
observability).

In the following, we assume to have a ltl formula ϕD that captures the
domain D (including the initial state), and another ltl formula ϕg that captures
the agent goal G. Such formulas are on fluents, controlled by the environment, for
which we use the variables X possibly with subscripts, and actions, controlled by
the agent, for which we used the variable Y possibly with subscripts. Notice that
by using ltl to express the domain we can actually capture not only standard
Markovian domains, but also non-Markovian ones in which the reaction of the
environment depends on the whole history, as well as, liveness constrains on the
environment dynamics. So ϕD can be seen as denoting the set of traces that
satisfy the (temporally extended) domain specifications D.

The general formula for a planning problem is of the form: ϕ = ϕD → ϕg,
which says that on the infinite runs where the environment acts as prescribed
by ϕD the goal ϕg holds [3,10]. Note that ϕ does not mention strategies but
only traces, so it is not very useful in isolation to solve planning, i.e., to show
the existence of a plan/strategy that guarantees ϕ independently of the environ-
ment’s behavior. To capture this, we are going to use second order quantification
of qltlB. In all the formulas below, the blocks X are the fluents and blocks Y
are the actions (coded in binary for simplicity).

Consider the qltlB formula ∃Y ∀Xϕ. This is looking for an assignment of
the actions Y such that for every assignment of the fluents X the resulting ltl
formula ϕ holds. This formula captures conformant planning [18]. Note that the
values of Y , i.e., the choice of actions at each point in time, do not depend on
X. That is the plan (the Skolem function deciding Y ) does not see the evolution
of the fluents X. This is the reason why the plan is conformant. Note also that
in this case the fact that X are assigned through a behavioral Skolem function
or any Skolem function is irrelevant, since we do not see the values of X anyway
when choosing the Skolem function for Y (i.e., the plan). So this form of planning
could be captured through standard qltl as well.
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Consider the qltlB formula ∀X∃Y ϕ. This states that at every point in time
for every value of the fluents X there exists an action Y such that the resulting
trace satisfies ϕ. This captures contingent planning with full observability, i.e.,
(strong) planning in Fully Observable Nondeterministic Domains (FOND) [19,
26]. Here the fact that Y at the current instant may depend only on the past
and current values of X of the behavioral semantics is critical. Otherwise the
choices of action Y would depend on the future values of fluents X, that is,
the plan would not be a process but would forecast the future, which is usually
impossible in practice. Note that with qltlB formulas of the form ∀X∃Y ψ, where
ψ is an arbitrary ltl formula, we capture ltl synthesis (for realizing the ltl
specification ψ) [35].

Now consider the qltlB formula ∀X1∃Y ∀X2ϕ. It is similar to the previous
one but now we have split the fluents X into X1 and X2 and the actions Y are
allowed to depend on X1 but not on X2. In other words, the Skolem function for
Y may depend on the previous and current values of X1 but does not depend
on the values of X2. This captures contingent planning with partial observabil-
ity, i.e., (strong) planning in Partially Observable Nondeterministic Domains
(POND), where some fluents are observable (X1) and some are not (X2), and
indeed the plan can only depend on the observable ones [26,28]. Note that with
qltlB formulas of the from ∀X1∃Y ∀X2ψ, where ψ is an arbitrary ltl formula,
we capture synthesis under incomplete information (for realizing the ltl speci-
fication ψ) [30]. Notice also that we can indeed include fairness assumptions in
ϕD and hence in ϕ, so with some care, see [4], the above two qltlB formulas
can capture also strong cyclic plans [20,26].

As we allow more quantifier nesting we get more and more sophisticated forms
of planning. For example the qltlB formula ∀X1∃Y1(. . .)∀Xn∃Ynϕ captures
a centralized planning for multiple plan actuators with hierarchically reduced
partial observability, with the innermost plan actuator, controlling Yn, solv-
ing a FOND planning instance. Similarly, ∀X1∃Y1(. . .)∀Xn∃Yn∀Xn+1ϕ captures
a centralized planning for multiple plan actuators with hierarchically reduced
partial observability, with the innermost plan actuator, controlling Yn, solving
a POND planning instance. Instead, ∃Y1∀X1(. . .)∃Yn−1∀Xn−1∃Ynϕ captures a
centralized planning for multiple plan actuators with hierarchically reduced par-
tial observability, with the outermost actuator, controlling Y1, solving a con-
formant planning instance and the innermost, controlling Yn, solving a FOND
planning instance. Similarly, ∃Y1∀X1(. . .)∃Yn−1∀Xn−1∃Yn∀Xnϕ captures a cen-
tralized planning for multiple plan actuators with hierarchically reduced partial
observability, with the outermost actuator, controlling Y1, solving a conformant
planning instance and the innermost, controlling Yn, solving POND planning.

