
Abstraction of Nondeterministic Situation Calculus Action Theories

Bita Banihashemi1 , Giuseppe De Giacomo2 , Yves Lespérance3
1Ronin Institute

2University of Oxford
3York University

bita@ronininstitute.org, giuseppe.degiacomo@cs.ox.ac.uk, lesperan@eecs.yorku.ca

Abstract
We develop a general framework for abstracting the
behavior of an agent that operates in a nondetermin-
istic domain, i.e., where the agent does not control
the outcome of the nondeterministic actions, based
on the nondeterministic situation calculus and the
ConGolog programming language. We assume that
we have both an abstract and a concrete nondeter-
ministic basic action theory, and a refinement map-
ping which specifies how abstract actions, decom-
posed into agent actions and environment reactions,
are implemented by concrete ConGolog programs.
This new setting supports strategic reasoning and
strategy synthesis, by allowing us to quantify sepa-
rately on agent actions and environment reactions.
We show that if the agent has a (strong FOND)
plan/strategy to achieve a goal/complete a task at
the abstract level, and it can always execute the
nondeterministic abstract actions to completion at
the concrete level, then there exists a refinement of
it that is a (strong FOND) plan/strategy to achieve
the refinement of the goal/task at the concrete level.

1 Introduction
When working in realistic dynamic domains, the use of ab-
straction has proven essential in many areas of artificial intel-
ligence, for example, in improving the efficiency of planning
(e.g., [Chen and Bercher, 2021]), explaining agents’ behavior
(e.g., [Seegebarth et al., 2012]), and in reinforcement learn-
ing (e.g., [Sutton et al., 1999]).

Recently, [Banihashemi et al., 2017] (BDL17) proposed a
formal account of agent abstraction based on the situation
calculus [McCarthy and Hayes, 1969; Reiter, 2001] and the
ConGolog agent programming language [De Giacomo et al.,
2000]. They assume that one has a high-level/abstract ac-
tion theory, a low-level/concrete action theory, both repre-
senting the agent’s behavior at different levels of detail, and
a refinement mapping between the two. The refinement map-
ping specifies how each high-level action is implemented by a
low-level ConGolog program and how each high-level fluent
can be translated into a low-level state formula. This work
defines notions of abstractions between such action theories
in terms of the existence of a suitable bisimulation relation

[Milner, 1971] between their respective models. Abstractions
have many useful properties that ensure that one can reason
about the agent’s actions (e.g., executability, projection, and
planning) at the abstract level, and refine and concretely exe-
cute them at the low level. The framework can also be used
to generate high-level explanations of low-level behavior.

This framework was formulated assuming a deterministic
environment, as usual in the situation calculus. Hence, the
only nondeterminism was coming from ConGolog programs
and was angelic in nature, i.e., under the control of the agent
[Levesque et al., 1997; De Giacomo et al., 2000].

However, many agents operate in nondeterministic envi-
ronments where the agent does not fully control the out-
come of her actions (e.g., flipping a coin where the out-
come may be heads or tails). Recently, [De Giacomo and
Lespérance, 2021] (DL21) proposed a simple and elegant
situation calculus account of nondeterministic environments
where they clearly distinguish between the nondeterminism
associated with agent choices and that associated with envi-
ronment choices, the first being angelic for the agent, and
the second being devilish, i.e., not under the agent’s con-
trol.1 The presence of environment nondeterminism deeply
influences reasoning about action: if the agent wants to com-
plete a task, she cannot simply do standard logical reason-
ing (i.e., satisfiability/logical implication), but needs to do
realizability/synthesis, i.e., devise a strategy that, in spite of
the uncontrollable reactions of the environment, guarantees
successful completion of the task [Church, 1963; Pnueli and
Rosner, 1989; Abadi et al., 1989]. We see this, for example
in planning, where in the classical deterministic setting the
problem can be solved by heuristic search, while in fully ob-
servable nondeterministic (FOND) domains forms of adver-
sarial (AND/OR) search are required [Cimatti et al., 1998;
Haslum et al., 2019].

In this paper, we develop an account of agent abstraction in
presence of nondeterministic environments based on (DL21).
The refinement mapping between high-level fluents and low-
level state formulas remains as in (BDL17). Instead we con-
sider each high-level action, now nondeterministic, as being

1Earlier accounts dealing with the topic in the situation calculus
were more complex and did not clearly distinguish between these
two forms of nondeterminism, e.g., [Pinto et al., 2000] which deals
with stochastic actions, and [Bacchus et al., 1999] which deals with
uncertainty, noisy acting, and noisy sensing.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3112

composed of an agent action and an (implicit) environment
reaction. As a consequence, we map the agent action (with-
out the environment reaction) into a low-level agent program
that appropriately reflects the nondeterminism of the environ-
ment, and the complete high-level action, including both the
agent action and the environment reaction, into a low-level
system program that relates the high-level environment reac-
tion to the low-level ones.

We show that the (BDL17) notion of m-bisimulation ex-
tends naturally to this new setting. This allows for exploiting
abstraction when reasoning about executions as in (BDL17),
in spite of the nondeterministic environment. But, notably,
this new setting now supports strategic reasoning and strat-
egy synthesis, by allowing us to quantify separately on agent
actions and environment reactions. As a result, we can exploit
abstraction by finding abstract strategies at the high-level and
then refine them into concrete low-level ones. In particular,
we show that if the agent has a (strong FOND) plan/strategy
to achieve a goal/complete a task at the high level (i.e.,
no matter what the environment does), and she can always
execute the nondeterministic high-level actions to comple-
tion at the low level (even if not controlling their outcome),
then there exists a refinement of it that is a (strong FOND)
plan/strategy to achieve the refinement of the goal/task at the
low level.

2 Preliminaries
Situation calculus. The situation calculus is a well known
predicate logic language for representing and reasoning about
dynamically changing worlds [McCarthy and Hayes, 1969;
Reiter, 2001]. All changes to the world are the result of ac-
tions, which are terms in the language. A possible world his-
tory is represented by a term called a situation. The constant
S0 is used to denote the initial situation. Sequences of actions
are built using the function symbol do, such that do(a, s) de-
notes the successor situation resulting from performing action
a in situation s. Predicates and functions whose value varies
from situation to situation are called fluents, and are denoted
by symbols taking a situation term as their last argument
(e.g.,Open(Door1, s)). The abbreviation do([a1, . . . , an], s)
stands for do(an, do(an−1, . . . , do(a1, s) . . .)); for an action
sequence ~a, we often write do(~a, s) for do([~a], s). In this
language, a dynamic domain can be represented by a basic
action theory (BAT), where successor state axioms represent
the causal laws of the domain and provide a solution to the
frame problem [Reiter, 2001]. A special predicate Poss(a, s)
is used to state that action a is executable in situation s; the
precondition axioms characterize this predicate. Abbrevia-
tion Executable(s) means that every action performed in
reaching situation s was possible in the situation in which
it occurred.

Nondeterministic situation calculus. A major limitation
of the standard situation calculus and BATs is that atomic ac-
tions are deterministic. [De Giacomo and Lespérance, 2021]
(DL21) propose a simple extension of the framework to han-
dle nondeterministic actions while preserving the solution to
the frame problem. For any primitive action by the agent in a
nondeterministic domain, there can be a number of different

outcomes. (DL21) takes the outcome as being determined by
the agent’s action and the environment’s reaction to this ac-
tion. This is modeled by having every action type/function
A(~x, e) take an additional environment reaction parameter e,
ranging over a new sort Reaction of environment reactions.
The agent cannot control the environment reaction, so it per-
forms the reaction-suppressed version of the action A(~x) and
the environment then selects a reaction e to produce the com-
plete action A(~x, e). We call the reaction-suppressed version
of the action A(~x) an agent action and the full version of the
action A(~x, e) a system action.

