
Towards ILP-based LTLf passive learning ⋆

Antonio Ielo1[0009−0006−9644−7975], Mark Law2,4[0000−0002−8934−9756], Valeria
Fionda1[0000−0002−7018−1324], Francesco Ricca1[0000−0001−8218−3178], Giuseppe
De Giacomo3[0000−0001−9680−7658], and Alessandra Russo4[000−0002−3318−8711]

1 University of Calabria, Rende, Italy, antonio.ielo@unical.it
2 ILASP Limited, Grantham, United Kingdom

3 University of Oxford, Oxford, United Kingdom
4 Imperial College, London, United Kingdom

Abstract. Inferring a LTLf formula from a set of example traces, also
known as passive learning, is a challenging task for model-based tech-
niques. Despite the combinatorial nature of the problem, current state-
of-the-art solutions are based on exhaustive search. They use an example
at the time to discard a single candidate formula at the time, instead of
exploiting the full set of examples to prune the search space. This hin-
ders their applicability when examples involve many atomic propositions
or when the target formula is not small. This short paper proposes the
first ILP-based approach for learning LTLf formula from a set of example
traces, using a learning from answer sets system called ILASP. It com-
pares it to both pure SAT-based techniques and the exhaustive search
method. Preliminary experimental results show that our approach im-
proves on previous SAT-based techniques and that has the potential to
overcome the limitation of an exhaustive search by optimizing over the
full set of examples. Further research directions for the ILP-based LTLf

passive learning problem are also discussed.

Keywords: Answer Set Programming · Linear temporal logic over finite
traces · Learning from answer sets.

1 Introduction

Linear Temporal Logic (LTL) [29] provides a concise, expressive, and human-
interpretable language to specify and reason about the temporal behavior of
systems. Over the years, it has been widely used in formal verification, model
checking, and monitoring to ensure the correctness of software and hardware sys-
tems. Unlike LTL, whose specifications are interpreted over infinite sequences,
LTLf [17, 11] deals with properties that are evaluated on finite sequences or

⋆ This work was partially supported by MUR under PRIN project PINPOINT Prot.
2020FNEB27, CUP H23C22000280006; PRIN project HypeKG Prot. 2022Y34XNM,
CUP H53D23003710006; PNRR MUR project PE0000013-FAIR, Spoke 9 – WP9.1
and WP9.2; Spoke 5 - WP5.1 and PNRR project Tech4You, CUP H23C22000370006,
ERC Advanced Grant WhiteMech (No. 834228), and EU ICT-48 2020 project TAI-
LOR (No. 952215).

2 A. Ielo et al.

traces. LTLf was developed to deal with scenarios in which the standard se-
mantics over infinite traces were not appropriate, such as when reasoning over
business processes, which are typically finite [1]. However, developing manual
specifications of system behaviors is becoming difficult due to the complexity,
dynamic changes, and evolution of current systems. Automated approaches for
inferring LTLf specifications from data are becoming increasingly important.
Passive learning of LTLf formulae [28] refers to the problem of inferring an
LTLf formula from a set of system execution traces (some of which might be
labeled as negative examples). The problem has been extensively studied in the
literature [2, 16, 28, 30] motivated by the need of learning human-interpretable
models that allow explaining the observed behavior of complex systems. Sur-
prisingly, the problem has been proven to be challenging for model-based tech-
niques. In fact, despite its combinatorial nature, the current state-of-the-art [16]
is exhaustive-search-based systems that do not apply any pruning to reduce
the search space, beyond efficiently evaluating formulae over traces. Although
these approaches may be acceptable in certain domains, their reliance on ex-
haustive search poses limitations in domains with numerous atomic propositions
or lengthy target formulae. Specifically, the search space of LTLf formulae grows
exponentially both in the size of the formula being searched and in the number
of atomic propositions, thereby preventing their applicability. Thus, investigat-
ing the use of techniques capable of exploiting multiple examples to prune the
search space, such as ILP, is an important step towards solutions to the passive
learning problem that is applicable to real-world problems.