Note that, these last forms of planning have never been studied in detail in
the AI literature. However the corresponding form of synthesis has indeed been
investigated under the name of distributed synthesis [22,36]. Distributed synthe-
sis concerns the coordination of a number of agents, each with partial observ-
ability on the environment and on the other agents, so as to enforce together
an ltl formula. Several visibility architectures among agents have been consid-
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ered, including those that allow for information forks, that is, situations in which
two agents receive information from the environment in a way that they can-
not completely deduce the information received by the other agent. In general
distributed synthesis is undecidable [36]. However, it has been proven that the
absence of information forks is sufficient to guarantee the decidability of synthe-
sis [22]. Specifically, without information forks it is possible to arrange the agents
in a sort of information hierarchy, which leads to decidability [22]. Incidentally,
this is the form of uniform distributed synthesis that is captured by the above
qltlB formulas. Indeed we will show later that solving a distributed synthesis
with hierarchical information architectures can be done optimally by reduction
to qltlB satisfiability of the formulas presented above.

6 QLTLB Properties

Clearly, since qltlB shares the syntax with qltl, all the definitions that involve
syntactic elements, such as free variables and alternation, apply to this variant
the same way. As for qltl, the satisfiability of a qltlB formula ϕ is equiva-
lent to the one of ∃free(ϕ)ϕ, as well as the validity is equivalent to the one
of ∀free(ϕ)ϕ. However, the proof is not as straightforward as for the classic
semantics case.

Theorem 3. For every qltlB formula ϕ = ℘ψ, ϕ is satisfiable if, and only if,
∃free(ϕ)ϕ is satisfiable. Moreover, ϕ is valid if, and only if, ∀free(ϕ)ϕ is valid.

Proof. We show the proof only for satisfiability, as the one for validity is similar.
The proof proceeds by double implication.

From left to right, assume that ϕ is satisfiable, therefore there exists a trace
π over F = free(ϕ) such that π |=B ϕ, which in turns implies that there exists
a behavioral Skolem function θ over (℘, F ) such that θ̂(π � π′) |=C ψ for every
trace π′ ∈ (2∀(℘))ω. Consider the function θ′ : (2∀(℘))ω → (2∃(℘)∪F )ω defined as
θ′(π′) = θ(π � π′) � π, for every π′ ∈ (2∀(℘))ω. Clearly, it is a behavioral Skolem
function over (∃F℘, ∅) such that θ̂′(π′) |=LTL ψ for every π′ ∈ (2∀(℘))ω, which
implies that ∃Fϕ is satisfiable.

From right to left, we have that ∃Fϕ is satisfiable, which means that there
exists a behavioral Skolem function θ over (∃Fϕ, ∅) such that θ̂(π) |=LTL ψ for
every π ∈ (2∀(℘)∪{F})ω. Observe that DepF (F ) = ∅, and so that θ(π)(F ) =
θ(π′)(F ) = πF for every π, π′ ∈ (2∀(℘))ω. Thus, consider the behavioral Skolem
function θ′ over (℘, F ) defined as θ′(π′

F �π) = θ(πF �π), for every π′
F ∈ (2F )ω and

π ∈ (2∀(℘))ω, from which it follows that θ′(πF ∪π) |=LTL ψ for every π ∈ (2∀(℘))ω,
from which we derive that πF |=B ℘ψ, and so that ϕ is satisfiable.

Note that every behavioral Skolem function is also a Skolem function. This
means that a formula ϕ interpreted as qltlB is true on π implies that the same
formula is true on π also when it is interpreted as qltl. The reverse, however,
is not true, as we have seen this when discussing the satisfiability of the formula
ϕ = ∀x∃y(y ↔ Gx). Indeed, we have.
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Lemma 1. For every qltlB formula ϕ and every trace π over the set free(ϕ)
of free variables, if π |=B ϕ then π |=C ϕ. On the other hand, there exists a
formula ϕ and a trace π such that π |=C ϕ but not π |=B ϕ.

7 QLTLB Satisfiability

There are three syntactic fragments for which qltl and qltlB are equivalent.
Precisely, the fragments ΠqltlB

0 , ΣqltlB
0 , and ΣqltlB

1 . Recall that ΠqltlB
0 formulas

are of the form ∀Xϕltl, whereas ΣqltlB
0 formulas are of the form ∃Y ϕltl. Finally,

ΣqltlB
1 formulas are of the form ∃Y ∀Xϕltl. The reason is that the sets of Skolem

and behavioral Skolem functions for these formulas coincide, and so the existence
of one implies the existence of the other.