Nondeterministic basic action theories (NDBATs). These
can be seen as a special kind of BAT, where every action func-
tion takes an environment reaction parameter, and moreover,
for each agent action A(~x), we

• have its agent action precondition denoted by:
Possag(A(~x), s)

.
= φagPoss

A (~x, s);

• have a reaction independence requirement, stating that
the precondition for the agent action is independent
of any environment reaction: ∀e.Poss(A(~x, e), s) ⊃
Possag(A(~x), s);

• have a reaction existence requirement, stating that if the
precondition of the agent action holds then there exists
a reaction to it which makes the complete system action
executable: Possag(A(~x), s) ⊃ ∃e.Poss(A(~x, e), s).

The above requirements must be entailed by the action theory
for it to be an NDBAT.

A NDBAT D is the union of the following disjoint sets:
foundational, domain independent, axioms of the situation
calculus (Σ) as in standard BATs, axioms describing the ini-
tial situation DS0

as in standard BATs, unique name axioms
for actions (Duna) as in standard BATs, successor state ax-
ioms (SSAs) describing how fluents change after system ac-
tions are performed (Dssa), and system action precondition
axioms, one for each action type, stating when the com-
plete system action can occur (Dposs); these are of the form:
Poss(A(~x, e), s) ≡ φPoss

A (~x, e, s).

Example. Our running example is based on a triangle tire-
world domain (see Fig. 1). The agent’s goal is to drive from
location 11 to location 13. When driving from one location
to the next, the possibility of a tire going flat exists. If there
is a spare tire in the location where the car is at (indicated by
circles in Fig. 1), the agent can use it to fix a flat.

NDBAT Dtt
l models the domain at the low level. The sys-

tem action drive(o, d, r) can be performed by the agent to
drive from origin location o to destination location d, and r
indicates environment’s reaction. This action is executable

11

12 21

2213 31

Figure 1: A 3-Level Triangle Tireworld

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3113

when the agent action drive(o, d) is executable (i.e., when the
agent is at o, a road connects o to d, and agent does not have
a flat tire), and r can take on two values: FlatTire if the tire
goes flat and NoFlatTire otherwise. The fluent AtLL(l, s)
indicates agent’s location, RoadLL(o, d, s) specifies the road
connections in Fig. 1, FlatLL(s) describes whether there is
a flat tire, and VisitedLL(l, s) indicates if the location l has
already been visited by the agent.

The system action fixFlatTire(l, r) fixes a flat tire, and the
environment reaction r is SuccessLF (assumed for simplic-
ity). It is executable if the fluent SpareLL(l, s) holds, i.e.,
there is a spare tire. The action waitLL can be performed by
the agent to remain idle at a location.
Dtt

l includes the following action precondition axioms
(throughout the paper, we assume that free variables are uni-
versally quantified from the outside):

Possag(drive(o, d), s)
.
=

o 6= d ∧AtLL(o, s) ∧RoadLL(o, d, s) ∧ ¬FlatLL(s)
Possag(fixFlatTire(l), s)

.
=

AtLL(l, s) ∧ SpareLL(l, s) ∧ FlatLL(s)
Possag(waitLL, s)

.
= TRUE

Poss(drive(o, d, r), s) ≡
Possag(drive(o, d), s) ∧ (r = FlatTire ∨ r = NoFlatTire)

Poss(fixFlatTire(l, r), s) ≡
Possag(fixFlatTire(l), s) ∧ r = SuccessLF

Poss(waitLL(r), s) ≡
Possag(waitLL, s) ∧ r = SuccessLW

Dtt
l also includes the following SSAs:

AtLL(l, do(a, s)) ≡ ∃o, r.a = drive(o, l, r) ∨
AtLL(l, s) ∧ ∀d, r.a 6= drive(l, d, r)

FlatLL(do(a, s)) ≡
∃o, d.a = drive(o, d,FlatTire) ∨
FlatLL(s) ∧ ∀r, l.a 6= fixFlatTire(l, r)

VisitedLL(l, do(a, s)) ≡
∃o, r.a = drive(o, l, r) ∨VisitedLL(l, s)

For the other fluents, we have SSAs specifying that they are
unaffected by any action.
Dtt

l also contains the following initial state axioms:

RoadLL(o, d, S0) ≡ (o, d) ∈ {(11, 12), (11, 21), (12, 21),
(12, 22), (12, 13), (13, 22), (22, 31), (21, 31), (12, 11), (21, 11),
(21, 12), (22, 12), (13, 12), (22, 13), (31, 22), (31, 21)},
SpareLL(l, S0) ≡ l ∈ {21, 22, 31},VisitedLL(l, S0) ≡ l = 11,
AtLL(l, S0) ≡ l = 11, DestLL(l, S0) ≡ l = 13,¬FlatLL(S0).

FOND planning and synthesis in NDBATs. We start with
some definitions. A weak plan is one that achieves the goal
when the environment “cooperates” and selects environment
reactions to nondeterministic actions that make this happen.
Formally, we say that a sequence of agent actions ~a is a
weak plan to achieve Goal if ∃s′.Doag(~a, S0, s

′) ∧Goal(s′)
holds, i.e., there exists an execution of ~a that takes us from
the initial situation S0 to situation s′ where the goal holds.
Doag(~a, s, s′) means that the system may reach situation s′
when the agent executes the sequence of agent actions ~a de-
pending on environment reactions:

Doag(ε, s, s
′)
.
= s′ = s (where ε is the empty sequence of actions)

Doag([A(~x), σ], s, s
′)
.
=

∃e.Poss(A(~x, e), s) ∧Doag(σ, do(A(~x, e), s), s′)

A strong plan for the agent guarantees the achievement of
a goal no matter how the environment reacts; it is a strategy
for the agent to follow to ensure that the goal is achieved.
(DL21) define a strategy as a function from situations to (in-
stantiated) agent actions. That is, f (s) = A(~t) denotes that
the strategy f applied to situation s returns A(~t) as the next
action to do. The special agent action stop (with no effects
and preconditions) may be returned when the strategy wishes
to stop. Given a strategy, we can check whether it forces
the goal to become true in spite of the environment reactions,
i.e., is a strong plan to achieve the goal. Formally, we have
AgtCanForceBy(Goal, s, f), i.e., the agent can forceGoal
to become true by following strategy f in s:

AgtCanForceBy(Goal, s, f)
.
= ∀P.[. . . ⊃ P (s)]

where . . . stands for
[(f (s) = stop ∧Goal(s)) ⊃ P (s)]∧
[∃A.∃~t.(f (s) = A(~t) 6= stop ∧ Possag(A(~t), s)∧
∀e.(Poss(A(~t, e), s) ⊃ P (do(A(~t, e), s))))

⊃ P (s)]

We say thatAgtCanForce(Goal, s) holds iff there is a strat-
egy f such that AgtCanForceBy(Goal, s, f) holds.
Example cont. Strategies use the stop action, hence we de-
fine a stopLL action at the low level; this action always ter-
minates with the SuccessLS reaction. The strategy that guar-
antees reaching location 13 is defined as follows:

Dtt
l |= AgtCanForceBy(AtLL(13), S0, fl)

where

fl(s)
.
=

stopLL if AtLL(13, s)

fixFlatTire(l) if AtLL(l, s) ∧ l 6= 13 ∧ FlatLL(s)

drive(o, d) if AtLL(o, s) ∧ o 6= 13 ∧ ¬FlatLL(s)

∧ SpareLL(d, s) ∧RoadLL(o, d, s)