In this paper we propose an approach, based on inductive logic program-
ming (ILP), for learning LTLf formulae from positive and negative execution
traces. Due to the combinatorial complexity of the problem, we make use of
ILASP [24], a learning from answer sets system shown to generalize many of
the existing ILP methods [23], and to be able to learn specifications expressed
in answer set programming [24], a computational environment tailored to solve
combinatorial optimization problems. ILP techniques have been applied to the
task of learning of Declare [1] models [6], a declarative process modeling lan-
guage whose patterns are defined by LTLf formulae. However, to the best of
our knowledge, this is the first ILP-based method for learning LTLf formulae
from finite execution traces without imposing syntactic restrictions or limiting
the search to a set of patterns. Other ILP-based works tackled how to include
LTLf specifications among features used in learning algorithms [32], as well as
applications to learning temporal logic programs [20]. Specifically, we propose
a novel representation of the problem of passive learning of LTLf formulae in
answer set programming [3]. We show how this representation can be adapted
to express this problem as a learning from answer set task and as an SAT-based
inference task. We then conduct an experimental evaluation of our ILP-based
approach over a set of event logs on cellular networks’ attacks, (already used in
the literature to benchmark systems) and compare its performance with respect
to the existing SAT-based methods. Our evaluation shows that our approach
improves upon previous SAT- and SMT-based techniques, as implemented by

Towards ILP-based LTLf passive learning 3

the SySLite [2] system. The contributions presented in this paper are the first
stepping stone towards the development of ILP-based systems for LTLf passive
learning that can be used in real-world settings. To this end, our future work
will address the scalability of our proposed method to demonstrate its advantage
versus exhaustive search methods, and to solve passive learning problems where
execution traces refer also to structured properties of the data.

2 Background

In this section, we introduce linear temporal logic over finite traces and present
the basic notions and terminologies of Answer Set Programming (ASP) and
Learning from Answer Sets (LAS) used throughout the paper.

2.1 Linear temporal logic over finite traces

Linear temporal logic (LTL) [29] is an extension of propositional logic which
allows reasoning about time-related properties in sequences of events by means
of temporal operators. Classically, LTL formulae are interpreted over infinite
traces. When considering LTL on finite traces, the formalism LTLf [17] keeps
the same syntax of standard LTL, but shifts its focus from infinite sequences of
events to finite traces. We define now the syntax and semantics of LTLf.

Syntax. Let P be a finite, non-empty, set of propositional symbols. An LTLf

formula is inductively defined according to the following grammar:

φ ::= true | false | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φ U φ

where p ∈ P and φ is an LTLf formula. The set {∧,∨,¬} includes the stan-
dard conjunction, disjunction and negation operators of classical logic, while
X and U denote respectively the next and until temporal operators. We as-
sume the standard propositional logic equivalence rewriting that defines logical
implication φ → ϱ as ¬φ ∨ ϱ. Furthermore, we define the following derived
temporal operators: (Weak Next) Xwφ ≡ ¬X¬φ; (Eventually) Fφ ≡ true U φ;
(Release) φ1Rφ2 ≡ ¬(¬φ1 U ¬φ2); and (Always) Gφ ≡ false R φ. The size of
a formula φ, denoted by |φ|, is the total number of symbols (temporal oper-
ators, boolean connectives, and propositional symbols) included in φ. That is,
|φ| = 1 if φ ∈ P ∪ {true, false}; | ◦ φ| = 1 + |φ| if ◦ ∈ {¬,X,Xw,F,G}; and,
|φ1 ◦ φ2| = 1 + |φ1|+ |φ2| if ◦ ∈ {∧,∨,→,U,R}.

Semantics. A finite trace over propositional symbols in P is a sequence π =
π0 · · ·πn−1 of states, where each state πi ⊆ P is a set of propositional symbols
that hold at time instant i. The length of a trace is the number of states over
which it is defined, and it is indicated as |π|.

Given a formula φ and a trace π, we define that π satisfies φ at time instant
i, denoted π, i |= φ, inductively as follows:

4 A. Ielo et al.

π, i |= p iff p ∈ πi;
π, i |= ¬φ iff π, i ̸|= φ
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2

π, i |= φ1 ∨ φ2 iff π, i |= φ1 or π, i |= φ2

π, i |= Xφ1 iff i < |π| − 1 and π, i+ 1 |= φ1;
π, i |= φ1Uφ2 iff ∃j with i ≤ j ≤ |π| s.t. π, j |= φ2 and ∀k with i ≤ k < j