Theorem 4. For every qltlB formula ϕ = ℘ψ in the fragments ΠqltlB
0 , ΣqltlB

0 ,
and ΣqltlB

1 and every trace π, it holds that π |=B ϕ if, and only if, π |=C ϕ.

Proof. The proof proceeds by double implication. From left to right, it follows
from Lemma 1. From right to left, consider first the case that ϕ ∈ Πqltl

0 . Observe
that ∃(℘) = ∅ and so the only possible Skolem function θ returns the empty
interpretation on every possible interpretation π � π′ ∈ (2free(ϕ)∪∀(℘))ω. Such
Skolem function is trivially behavioral and so we have that π |=S ϕ implies
π |=B ϕ.

For the case of ϕ ∈ Σqltl
0 ∪Σqltl

1 , assume that π, |=S ϕ and let θ be a Skolem
function such that θ(π�π′) |=C ϕ for every π′ ∈ (2∀(℘))ω. Observe that, for every
Y ∈ ∃(℘), it holds that Dep℘ = ∅ and so the values of Y depend only on the free
variables in ϕ. Now, consider the Skolem function θ′ over (℘, free(ϕ)) defined
such that as θ′(π′) .= θ(π′

�∀(℘)�π). As θ is a Skolem function and Dep℘ = ∅, it
holds that θ′(π′)(Y ) = θ′(π′′)(Y ) for every π′, π′′ ∈ (2∀(℘))ω and so θ′ is trivially
behavioral. Moreover, from its definition, it holds that θ′(π � π′) |=C ψ for every
π′ ∈ (2∀(℘))ω, which implies π |=B ϕ.

Theorem 4 shows that for these three fragments of qltlB, satisfiability can
be solved by employing qltl satisfiability. This also comes with the same com-
plexity, as we just interpret the qltlB formula directly as qltl one.

Corollary 1. Satisfiability for the fragments ΠqltlB
0 and ΣqltlB

0 is PSPACE-
complete. Moreover, satisfiability for the fragment ΣqltlB

1 is EXPSPACE-
complete.

We now turn into solving satisfiability for qltlB formulas that are not in
fragments ΠqltlB

0 , ΣqltlB
0 , and ΣqltlB

1 . Analogously to the case of qltl, note
that Theorem 3 allows to restrict our attention to closed formulas. We use an
automata-theoretic approach inspired by the one employed in the synthesis of
distributed systems [22,31,38]. Details about this construction are available in
the appendix. We have the following.

Theorem 5. Satisfiability of n-qltlB is (n + 1)-EXPTIME-complete.
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We close this section by observing that the above techniques for solving
qltlB satisfiability give us optimal techniques to solve conformant planning,
contingent planing in FOND and contingent planing in PONDs in the case of
ltl goals. Indeed for conformant planning we have to solve a formula of the form
∃Y ∀Xϕ which belongs to ΣqltlB

1 and can be solved in EXPSPACE. On the other
hand conformant planning for ltl goals is EXPACE-complete [21]. contingent
planning in FOND is captured by a formula of the form ∀X∃Y ϕ which can
be solved in 2-EXPTIME. On the other hand planning in FOND for ltl goals
is 2-EXPTIME-complete –by reduction to synthesis [35]. Similarly, contingent
planning in POND is captured by a formula of the form ∀X1∃Y ∀X2ϕ, which
although more complex than in the previous case still contains only a single
block of the form ∀Xi∃Yi, and hence can still be solved in 2-EXPTIME. On
the other hand planning in POND for ltl goals is 2-EXPTIME-complete –by
reduction to synthesis under incomplete information [30].

Note also that this result gives us an optimal technique for solving synthesis
and planing in nondeterministic domains for ltl goals. Indeed the qltlB for-
mulas that capture them requires a single block of the form ∀Xi∃Yi, and hence
satisfiability can be checked in 2-EXPTIME, thus matching the 2-EXPTIME-
completeness of the two problems.

8 Conclusion

We introduced a behavioral variant of qltl. Our variant, qltlB, is based on the
following ingredients. First, it uses the syntax of qltl. Secondly, it interprets
the existential quantifications ∃Y as functions from histories to the next value of
Y , where the variables observed over the histories are controlled by the nesting
of quantification. Third, satisfiability over this logic corresponds to advanced
forms of reactive synthesis with partial observability.

Recently, independently of our work, qltl has been at the base of a proposal
that shares with us a strategic nature [8]. As witnessed by the complexity char-
acterization of satisfiability in the two cases, respectively (n + 1)-EXPTIME-
complete, with n being the number of quantification blocks in our case, and
2-EXPTIME-complete in [8], our proposal looks at more sophisticated forms
of strategies, with respect to partial observability over the histories. Deeper
understanding on the relationship between the two approaches deserves further
investigation.
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