∧¬VisitedLL(d)

waitLL otherwise

That is, the agent should stop if she is already at location
13, otherwise she drives to a location she has not visited be-
fore and that has a spare tire; in case of a flat tire, action
fixFlatTire is executed; in all other cases the agent waits.
High-level programs and ConGolog. To represent and
reason about complex actions or processes obtained by suit-
ably executing atomic actions, various so-called high-level
programming languages have been defined. Here we concen-
trate on (a variant of) ConGolog [De Giacomo et al., 2000]
that includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2
In the above, α is an action term, possibly with parameters,
and ϕ is a situation-suppressed formula, i.e., a formula with
all situation arguments in fluents suppressed. As usual, we
denote by ϕ[s] the formula obtained from ϕ by restoring the
situation argument s into all fluents in ϕ. The sequence of
program δ1 followed by program δ2 is denoted by δ1; δ2. Pro-
gram δ1|δ2 allows for the nondeterministic choice between
programs δ1 and δ2, while πx.δ executes program δ for some
nondeterministic choice of a binding for object variable x
(observe that such a choice is, in general, unbounded). δ∗

performs δ zero or more times. Program δ1‖δ2 expresses

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3114

the concurrent execution (interpreted as interleaving) of pro-
grams δ1 and δ2. The construct if φ then δ1 else δ2 endIf is
defined as [φ?; δ1] | [¬φ?; δ2]. We also use nil, an abbrevi-
ation for True?, to represents the empty program, i.e., when
nothing remains to be performed.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predicates:
(i) Trans(δ, s, δ′, s′), which holds if one step of program δ
in situation s may lead to situation s′ with δ′ remaining to be
executed; and (ii) Final(δ, s), which holds if program δ may
legally terminate in situation s. The definitions of Trans and
Final we use are as in [De Giacomo et al., 2010]; differently
from [De Giacomo et al., 2000], the test construct ϕ? does
not yield any transition, but is final when satisfied.

Predicate Do(δ, s, s′) means that program δ, when ex-
ecuted starting in situation s, has as a legal termi-
nating situation s′, and is defined as Do(δ, s, s′)

.
=

∃δ′.T rans∗(δ, s, δ′, s′)∧Final(δ′, s′) where Trans∗ denotes
the reflexive transitive closure of Trans. We use C to denote
the axioms defining the ConGolog programming language.

For simplicity in this paper, we use a restricted class of
ConGolog programs which are situation-determined (SD)
[De Giacomo et al., 2012], i.e., for every sequence of ac-
tions, the remaining program is uniquely determined by the
resulting situation:
SituationDetermined(δ, s)

.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′

ConGolog program execution in ND domains. To spec-
ify agent behaviors in nondeterministic domains, (DL21) use
ConGolog agent programs, which are composed as usual, but
only involve agent (reaction-suppressed) atomic actions. The
semantics for such agent programs is a variant of the one
above where a transition for an atomic agent action may occur
whenever there exists a reaction that can produce it.

Strategic reasoning in executing programs in ND do-
mains. To represent the ability of the agent to exe-
cute an agent program in a ND domain (DL21) introduce
AgtCanForceBy(δ, s, f) as an adversarial version of Do in
presence of environment reactions. This predicate states that
strategy f , a function from situations to agent actions (in-
cluding the special action stop), executes SD ConGolog agent
program δ in situation s considering its nondeterminism an-
gelic, as in the standard Do, but also considering the nonde-
terminism of environment reactions devilish/adversarial:

AgtCanForceBy(δ, s, f)
.
= ∀P.[. . . ⊃ P (δ, s)]

where . . . stands for
[(f (s) = stop ∧ Final(δ, s)) ⊃ P (δ, s)] ∧
[∃A.∃~t.(f (s) = A(~t) 6= stop ∧
∃e.∃δ′.T rans(δ, s, δ′, do(A(~t, e), s)) ∧
∀e.(∃δ′.T rans(δ, s, δ′, do(A(~t, e), s))) ⊃
∃δ′.T rans(δ, s, δ′, do(A(~t, e), s)) ∧ P (δ′, do(A(~t, e), s))
⊃ P (δ, s)]

We say that predicate AgtCanForce(δ, s) holds iff there ex-
ists a strategy f s.t. AgtCanForceBy(δ, s, f) holds.

Example cont. Suppose we have a program δLL
go (l) which

lets the agent drive to any location, or fix a flat any num-

ber of times until a destination l is reached: δLL
go (l) =

(πo, d.drive(o, d) | πd.fixFlatTire(d))∗;AtLL(l)?

Now suppose the agent has been assigned the task of go-
ing to location 13. We can show that she has a strategy for
executing the task δLL

go (13):

Dtt
l |= AgtCanForceBy(δLL

go (13), S0, f)

Here, the strategy f to execute the task is same as fl above.

3 Abstraction in Nondeterministic Domains
In this section, we show how we can extend the agent ab-
straction framework of (BDL17) to handle nondeterministic
domains. As in (BDL17), we assume that there is a high-
level/abstract (HL) action theoryDh and a low-level/concrete
(LL) action theory Dl representing the agent’s possible be-
haviors at different levels of detail. In (BDL17), these are
standard BATs; here, we assume that they are both NDBATs.
Dh (resp. Dl) involves a finite set of primitive action types
Ah (resp. Al) and a finite set of primitive fluent predicatesFh

(resp. Fl). The terms of sort Object are assumed be a count-
ably infinite set N of standard names for which we have the
unique name assumption and domain closure. We also as-
sume that Reaction is a sub-sort of Object. Also, Dh and Dl

are assumed to share no domain specific symbols except for
the set of standard names for objects N . For simplicity and
w.l.o.g., it is assumed that there are no functions other than
constants and no non-fluent predicates.

Refinement mapping. As in (BDL17), we assume that one
relates the HL and LL theories by defining a refinement map-
ping that specifies how HL atomic actions are implemented
at the low level and how HL fluents can be translated into
LL state formulas. In deterministic domains, one can simply
map HL atomic actions to a LL program that the agent uses to
implement the action. In nondeterministic domains however,
we additionally need to specify what HL reaction the envi-
ronment performs in each LL refinement of the HL action.

Definition 1 (NDBAT Refinement Mapping). A NDBAT re-
finement mapping m is a triple 〈ma,ms,mf 〉 where ma as-
sociates each HL primitive action type A in Ah to a SD
ConGolog agent program δagA defined over the LL theory
that implements the agent (i.e., reaction-suppressed) action,
i.e., ma(A(~x)) = δagA (~x), ms associates each A to a SD
ConGolog system program δsysA defined over the LL the-
ory that implements the system action, i.e., ms(A(~x, e)) =
δsysA (~x, e), thus specifying when the HL reaction occurs (sys-
tem programs are interpreted using the standard transition
semantics), and (as in (BDL17)) mf maps each situation-
suppressed HL fluent F (~x) in Fh to a situation-suppressed
formula φF (~x) defined over the LL theory that characterizes
the concrete conditions under which F (~x) holds in a situa-
tion, i.e., mf (~x) = φF (~x).

We can extend a mapping to a sequence of agent
actions in the obvious way, i.e., ma(α1, . . . , αn)

.
=

ma(α1); . . . ;ma(αn) for n ≥ 1 and ma(ε)
.
= nil, and sim-

ilarly for sequences of system actions. Note that ma(~α) is
well defined even if the action parameters are not ground; but

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3115

the action functions must be given. We also extend the nota-
tion so that mf (φ) stands for the result of substituting every
fluent F (~x) in situation-suppressed formula φ by mf (F (~x)).