π, k |= φ1

Given a trace π and a formula φ, we say that π is a model of φ if π, 0 |= φ,
denoted in brief as π |= φ. An LTLf formula is said to be in neXt Normal
Form (xnf) [8, 25] when all its occurrences of U temporal operators are nested
into some X operator. Note that, every LTLf formula can be transformed into
an equivalent formula in xnf form in linear time by recursively applying the
following transformations:

• xnf(φ) = φ for φ ∈ P ∪ {true, false};
• xnf(¬φ) = ¬xnf(φ);
• xnf(φ1 ◦ φ2) = xnf(φ1) ◦ xnf(φ2) for ◦ ∈ {∧,∨};
• xnf(X φ) = X xnf(φ);
• xnf(φ1 U φ2) = xnf(φ2) ∨ (xnf(φ1) ∧ X(φ1 U φ2))

2.2 Passive Learning of LTLf formulae

The problem of passive learning of LTLf formulae, introduced in [28], refers to
the challenge of automatically inferring LTLf formulae from observed traces of
system behavior, usually partitioned into sets of positive and negative examples,
such that the positive traces are models of the formula and the negative traces
are not models of the formula. This can be formally defined as follows:

Definition 1 (PLLTLf
Passive Learning Task). Let P be a set of proposi-

tional symbols. A PLLTLf
passive learning task is a tuple PLLTLf

= (P, E+, E−)
where E+ is a set of traces over P called positive traces, and E− is a set of traces
over P called negative traces such that E+ ∩ E− = ∅. A solution of a PLLTLf

task is an LTLf formula φ, written in P such that (i) π |= φ, for every π ∈ E+;
and (ii) π ̸|= φ, for every π ∈ E−.

Note that, a PLLTLf passive learning task always accepts a trivial solution given

by the formula ϕ =
∨

π∈E+

∧
i∈[0,...,|π|−1] X

i(
∧

p∈πi
p ∧

∧
p ̸∈πi

∧¬p) ∧ ¬X|π|true,

where Xi denotes the nested application of the X operator i times. We therefore
focus on optimal solutions of a PLLTLf passive learning task, as defined below.

Definition 2 (Optimal solution of a PLLTLf
Passive Learning Task). Let

PLLTLf
= (P, E+, E−) be a PLLTLf

passive learning task. An LTLf formula
φ, written in P, is an optimal solution of PLLTLf

if and only if φ is a solution
of PLLTLf

and there is no LTLf formula φ′ written in P that is a solution of
PLLTLf

and |φ′| < |φ|.

Solving a PLLTLf
passive learning task means searching for an optimal (i.e.

minimal-size) solution with respect to a fixed set of propositional symbols P.

Towards ILP-based LTLf passive learning 5

2.3 Answer Set Programming

Answer Set Programming (ASP) [3, 15] is a knowledge representation formalism
based on the stable model semantics of logic programs, that allows modeling in
a declarative way problems up to the second level of the polynomial hierarchy.
We recall in the following some basic notions of ASP and assume the reader is
familiar with the input language of Clingo [14].

Typically an ASP program includes four types of rules: normal rules, choice
rules, hard and soft constraints. In this paper, we consider ASP programs com-
posed of only normal rules, choice rules, and hard constraints. Given atoms h,
h1,. . . , hk, b1,. . . , bn, c1,. . . , cm, a normal rule is of the form h : - b1, . . . , bn,
not c1, . . . , not cm, with h as the head and b1, . . . , bn, not c1, . . . , not cm
(collectively) as the body (“not” represents negation as failure); a constraint is a
rule of the form : - b1, . . . , bn, not c1, . . . , not cm; and a choice rule is a rule of
the form l{h1, . . . , hk}u : - b1, . . . , bn, not c1, . . . , not cm where l{h1, . . . , hk}u
is called an aggregate. In an aggregate l and u are integers and hi, for 1 ≤ i ≤ k,
are atoms. A choice rule specifies that when the body is satisfied at least l, and
no more than u, atoms from the head must evaluate true.