Agent actions and system actions must be mapped in a con-
sistent way. To ensure this, we require the following:
Constraint 2. (Proper Refinement Mapping)
For every high-level system action sequence ~α and every
high-level action A, we have that:

Dl ∪ C |= ∀s.(Do(ms(~α), S0, s) ⊃
∀~x, s′.(Doag(ma(A(~x)), s, s

′) ≡ ∃e.Do(ms(A(~x, e)), s, s
′)))

This ensures that (1) for every situation s′ that can be reached
from s by executing a refinement of the HL agent action
A(~x), there is a HL reaction e that generates it, and (2) that
for every situation s′ that can be reached from s by execut-
ing a refinement of the HL system action A(~x, e), there is
a refinement of the HL agent action that generates it (in the
above, s is any situation reached by executing a sequence of
HL system actions). Note that (1) essentially states that the
reaction existence requirement holds at the low level for re-
finements of HL actions and (2) amounts to having the reac-
tion independence requirement hold. We say that an NDBAT
refinement mapping m is proper wrt low-level NDBAT Dl if
this constraint holds.
Example cont. NDBAT Dtt

h abstracts over driving and fix-
ing potential flat tires. Action driveAndTryFix (o, d, r) can
be performed to drive from origin o to destination d, and fix
a flat if one occurs and a spare is available. This action is
executable when driveAndTryFix (o, d) is executable, i.e.,
when the agent is at o, a road connects o to d, and agent does
not have a flat tire; the environment reaction r may take on
the following values: DrvNoFlat , if the tire does not go flat,
DrvFlat if the tire goes flat and it is not possible to fix it, or
DrvFlatFix if the tire went flat and the flat was fixed. Action
waitHL lets the agent remain idle at a location. Dtt

h includes
the following system and agent action precondition axioms:

Possag(driveAndTryFix (o, d), s)
.
=

o 6= d ∧AtHL(o, s) ∧RoadHL(o, d, s) ∧ ¬FlatHL(s)
Possag(waitHL, s)

.
= TRUE

Poss(driveAndTryF ix(o, d, r), s) ≡
Possag(driveAndTryFix (o, d), s) ∧
(r = DrvNoFlat ∨
¬SpareHL(d, s) ∧ r = DrvFlat ∨
SpareHL(d, s) ∧ r = DrvFlatFix)

Poss(waitHL(r), s) ≡
Possag(waitHL, s) ∧ r = SuccessHW

Dtt
h also includes the following SSAs:

AtHL(l, do(a, s)) ≡ ∃o, r.a = driveAndTryFix (o, l, r) ∨
AtHL(l, s) ∧ ∀d, r.a 6= driveAndTryFix (l, d, r)

FlatHL(do(a, s)) ≡
∃o, d.a = driveAndTryFix (o, d,DrvFlat) ∨ FlatHL(s)

VisitedHL(l, do(a, s)) ≡
∃o, r.a = driveAndTryFix (o, l, r) ∨VisitedHL(l, s)

For the other fluents, we have SSAs specifying that they are
unaffected by any action.

The initial state axioms of Dtt
h are same as Dtt

l , with high-
level fluents having a distinct name (with HL suffix); e.g.,
RoadHL is axiomatized exactly as RoadLL.

We specify the relationship between the HL and LL ND-
BATs through the following refinement mapping mtt:

mtt
a (driveAndTryFix (o, d)) =
drive(o, d);
if ¬FlatLL then nil else

if¬SpareLL(d) then nil else fixFlatTire(d) endIf
endIf

mtt
a (waitHL) = waitLL

mtt
s (driveAndTryFix (o, d, rh)) =
πrl.drive(o, d, rl);
if ¬FlatLL then rh = DrvNoF lat? else

if¬SpareLL(d) then rh = DrvFlat?
else fixFlatTire(d, SuccessLF); rh = DrvFlatFix?
endIf

endIf
mtt

s (waitHL(rh)) = πrl.waitLL(rl); rh = SuccessHW ?

mtt
f (FlatHL) = FlatLL

Thus, the HL agent action driveAndTryF ix(o, d) is im-
plemented by an LL program where the agent first performs
drive(o, d), and depending on whether the tire has gone flat
and a spare exists at location d, fixes the tire or does nothing.
Fluents AtHL(l), SpareHL(l), RoadHL(o, d), DestHL(l),
and VisitedHL(l) are mapped to their low-level counterparts
similar to FlatHL. We can show that:2

Proposition 3. NDBAT refinement mappingmtt is proper wrt
Dtt

l .
m-Bisimulation. To relate the HL and LL models/theories,
(BDL17) define a variant of bisimulation [Milner, 1971;
Milner, 1989].3 The base condition for the bisimulation is:
Definition 4 (m-isomorphic situations). Let Mh be model of
the HL theory Dh, and Ml a model of the LL theory Dl ∪ C.
We say that situation sh in Mh is m-isomorphic to situation
sl in Ml, written sh ∼Mh,Ml

m sl, if and only if

Mh, v[s/sh] |= F (~x, s) iff Ml, v[s/sl] |= m(F (~x))[s]

for every high-level primitive fluent F (~x) in Fh and every
variable assignment v.
If sh ∼Mh,Ml

m sl, then sh and sl evaluate all HL fluents the
same.
Definition 5 (m-Bisimulation). Given Mh a model of Dh,
and Ml a model of Dl ∪ C, a relation B ⊆ ∆Mh

S × ∆Ml

S

(where ∆M
S stands for the situation domain of M) is an

m-bisimulation relation between Mh and Ml if 〈sh, sl〉 ∈
B implies that: (i) sh ∼Mh,Ml

m sl; (ii) for every HL
primitive action type A in Ah , if there exists s′h such that
Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s) ∧ s′ = do(A(~x), s),
then there exists s′l such that Ml, v[s/sl, s

′/s′l] |=
Do(m(A(~x)), s, s′) and 〈s′h, s′l〉 ∈ B; and (iii) for every
HL primitive action type A in Ah , if there exists s′l such that
Ml, v[s/sl, s

′/s′l] |= Do(m(A(~x)), s, s′), then there exists

2For proofs, see [Banihashemi et al., 2023]
3As usual, M, v |= φ means that model M and assignment v

satisfy formula φ (where φ may contain free variables that are inter-
preted by v); also v[x/e] represents the variable assignment that is
just like v but assigns variable x to entity e.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3116

s′h such that Mh, v[s/sh, s
′/s′h] |= Poss(A(~x), s) ∧ s′ =

do(A(~x), s) and 〈s′h, s′l〉 ∈ B. Mh ism-bisimilar toMl, writ-
ten Mh ∼m Ml, if and only if there exists an m-bisimulation
relation B between Mh and Ml such that (SMh

0 , SMl
0) ∈ B.

The definition of m-bisimulation can remain as in
(BDL17) where conditions (ii) and (iii) are applied to high-
level system primitive actions and their mapping ms.

The definition of m-bisimulation ensures that performing
a HL system action results in m-bisimilar situations. We can
show that with the restriction to proper mappings, this auto-
matically carries over to HL agent actions (so there is no need
to change the definition of m-bisimulation to get this):
Theorem 6. Suppose that Mh ∼m Ml, where Mh |= Dh,
Ml |= Dl ∪C, Dh and Dl are both NDBATs, and m is proper
wrt Dl. Then for any HL system action sequence ~α and any
HL primitive action A, we have that:

1. if there exist sh and s′h such that Mh, v[s/sh, s
′/s′h] |=

Do(~α, S0, s)∧Doag(A(~x), s, s′), then there exist sl and
s′l such that Ml, v[s/sl, s

′/s′l] |= Do(ms(~α), S0, s) ∧
Doag(ma(A(~x)), s, s′), sh ∼Mh,Ml

m sl, and s′h ∼Mh,Ml
m

s′l;
2. if there exist sl and s′l such that Ml, v[s/sl, s

′/s′l] |=
Do(ms(~α), S0, s) ∧ Doag(ma(A(~x)), s, s′), then there
exist sh and s′h such that Mh, v[s/sh, s

′/s′h] |=
Do(~α, S0, s) ∧ Doag(A(~x), s, s′), sh ∼Mh,Ml

m sl, and
s′h ∼Mh,Ml

m s′l.
(BDL17) use m-bisimulation to define notions of

sound/complete abstraction between a high-level action the-
ory and a low-level one: Dh is a sound abstraction of Dl

relative to refinement mapping m if and only if, for all mod-
els Ml of Dl ∪ C, there exists a model Mh of Dh such that
Mh ∼m Ml. With a sound abstraction, whenever the high-
level theory entails that a sequence of actions is executable
and achieves a certain condition, then the low level must also
entail that there exists an executable refinement of the se-
quence such that the “translated” condition holds afterwards.
Moreover, whenever the low level considers the executability
of a refinement of a high-level action is satisfiable, then the
high level does also. A dual notion is also defined: Dh is a
complete abstraction of Dl relative to refinement mapping m
if and only if, for all models Mh of Dh, there exists a model
Ml of Dl ∪ C such that Ml ∼m Mh.