Given an ASP program P , the Herbrand Base of P , denoted as HBP , is
the set of ground (variable free) atoms that can be formed from the predicates
and constants that appear in P . Subsets of HBP are (Herbrand) interpretations
of P . Informally, a model of an ASP program P , called Answer Set of P , is
defined in terms of the notion of reduct of P , which is constructed by applying
the following transformation steps to the grounding of P 5. Given a program P
and an Herbrand interpretation I ⊆ HBP , the reduct P I is constructed from
the grounding of P by first removing rules whose bodies contain the negation
of an atom in I; secondly, we remove all negative literals from the remaining
rules; thirdly, we set ⊥ (note ⊥ /∈ HBP) to be the head to every constraint, and
in every choice rule whose head is not satisfied by I we replace the head with
⊥; and finally, we replace any remaining choice rule l{h1, . . . , hm}u : - b1, . . . , bn
with the set of rules {hi : - b1, . . . , bn | hi ∈ I ∩ {h1, . . . , hm}}. Any I ⊆ HBP is
an answer set of P if it is the minimal model of the reduct P I . We denote an
answer set of a program P with A and the set of answer sets of P with AS(P).
A program P is said to be satisfiable (resp. unsatisfiable) if AS(P) is non-empty
(resp. empty).

2.4 Learning from Answer Sets

Many ILP systems learn from (positive and negative) examples of atoms which
should be true or false, as many ILP systems are targeted at learning Prolog
programs, where the main “output” of a program is a query of a single atom. In
this paper, we make use of the Learning from Answer Sets (LAS) paradigm. In
ASP, the main “output” of a program is a set of answer sets. So learning from
Answer Sets takes as (positive and negative) examples (partial) interpretations,

5 We use the simplified definitions of the reduct for choice rules presented in [22]

6 A. Ielo et al.

which should or should not (respectively) be answer sets of the learned ASP
program. A partial interpretation e is a pair of sets of atoms ⟨einc, eexc⟩, referred
to as the inclusions and exclusions respectively. An interpretation I is said
to extend e if and only if einc ⊆ I and eexc ∩ I = ∅. A context-dependent
partial interpretation (CDPI) is a tuple e = ⟨epi, ectx⟩, where epi is a partial
interpretation and ectx is an ASP program called a context. A CDPI e is accepted
by a program P if and only if there is an answer set of P ∪ ectx that extends epi.

Many ILP systems (e.g. [19]) use mode declarations as a form of language
bias to specify hypothesis spaces. We adopt a similar notion of language bias.
A mode bias is defined as a pair of sets of mode declarations ⟨Mh,Mb⟩, where
Mh (resp. Mb) are called the head (resp. body) mode declarations. Each mode
declaration is a literal whose abstracted arguments are either var(t) or const(t),
for some constant t (called a type). Informally, a literal is compatible with a mode
declaration m if it can be constructed by replacing every instance of var(t) in m
with a variable of type t, and every const(t) with a constant of type t.6 Given
a mode bias M = ⟨Mh,Mb⟩, a rule R if compatible with M if (i) the head of
R is compatible with a mode declaration in Mh; (ii) each body literal of R is
compatible with a mode declaration in Mb; and (iii) no variable occurs with two
different types. We indicate with SM the set of rules compatible with a given
language bias M = ⟨Mh,Mb⟩, and we refer to it as the hypothesis space SM .

We can now define the notion of context-dependent Learning from Answer
Sets. This consists of an ASP background knowledge B, a hypothesis space,
and sets of context-dependent positive and negative partial interpretation ex-
amples. The goal is to find a hypothesis H that has at least one answer set
(when combined with B) that extends each positive example, and no answer set
that extends any negative examples. Note that each positive example could be
extended by a different answer set of the learned program. This can be formally
defined as follows.

Definition 3 (Context-dependent learning from answer sets). A Context-
dependent Learning from Answer Sets task, denoted as ILPcontext

LAS , is a tuple
T = ⟨B,SM , E+, E−⟩ where B is an ASP program, SM is a set of ASP rules,
and E+ and E− are finite sets of CDPIs. A hypothesis H ⊆ SM is an inductive
solution of T if and only if (i) ∀e ∈ E+, B ∪ H accepts e; and (ii) ∀e ∈ E−,
B ∪H does not accept e.

It is common practice in ILP to search for “optimal” hypotheses. This is usually
defined in terms of the number of literals in the hypothesis. Given a hypothesis
H, the length of the hypothesis, |H|, is the number of literals that appear in H.

Definition 4 (Optimal solution of ILPcontext
LAS tasks). Let T be a ILPcontext

LAS

learning task. A hypothesis H is an optimal inductive solution of T if and only

6 The set of constants of each type is assumed to be given with a task, together with
the maximum number of variables in a rule, giving a set of variables V1, . . . , Vmax

that can occur in a hypothesis. Whenever a variable V of type t occurs in a rule,
the atom t(V) is added to the body of the rule to enforce the type.

Towards ILP-based LTLf passive learning 7

if H is an inductive solution of T , and there is no inductive solution H ′ of T
such that |H ′| < |H|.

3 Formalizing LTLf semantics in ASP

In this section, we present an encoding for evaluating LTLf formulae over traces,
by embedding LTLf semantics into a normal logic program. We present our
encoding into different subsections, addressing how to represent traces, formulae,
and temporal logic operators’ evaluation rules in logic programs.

Encoding traces. We assume traces to be uniquely indexed by integers, and
in particular we will assume that a trace πi is referred to by the integer i. We
encode a trace πi over P as a set of facts matching the predicates trace/3 and
trace/2. The atom trace(i, t, a) models that a ∈ πi

t. In order to be able to
model empty states, we introduce the atoms trace(i, t) for 0 ≤ t < |πi|. Fur-
ther information about the trace can be encoded by auxiliary predicates which
refer to the trace identifier in the first term. In this paper, the only additional
information to encode is whether each trace is a positive, πi ∈ E+, or negative,
πi ∈ E−, example, and this is done through the atoms pos(i), neg(i) respectively.
We denote by P (π) the set of facts that encode the trace π. With a slight abuse
of notation, we will also denote by P (E) the set of facts that encode the set of
traces E , that is P (E) =

⋃
πi∈E P (πi).

Example 1. Consider the trace π0 = {a} · {a, b} · {}, and assume π0 ∈ E+. This
is encoded by the following facts:

trace(0,0,a). trace(0,1,a). trace(0,1,b).

trace(0,0). trace(0,1). trace(0,2). pos(0).

Encoding formulae. We encode a formula by reifying its syntax tree, in a
similar way as authors of [28] do in SAT, by means of the predicates edge/2,
order/3, label/2 and node/1. The predicates node/1, edge/2 model trees in
a natural way, where we use natural numbers to identify nodes. The atoms
node(x), edge(y, x) model that x is a node of the tree, and that y is its parent.
The predicate label/2 models logic operators (or propositions) associated with
each node in the tree. An atom label(x, j) encodes that the node x is labeled
with j ∈ O ∪ P, where O is the set of available temporal and propositional
logic operators. In this paper, we assume O = {¬,∨,∧,X,U,→,F,G}. The atom
order(i, lhs, rhs) distinguishes between left and right of node i, which is needed
for the evaluation of the non-commutative operators {U,→}. We denote by P (φ)
the set of facts which encode a formula φ. Without loss of generality, we will
assume that the node identified by 1 is the root of a formula’s tree.

Example 2. Consider the formula (Xa) U b. This is encoded by the following
facts:

node(1..4). label(1, until). label(2, next). label(3, a).

label(4,b). edge(1,2). edge(1,4). edge(2,3). order(1,2,4).

8 A. Ielo et al.

Encoding semantics. We encode the semantics of each supported operator by
simulating the recursive application of the xnf(·) transformation by means of
normal recursive rules. In particular, each subformula is identified by the node
identifier of its root in the syntax tree. The atom holds(i, t, x) models that the
πi, t |= φx where φx is the subformula of φ rooted in the node identified by integer
x. The atom last(i, t) models that |πi| = t, that is πi

t is the last state of πi. The
definition of these rules, which we denote by PLTLf

, follows the xnf(·) definitions
in Section 2.1. The encoding for operators in {∧,∨,¬,U,X,→}, denoted by the
constants and, or, neg, until, next and implies respectively, is as follows:

holds(TID, T, X)

:- label(X, A), trace(TID, T, A).

holds(TID, T, X)

:- label(X, next), edge(X, Y), holds(TID, T+1, X), not last(TID, T).

holds(TID, T, X)

:- label(X, until), order(X,LHS,RHS), holds(TID, T, RHS).

holds(TID, T, X)

:- label(X, until), order(X,LHS,RHS), holds(TID, T, LHS), holds(TID, T+1, X).

holds(TID, T, X)