The notion ofm-bisimulation provides the semantic under-
pinning of these notions of abstraction. (BDL17) also prove
the following results that identify a set of properties that are
necessary and sufficient to have a sound/complete abstraction
(here we adjust the notation to use system actions) and can be
used to verify that one has a sound/complete abstraction, e.g.,
by model checking or theorem proving techniques:
Theorem 7 (BDL17). Dh is a sound abstraction of Dl rela-
tive to mappingm if and only if for any sequence of high-level
system actions ~α:

(a) Dl
S0
∪ Dl

ca ∪ Dl
coa |= mf (φ), for all φ ∈ Dh

S0
,

(b) Dl ∪ C |= ∀s.Do(ms(α̃),S0 , s) ⊃∧
Ai∈Ah ∀~x, rh.(mf (φ

Poss
Ai

(~x, rh))[s] ≡
∃s′Do(ms(Ai(~x, rh)), s, s

′)),

(c) Dl ∪ C |= ∀s.Do(~α, S0, s) ⊃∧
Ai∈Ah ∀~x, rh, s′.(Do(ms(Ai(~x, rh)), s, s

′) ⊃∧
Fi∈Fh ∀~y(mf (φ

ssa
Fi,Ai

(~y, ~x, rh))[s] ≡ mf (Fi(~y))[s
′])),

where φPoss
Ai

(~x, rh) is the right hand side (RHS) of
the precondition axiom for system action Ai(~x, rh), and
φssaFi,Ai

(~y, ~x, rh) is the RHS of the successor state axiom for Fi

instantiated with system action Ai(~x, rh) where action terms
have been eliminated using Dh

ca.
Theorem 8 (BDL17). If Dh is a sound abstraction of Dl

relative to mappingm, thenDh is also a complete abstraction
of Dl wrt mapping m if and only if for every model Mh of
Dh

S0
∪Dh

ca∪Dh
coa, there exists a modelMl ofDl

S0
∪Dl

ca∪Dl
coa

such that SMh
0 ∼Mh,Ml

m SMl
0 .

Using the above results, we can show that:
Proposition 9. Dtt

h is a sound and complete abstraction of
Dtt

l wrt mtt.
Note that in this paper, we are focusing on fully observable

domains, so we will just present results about m-bisimilar
NDBAT models; Mh ∼m Ml essentially means that Mh is a
sound and complete abstraction of Ml relative to m.

4 Results about Action Executions
We now show some interesting results about the use of ND-
BAT abstractions to reason about action executions. Our re-
sults will be mostly about m-bisimilar NDBAT models, i.e.,
where Mh ∼m Ml; unless stated otherwise, we assume
we have NDBATs Dh and Dl, that Mh |= Dh ∪ C and
Ml |= Dl ∪ C, and that m is proper wrt Dl.

Firstly, we have that m-isomorphic situations satisfy the
same high-level situation-suppressed formulas:
Lemma 10 (BDL17). If sh ∼Mh,Ml

m sl, then for any high-
level situation-suppressed formula φ, we have that:
Mh, v[s/sh] |= φ[s] if and only if Ml, v[s/sl] |= mf (φ)[s].

Secondly, we can show that in m-bisimilar models, the
same sequences of high-level system actions are executable,
and that in the resulting situations, the same high-level
situation-suppressed formulas hold:
Theorem 11. If Mh ∼m Ml, then for any sequence of
high-level system actions ~α and any high-level situation-
suppressed formula φ, we have that

Ml, v |= ∃s′.Do(ms(~α), S0, s
′) ∧mf (φ)[s

′] if and only if
Mh, v |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Here and below, sequences of high-level system actions ~α
may contain free variables in the action parameters, but the
action functions must be given, and similarly for sequences
of high-level agent actions (this generalizes (BDL17) which
only considers ground action sequences).

We can extend this result to sequences of agent actions by
exploiting the fact that m is a proper mapping:
Theorem 12. If Mh ∼m Ml, then for any sequence of high-
level agent actions ~α and any high-level situation-suppressed
formula φ, we have that

Ml, v |= ∃s′.Doag(ma(~α), S0, s
′) ∧mf (φ)[s

′] if and only if
Mh, v |= ∃s′.Doag(~α, S0, s

′) ∧ φ[s′].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3117

This means that if the agent has a weak plan to achieve a goal
at the high level, then there exists a refinement of it that is a
weak plan to achieve the mapped goal at the low level.
Example cont. At the high level, a weak plan to achieve the
goal of getting to location 13 is to first drive to 12 and then to
13:

Dtt
h |= ∃s′.Doag(~α, S0, s

′) ∧AtHL(13, s
′) where

~α = driveAndTryFix (11, 12); driveAndTryFix (12, 13)

This plan works provided no flat occurs when driving to 12,
as there is no spare there. By Th. 12, there exists a weak plan
at the low level that refines this high-level plan:

Dtt
l |= ∃s′.Doag(ma(~α), S0, s

′) ∧AtLL(13, s
′) ∧

Doag([drive(11, 12); drive(12, 13)], S0, s
′)

5 Results about Strategic Reasoning
Let us now discuss how NDBAT abstractions can be used
in FOND domains to synthesize strategies to fulfill reach-
ability/achievement goals as well as temporally extended
goals/tasks. First of all, we need to consider how much strate-
gic reasoning the agent needs to do to execute a high-level
atomic action at the low level. A given HL agent action A(~x)
is mapped to a LL agent program ma(A(~x)) that implements
it. As we have seen, in m-bisimilar models, Constraint 2 en-
sures that if A(~x) is executable at the HL, then there exists
a terminating execution of ma(A(~x)) at the LL (this holds
for HL system actions as well). But this does not mean that
all executions of ma(A(~x)) terminate, as some may block or
diverge, due to either agent or environment choices. In gen-
eral, the agent must do strategic reasoning to ensure that the
execution ofma(A(~x)) terminates (and the environment may
need to cooperate as well). But we can impose further con-
straints on the mapping of HL actions to avoid this or ensure
that a strategy exists. Note that ensuring that the execution of
ma(A(~x)) terminates does not mean that the agent controls
the action’s outcome (e.g., not having a flat); the outcome is
still determined by the environment reactions.
Constraints on HL action implementation. First, we may
want to require that the mapping of HL actions is such that the
implementation program always terminates and no LL strate-
gic reasoning is required to ensure termination. To do this,
we first define:

InevTerminates(δ, s)
.
= ∀P.[. . . ⊃ P (δ, s)]

where . . . stands for
[(Final(δ, s)) ⊃ P (δ, s)]∧
[∃s′.∃δ′.T rans(δ, s, δ′, s′)∧
∀s′.∀δ′.(Trans(δ, s, δ′, s′) ⊃ P (δ′, s′))
⊃ P (δ, s)]

InevTerminates(δ, s) means that program δ executed start-
ing in situation s inevitably terminates , i.e., all its executions
eventually terminate.4

Then we can ensure that for any HL agent action that is
possibly executable at the low level, all executions terminate
(i.e., they never block or diverge) by requiring the following:

4This is analogous to the CTL [Clarke and Emerson, 1981] for-
mula AFφ, i.e., on all paths eventually φ.