:- label(X, and), order(X,A,B), holds(TID, T, A), holds(TID, T, B).

holds(TID, T, X)

:- label(X, or), edge(X, A), holds(TID, T, A).

holds(TID, T, X)

:- label(X, neg), edge(X, Y), not holds(TID, T, Y), trace(TID, T).

holds(TID, T,X)

:- label(X,implies), order(X,LHS,RHS), holds(TID, T,RHS), holds(TID, T,LHS).

holds(TID, T,X)

:- label(X,implies), order(X,LHS,RHS), not holds(TID, T,LHS), trace(TID, T).

holds(TID, T, X)

:- label(X, eventually), edge(X,Y), holds(TID, T,Y).

holds(TID, T, X)

:- label(X, eventually), holds(TID, T+1, X), trace(TID, T).

holds(TID, T, X)

:- label(X, always), edge(X, Y), holds(TID, T, Y), last(TID, T).

holds(TID, T, X)

:- label(X, always), edge(X, Y), holds(TID, T, Y), holds(TID, T+1, X).

last(TID, T) :- trace(TID, T), not trace(TID, T+1).

sat(TID) :- holds(TID, 0,1).

unsat(TID) :- not sat(TID), trace(TID,_).

Listing 1.1. The logic program PLTLf

For values t′ > t of the second term of the atom holds/3 it is possible to represent
subsequent instants of each xnf(·) formula. For the evaluation of xnf formulae, it is
sufficient to evaluate the current state and next state of the trace. Evaluation of this
kind of rules produces a locally-stratified program (i.e., the resulting ground instanti-
ation is stratified) [5], since whenever holds(i, t, x) is in the head of a rule the body
of the rule can contain only atoms holds(i, t,) or holds(i, t+ 1,). Thus, when solved
with the other subprograms encoding traces and formulae (that are only facts) has a
unique answer set [7]. In particular, by observing that the rules implement the recursive
application of xnf(·) which yields an equivalent formula to φ, it can be proved that,

Towards ILP-based LTLf passive learning 9

πi |= φ (resp. πi ̸|= φ) if holds(i, |πi| − 1, 1) is (is not) in the unique answer set of
P (πi) ∪ P (φ) ∪ PLTLf .

4 LTLf passive learning in plain ASP

A first way to model the passive learning problem is to frame it as an abduction problem
in ASP [9], where the set of abducibles corresponds to facts matching the predicates
node/1, edge/2, label/2, which reify into facts the syntax tree of a LTLf formula. The
goal of the abduction task is to find an LTLf formula φ for which all e ∈ E+ we have
that e |= φ and for all e ∈ E− we have that e ̸|= φ. The following rules encode, denoted
Ptree and Plabel respectively, the abduction of an LTLf formula of size n:

node(1..n).

pair(X,Y) :- node(X), node(Y), X < Y.

1 { edge(Y,X): pair(Y,X) } 1 :- node(X), X > 1.

reach(1). reach(X) :- edge(Y,X), reach(Y).

:- node(X), not reach(X).

id(1,(0,0)).

id(V,(U,V*V+U)) :- edge(U,V).

:- id(I,RI), id(I+1,RJ), RI >= RJ.

:- id(I,RJ), id(I+1,RI), RI <= RJ.

Listing 1.2. The logic program Ptree

Each answer set of Ptree encodes a tree of size n. Due to the combinatorial nature
of the problem, we introduce basic symmetry-breaking constraints in order to avoid
generating isomorphic trees. In particular, we assume that each node has an identifier
that is greater than its parent’s identifier. Furthermore, the last constraints force the
node identifiers to respect the order of a BFS traversal of the tree starting from the
root node, which is adapted from [12] to our setting which does not require labeled
edges.

unary_label(neg; next; eventually; always).

binary_label(and; until; or).

leaf(X) :- node(X), not edge(X,_).

unary(X) :- node(X), not leaf(X), not binary(X).

binary(X) :- edge(X,Y), edge(X,Y’), Y < Y’.

1 {label(X,L): unary_label(L) } 1 :- unary(X).

1 {label(X,L): binary_label(L) } 1 :- binary(X).

proposition(A) :- trace(_,_,A).

1 {label(X,L): proposition(L) } 1 :- leaf(X).