Constraint 13. (HL actions Inevitably Terminate)
For every high-level system action sequence ~α and every
high-level action A, we have that:

Dl ∪ C |= ∀s.(Do(ms(~α), S0, s) ⊃
∀~x.(∃s′.Doag(ma(A(~x)), s, s

′) ⊃
InevTerminates(ma(A(~x)), s)))

Proposition 14. NDBAT Dtt
l and mapping mtt satisfy Con-

straint 13.
If we impose Constraint 13, then the agent that executes

the program that implements the HL action can be a dumb ex-
ecutor. But this may seem too restrictive. An alternative is to
impose the weaker requirement that for any HL agent action
that is possibly executable at the LL, the agent has a strategy
to execute it to termination no matter how the environment
reacts (even if not controlling its outcome). Formally:
Constraint 15. (Agt Can Always Execute HL actions)
For every high-level system action sequence ~α and every
high-level action A, we have that:

Dl ∪ C |= ∀s.(Do(ms(~α), S0, s) ⊃ ∀~x.
(∃s′.Doag(ma(A(~x)), s, s

′) ⊃ AgtCanForce(ma(A(~x)), s)))

Note that if we only impose Constraint 15, then there is no
guarantee that when a HL system action A(~x, e) is possibly
executable, the environment can actually ensure that reaction
e occurs when the agent executes ma(A(~x)). We can define
an additional constraint that ensures this; see [Banihashemi et
al., 2023] for details.
Planning for achievement goals. Returning to planning,
we can now show that if Constraint 15 holds (i.e., the agent
always knows how to execute high-level primitive actions at
the low level, even if not controlling their outcome) and the
agent has a strong plan to achieve a goal at the high level, then
there exists a refinement of the high-level plan that is a strong
plan to achieve the refinement of the goal at the low level:
Theorem 16. If Mh ∼m Ml and Constraint 15 holds, then
for any high-level system action sequence ~α and any high-
level situation-suppressed formula φ, we have that:

if Mh, v |= Executable(do(~α, S0)) ∧
AgtCanForce(φ, do(~α, S0))

then Ml, v |= ∃s.Do(ms(~α), S0, s) ∧
∀s.Do(ms(~α), S0, s) ⊃ AgtCanForce(mf (φ), s)

Proof sketch. The proof is by induction on the length
of the HL strategy fh at do(~α, S0), where the length
of a strategy is the length of its longest branch, i.e.,
length(f, s)

.
= 0 if f(s) = stop and length(f, s)

.
=

maxDoag(f(s),s,s′)(length(f, s′)) otherwise.
Assume the antecedent. It follows that there is a

strategy fh such that AgtCanForceBy(φ, sh, fh), where
sh = do(~α, S0). By proof of Theorem 11 we have
that at the LL ∃sl.Do(ms(~α), S0, sl) and for all such sl
we have that sh ∼Mh,Ml

m sl. Take an arbitrary such
sl. We show that there exists a LLl strategy fl such that
AgtCanForceBy(mf (φ), sl, fl).

Base case, when length(fh, sh) = 0, and fh(sh) =

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3118

stop ∧ φ[sh]. By Lemma 10, we have that mf (φ)[sl] and
AgtCanForceBy(mf (φ), sl, fl) for any strategy fl such that
fl(sl) = stop.

Inductive case: Assume the result holds for any HL strategy
fh of length at most k. We show that it must also hold for a
HL strategy fh of length k + 1.
At the HL, by the definition of AgtCanForceBy, we have
that there exists an high-level action A(~t) such that fh(sh) =
A(~t) ∧ ∃s′h.Doag(A(~t), sh, s

′
h) ∧

∀s′h.Doag(A(~t), sh, s
′
h) ⊃ AgtCanForceBy(φ, s′h, fh).

By Constraint 15, there exists a LL strategy gl such that
AgtCanForceBy(ma(A(~t)), sl, gl). For any s′l such that
Doag(gl, sl, s

′
l), it follows by Constraint 2 that there exists

s′h such that s′h ∼Mh,Ml
m s′l. The length of fh at s′h is at most

k. Thus by the induction hypothesis, there exists a LL strat-
egy f ′l such thatAgtCanForceBy(mf (φ), s′l, f

′
l). It follows

that AgtCanForceBy(mf (φ), sl, fl) for fl = f ′l ◦ gl.

Example cont. As strategies use the stop action, we first
define a stopHL action at the high level which is mapped to
the stopLL action at the concrete level; stopHL always ter-
minates with the SuccessHS reaction. By Proposition 14,
Constraint 13 (and thus also the weaker Constraint 15) is sat-
isfied for our example domain.

We can show that the agent has a strong plan to achieve the
goal of being at location 13 at the high level (dtf abbreviates
driveAndTryF ix):

Dtt
h |= AgtCanForceBy(AtHL(13), S0, fh) where

fh(s)
.
=

stopHL if AtHL(13, s)

dtf (o, d) if AtHL(o, s) ∧ o 6= 13 ∧RoadHL(o, d, s)

∧¬VisitedHL(d, s) ∧ SpareHL(d, s)

waitHL otherwise

The agent’s high-level strategy fh is to stop if she is already
at location 13, otherwise to drive to a location which has not
been visited previously and has a spare tire and fix a flat if
one occurs; in all other cases she waits.

By Th. 16 there exists a strategy at the low level that is re-
finement of the high-level strategy; this strategy is the same
as strategy fl in Section 2. It is easy to show that fl is a refine-
ment of the high-level strategy fh .

Planning for temporally extended goals/tasks. We can
also show a similar result to the previous theorem for high-
level programs/tasks/temporally extended goals: if Constraint
15 holds and the agent has a strategy to successfully execute
an agent program (without concurrency) at the high level,
then the agent also has a strategy to successfully execute some
refinement of it at the low level:

Theorem 17. If Mh ∼m Ml and Constraint 15 holds, then
for any high-level system action sequence ~α and any SD
ConGolog high-level agent program δ without the concurrent
composition construct, we have that:

if Mh, v |= Executable(do(~α, S0)) ∧
AgtCanForce(δ, do(~α, S0))

then Ml, v |= ∃s.Do(ms(~α), S0, s) ∧
∀s.Do(ms(~α), S0, s) ⊃ AgtCanForce(ma(δ), s)

Here, we apply the mapping to a high-level agent program
δ without concurrency to produce a low level agent program
ma(δ); this can be defined in the obvious way, using ma to
map atomic actions andmf for tests as usual, and by mapping
the components and composing the result for other constructs,
e.g., ma(δ1|δ2) = ma(δ1)|ma(δ2) (we discuss concurrency
in [Banihashemi et al., 2023]).

Proof sketch. The proof is by induction on the length of
the high-level strategy fh for executing δ at do(~α, S0) and is
similar to that of the above theorem. Note that since δ is SD,
does not involve concurrency, and the high-level atomic ac-
tions are all mapped to SD programs, ma(δ) must also be SD
(we execute a high-level action using the appropriate strat-
egy essentially as a procedure call and the high-level program
continues after the call has completed).

Example cont. Consider the high-level program δHL
go (l) =

(πo, d.driveAndTryFix (o, d))∗;AtHL(l)? which goes to loca-
tion l by repeatedly picking adjacent locations and doing
driveAndTryFix (o, d) until the agent is at l. We can show
that the agent has a strategy to successfully execute this pro-
gram to get to location 13:

Dtt
h |= AgtCanForceBy(δHL

go (13), S0, fh)

Here, the high-level strategy fh to execute the program is
same as the one we saw above. It can also be shown that
the low-level strategy fl seen earlier is a refinement of fh and
can be used to to execute ma(δHL

go (13)). To further illustrate
the use of high-level programs, notice that we could give the
agent the program δHL

go (31); δHL
go (13) to execute. This is a

more complex task as she must first go to location 31 and
then to 13; but it is easier to to find a strategy to do it.

In [Banihashemi et al., 2023], we show how we can handle
more complex domains where reactions represent (sets of)
exogenous actions.

6 Monitoring and Explanation
Being able to monitor what a low-level agent is doing and de-
scribe it in abstract terms (e.g., to a client or manager) is par-
ticularly important in the context of Explainable AI. (BDL17)
show how a sound abstraction wrt a mappingm can be used to
do this when certain conditions hold. They define an inverse
mapping m−1 that takes a sequence of low-level actions ~a
and returns the sequence of high-level actions ~α that it refines
in a given model. In [Banihashemi et al., 2023], we show that
we can easily adapt this approach for NDBAT abstractions.

Example cont. Consider a variant of our running example
where, if the agent has a flat and there is no spare tire in a
location (i.e., at locations 11, 12 and 13), she can either buy
one, or she can use a roadside assistance service to get one
provided the location is within the covered area, We can have
HL actions for these with the mapping:

mtt+
s (buyAndFix(l, rh)) = πr.order(l, r);
πr.pay(l, r);πr.fixFlatTire(l, r); rh = SuccHBuy?

mtt+
s (serviceAndFix(l, rh)) = π.r.callServiceLL(l, r);
πr.fixFlatTire(l, r); rh = SuccHServ?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3119

Suppose that at the LL, the agent knows that both locations
12 and 13 fall under the roadside service coverage, while at
the HL, the agent only knows this for 13 (we have imperfect
information). We can define NDBATs for this and showDtt+

h

is a sound abstraction of Dtt+
l

[Banihashemi et al., 2023].
Now suppose that at the LL, the sequence of system actions

~a = drive(11, 21,NoFlatTire); drive(21, 12,FlatTire)
has occurred. In location 12, no spare tire is available,
and if the agent wants to move on with her journey,
she needs to either call for service or order a new tire.
The inverse mapping tells us that HL system action se-
quence ~α = driveAndTryFix (11, 21, DrvNoF lat);
driveAndTryFix (21, 12, DrvF lat) has occurred. Since
Dtt+

h |= AtHL(12, do(~α, S0)), we can conclude at
the HL that the agent is now at location 12. Since
Dtt+

h ∪{Poss(serviceAndFix (12, SuccHServ), do(~α, S0))}
is satisfiable, we can also conclude that
serviceAndFix (12, SuccHServ) might occur next,
and similarly for buyAndFix (12, SuccHBuy); in
fact we know at the HL that the latter is executable:
Dtt+

h |= Poss(buyAndFix (12, SuccHBuy), do(~α, S0)).

7 Discussion
There has been much previous work on fully/partially observ-
able nondeterministic planning, e.g., [Ghallab et al., 2004;
Cimatti et al., 2003; Muise et al., 2014], strategy logics such
as ATL [Alur et al., 2002], and strategic reasoning [Xiong and
Liu, 2016b; Xiong and Liu, 2016a]. But such work assumes
that the domain is represented at a single level of abstraction.

In planning, approaches such as hierarchical task networks
(HTNs) [Erol et al., 1994] support abstract tasks that facili-
tate search. [Kuter et al., 2009] propose an algorithm which
combines HTN-based search-control strategies with Binary
Decision Diagram-based state representations for planning
in nondeterministic domains. [Chen and Bercher, 2021] ex-
tend HTN planning with nondeterministic primitive tasks.
[Bonet et al., 2017] investigate nondeterministic abstractions
for generalized planning, where one looks for a (typically iter-
ative) plan that solves a whole class of related planning prob-
lems. [Cui et al., 2021] applies the abstraction framework of
(BDL17) to generalized planning. They use Golog programs
to represent nondeterministic actions, and our results should
make it possible to simplify their framework.

[Banihashemi et al., 2018] generalized the approach of
(BDL17) to deal with agents that may acquire new knowl-
edge during execution, and formalized (piecewise) hierarchi-
cal refinements of an agent’s ability (i.e., strategy) to achieve
a goal. However, this work does not consider nondetermin-
istic actions and is based on a more complex framework in-
volving online executions.

Abstraction is important for efficient reasoning and ex-
plainability. This paper presents foundational results, i.e.,
a generic framework for abstraction in nondeterministic do-
mains, which can be used for many reasoning tasks, such as
planning, execution monitoring, and explanation. One po-
tential practical application area is smart manufacturing. For
instance, [De Giacomo et al., 2022] present a “manufacturing
as a service” framework where facilities (made up of concrete

resources) bid to produce products, given an abstract product
recipe, which is based on an abstract information model in
the cloud. Our work shows how one can develop an abstract
domain model where planning for arbitrary high-level goals
is easier and where we have guarantees that a high-level plan
can be refined into a low-level one. It also allows one to moni-
tor the low-level system by generating high-level descriptions
of low-level system executions from which one can reason at
the high level about what might happen next. Note that of-
ten manufacturing processes depend on the data and objects
(parts) they produce and consume; to formalize this aspect,
the situation calculus which provides a first-order representa-
tion of the state of the processes can indeed be used. Another
potential practical application area is business process man-
agement, to support execution monitoring, explanation, and
failure handling, see e.g., [Marrella et al., 2017].

As discussed in Section 3, (BDL17) identifies a set
of properties that are necessary and sufficient to have a
sound/complete abstraction wrt a mapping, which can be used
to verify that one has such an abstraction. This means that in
the finite domain/propositional case, verifying that one has a
sound abstraction is decidable and one can use theorem prov-
ing techniques to do it. Moreover, when one has complete
information and a single model, one can use model-checking
techniques. Bounded basic action theories [De Giacomo et
al., 2016] constitute an important class of infinite domain the-
ories where verification is decidable. In the general infinite-
domain case, there are sound but incomplete reasoning meth-
ods that can be used [De Giacomo et al., 2010].

Automatically synthesizing sound/complete abstractions is
another interesting problem. [Luo et al., 2020] show that one
can use the well-explored notion of forgetting (of low-level
fluent and action symbols) to automatically obtain a sound
and complete high-level abstraction of a low-level BAT for
a given mapping under certain conditions. They also show
that such an abstraction is computable in the propositional
case. However in general, there may be many different ab-
stractions of a low-level theory, each of which may be useful
for a different purpose. So defining an abstract language and
mapping for a domain is not a trivial problem. Some human
intervention is likely to be required, e.g., the modeler might
specify the goals of the abstraction, or which details can be
considered unimportant.

In this paper, we have not considered fairness constraints
and strong cyclic plans [D’Ippolito et al., 2018; Aminof et
al., 2020]; this is a topic for future work. Another interesting
direction for future research is to consider a notion of multi-
tier planning [Ciolek et al., 2020], where planning may be
done using a simple model without unlikely contingencies,
but where one can fall back to a more complex model when
such contingencies do occur or more robustness is required.
Related to this is the notion of “best effort strategies” (in pres-
ence of multiple [contradictory] assumptions about the envi-
ronment) as proposed by [Aminof et al., 2021]. These are
agent plans which, for each of the environment specifications
individually, realize the agent’s goal against a maximal set of
environments satisfying that specification. We are also inter-
ested in extending the current framework to deal with partial
observability and sensing.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3120

Acknowledgments
Work supported by the ERC Advanced Grant WhiteMech
(No. 834228), by the EU ICT-48 2020 project TAILOR (No.
952215), as well as by the National Science and Engineering
Research Council of Canada.

References
[Abadi et al., 1989] Martı́n Abadi, Leslie Lamport, and

Pierre Wolper. Realizable and Unrealizable Specifications
of Reactive Systems. In Proceedings of the 16th Inter-
national Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, pages 1–
17. Springer, 1989.

[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and
Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[Aminof et al., 2020] Benjamin Aminof, Giuseppe De Gia-
como, and Sasha Rubin. Stochastic fairness and language-
theoretic fairness in planning in nondeterministic domains.
In Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling, Nancy, France,
October 26-30, 2020, pages 20–28. AAAI Press, 2020.

[Aminof et al., 2021] Benjamin Aminof, Giuseppe De Gia-
como, Alessio Lomuscio, Aniello Murano, and Sasha Ru-
bin. Synthesizing best-effort strategies under multiple en-
vironment specifications. In Proceedings of the 18th Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2021, Online event, Novem-
ber 3-12, 2021, pages 42–51, 2021.

[Bacchus et al., 1999] Fahiem Bacchus, Joseph Y. Halpern,
and Hector J. Levesque. Reasoning about noisy sensors
and effectors in the situation calculus. Artif. Intell., 111(1-
2):171–208, 1999.

[Banihashemi et al., 2017] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction in situation
calculus action theories. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 1048–1055.
AAAI Press, 2017.

[Banihashemi et al., 2018] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction of agents ex-
ecuting online and their abilities in the situation calculus.
In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden, pages 1699–1706. ijcai.org,
2018.

[Banihashemi et al., 2023] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction of nonde-
terministic situation calculus action theories – Extended
version. CoRR, abs/2305.14222, 2023.

[Bonet et al., 2017] Blai Bonet, Giuseppe De Giacomo, Hec-
tor Geffner, and Sasha Rubin. Generalized planning: Non-
deterministic abstractions and trajectory constraints. In
Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne,

Australia, August 19-25, 2017, pages 873–879. ijcai.org,
2017.

[Chen and Bercher, 2021] Dillon Chen and Pascal Bercher.
Fully observable nondeterministic HTN planning - for-
malisation and complexity results. In Proceedings of the
Thirty-First International Conference on Automated Plan-
ning and Scheduling, ICAPS 2021, Guangzhou, China
(virtual), August 2-13, 2021, pages 74–84. AAAI Press,
2021.

[Church, 1963] Alonzo Church. Logic, arithmetics, and au-
tomata. In Proc. International Congress of Mathemati-
cians, 1962. institut Mittag-Leffler, 1963.

[Cimatti et al., 1998] Alessandro Cimatti, Marco Roveri,
and Paolo Traverso. Strong planning in non-deterministic
domains via model checking. In Proceedings of the Fourth
International Conference on Artificial Intelligence Plan-
ning Systems, Pittsburgh, Pennsylvania, USA, 1998, pages
36–43. AAAI, 1998.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Arti-
ficial Intelligence, 147(1-2):35–84, 2003.

[Ciolek et al., 2020] Daniel Alfredo Ciolek, Nicolás
D’Ippolito, Alberto Pozanco, and Sebastian Sardiña.
Multi-tier automated planning for adaptive behavior. In
Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling, Nancy, France,
October 26-30, 2020, pages 66–74. AAAI Press, 2020.

[Clarke and Emerson, 1981] Edmund M. Clarke and
E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In
Logics of Programs, Workshop, Yorktown Heights, New
York, USA, May 1981, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer, 1981.

[Cui et al., 2021] Zhenhe Cui, Yongmei Liu, and Kailun
Luo. A uniform abstraction framework for generalized
planning. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021,
pages 1837–1844. ijcai.org, 2021.

[De Giacomo and Lespérance, 2021] Giuseppe De Giacomo
and Yves Lespérance. The nondeterministic situation cal-
culus. In Proceedings of the 18th International Conference
on Principles of Knowledge Representation and Reason-
ing, KR 2021, Online event, November 3-12, 2021, pages
216–226, 2021.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1-2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Principles of Knowledge Representation and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3121

Reasoning: Proceedings of the Twelfth International Con-
ference, KR 2010, Toronto, Ontario, Canada, May 9-13,
2010. AAAI Press, 2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Christian J. Muise. On supervising agents
in situation-determined ConGolog. In International Con-
ference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 Vol-
umes), pages 1031–1038. IFAAMAS, 2012.

[De Giacomo et al., 2016] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories. Artif. Intell., 237:172–203, 2016.

[De Giacomo et al., 2022] Giuseppe De Giacomo, Paolo
Felli, Brian Logan, Fabio Patrizi, and Sebastian Sardiña.
Situation calculus for controller synthesis in manufactur-
ing systems with first-order state representation. Artif. In-
tell., 302:103598, 2022.

[D’Ippolito et al., 2018] Nicolás D’Ippolito, Natalia
Rodrı́guez, and Sebastian Sardiña. Fully observable
non-deterministic planning as assumption-based reactive
synthesis. J. Artif. Intell. Res., 61:593–621, 2018.

[Erol et al., 1994] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the 12th National Conference on
Artificial Intelligence, Seattle, WA, USA, July 31 - August
4, 1994, Volume 2, pages 1123–1128. AAAI Press / The
MIT Press, 1994.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated planning - theory and prac-
tice. Elsevier, 2004.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky,
Daniele Magazzeni, and Christian Muise. An Introduction
to the Planning Domain Definition Language. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2019.

[Kuter et al., 2009] Ugur Kuter, Dana S. Nau, Marco Pistore,
and Paolo Traverso. Task decomposition on abstract states,
for planning under nondeterminism. Artif. Intell., 173(5-
6):669–695, 2009.

[Levesque et al., 1997] Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming, 31(1-
3):59–83, 1997.

[Luo et al., 2020] Kailun Luo, Yongmei Liu, Yves
Lespérance, and Ziliang Lin. Agent abstraction via
forgetting in the situation calculus. In ECAI 2020 -
24th European Conference on Artificial Intelligence,
29 August-8 September 2020, Santiago de Compostela,
Spain, volume 325 of Frontiers in Artificial Intelligence
and Applications, pages 809–816. IOS Press, 2020.

[Marrella et al., 2017] Andrea Marrella, Massimo Mecella,
and Sebastian Sardiña. Intelligent process adaptation in
the smartpm system. ACM Trans. Intell. Syst. Technol.,
8(2):25:1–25:43, 2017.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some Philosophical Problems From the Standpoint of Ar-
tificial Intelligence. Machine Intelligence, 4:463–502,
1969.

[Milner, 1971] Robin Milner. An algebraic definition of
simulation between programs. In Proceedings of the
2nd International Joint Conference on Artificial Intelli-
gence. London, UK, September 1-3, 1971, pages 481–489.
William Kaufmann, 1971.

[Milner, 1989] Robin Milner. Communication and concur-
rency. PHI Series in computer science. Prentice Hall,
1989.

[Muise et al., 2014] Christian J. Muise, Vaishak Belle, and
Sheila A. McIlraith. Computing contingent plans via fully
observable non-deterministic planning. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -31, 2014, Québec City, Québec, Canada,
pages 2322–2329. AAAI Press, 2014.

[Pinto et al., 2000] Javier Pinto, Amı́lcar Sernadas, Cristina
Sernadas, and Paulo Mateus. Non-determinism and uncer-
tainty in the situation calculus. Int. J. Uncertain. Fuzziness
Knowl. Based Syst., 8(2):127–150, 2000.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, 1989.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Seegebarth et al., 2012] Bastian Seegebarth, Felix Müller,
Bernd Schattenberg, and Susanne Biundo. Making hy-
brid plans more clear to human users - A formal ap-
proach for generating sound explanations. In Proceedings
of the Twenty-Second International Conference on Auto-
mated Planning and Scheduling, ICAPS 2012, Atibaia,
São Paulo, Brazil, June 25-19, 2012. AAAI, 2012.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder Singh. Between MDPs and Semi-MDPs: A
framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1-2):181–211, 1999.

[Xiong and Liu, 2016a] Liping Xiong and Yongmei Liu.
Strategy representation and reasoning for incomplete in-
formation concurrent games in the situation calculus. In
Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pages 1322–1329. IJCAI/AAAI
Press, 2016.

[Xiong and Liu, 2016b] Liping Xiong and Yongmei Liu.
Strategy representation and reasoning in the situation cal-
culus. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applica-
tions of Artificial Intelligence (PAIS 2016), volume 285 of
Frontiers in Artificial Intelligence and Applications, pages
982–990. IOS Press, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3122

	Introduction
	Preliminaries
	Abstraction in Nondeterministic Domains
	Results about Action Executions
	Results about Strategic Reasoning
	Monitoring and Explanation
	Discussion