Listing 1.3. The logic program Plabel

Each answer set, projected on the predicates node/1, edge/2, label/2, order/3, cor-
responds to the encoding of an LTLf formula. In order to encode the goals of the
abduction, we have to constrain the generated formulae to accept positive examples
and reject negative examples. The following rules, Pgoal, can encode the goal of the
abduction:

sat(TID) :- holds(TID,1,1).

unsat(TID) :- trace(TID,_), not sat(TID).

10 A. Ielo et al.

:- sat(TID), neg(TID).

:- unsat(TID), pos(TID).

Listing 1.4. The logic program Pgoal

Thus, every answer set, projected onto the predicates label/2, edge/2, node/1 and
order/3 as shown in Example 2, of the logic program Ptree ∪ Plabel ∪ Pgoal ∪ P (E+) ∪
PLTLf ∪ P (E−), can be mapped to an LTLf formula of size n accepting all positive
examples and rejecting all negative examples, that is a solution to the passive learning
problem instance (P, E+, E−). In order to find an optimal, size-minimal, solution the
above approach can be easily implemented in an incremental fashion using Clingo
incremental solving APIs, in order to search for solutions of increasing formula length
n. This allows generating trees incrementally, rather than up-front for a fixed size n.
Thus, the first solution to be found will be a minimal one. We omit this for brevity
since it is very similar to well-known examples in literature [18].

5 LTLf passive learning using ILASP

In this section, we frame an instance (P, E+, E−) of the passive learning problem as a
context-dependent learning from answer sets task, by providing suitable mode biases,
background knowledge and encoding of the examples E+ ∪ E−.

Mode bias. We use the following mode bias, which we report in the input language of
ILASP [21]. This specifies available operators (via the type op), the maximum size of the
formula (via the type node id) to search for as well as the available atomic propositions
(via the type atom) (here omitted, since it depends on the traces in E+ ∪ E−). We
assume a constant declaration of type atom for each p ∈ P. Analogously to the plain
ASP encoding, the predicates edge/2, label/2 encode the labeled syntax tree of a LTLf

formula. The constant n below refers to the maximum size of the target formula to be
inferred. Notice the mode bias consists only of #modeh directives: thus the inductive
solution will be a set of facts matching the predicates in Example 2, which can be
interpreted as the encoding of a LTLf formula.

#constant(node_id, 1..n).

#constant(op, next).

#constant(op, until).

#constant(op, eventually).

#constant(op, always).

#constant(op, and).

#constant(op, neg).

#constant(op, or).

#constant(op, implies).

#modeh(edge(const(node_id), const(node_id))).

#modeh(label(const(node_id), const(op))).

#modeh(label(const(node_id), const(atom))).

Background knowledge. We assume the logic program PLTLf to be the background
knowledge of our LAS task. We assume an atom proposition(a) for each a ∈ P. Ba-
sically, since the evaluation of the inductive solution over examples is automatically
handled by the ILASP system, it is not needed to handle the evaluation of a formula

Towards ILP-based LTLf passive learning 11

over multiple traces in the encoding. Thus, we drop the first term of the predicates
holds/3, last/2, sat/1, unsat/1.

Encoding constraints over search space. A candidate inductive solution H ⊆ SM

models a syntax tree encoding a LTLf formula according to the previously defined
fact schema, using predicates node/1, edge/2, label/2. The following ASP program
represents the context of a special positive example e∗, which imposes syntactical con-
straints over the syntax tree of the candidate inductive solution. This addresses the
same constraints as the ones in Ptree and Plabel.

% Nodes are terms that appear in edge/2 or first term of label/2

node(X) :- label(X,_).

node(X) :- edge(_,X).

node(X) :- edge(X,_).

% Don’t skip nodes

node(X) :- node(X+1), X >= 1.

% The syntax tree of the formula must be connected

reach(1). reach(T) :- edge(R,T), reach(R).

:- node(X), not reach(X).

:- node(X), not edge(_,X), X > 1.

% Bounded fan-out for logic operators

:- node(X), 3 #count { Z: edge(X,Z) }.

% Exactly one label per node

:- node(X), not label(X,_).

:- label(X,A), label(X,B), A < B.

% Syntax tree admits a BFS-indexing

id(1,(0,0)).

id(V,(U,V*V+U)) :- edge(U,V).

:- id(I,RI), id(I+1, RJ), RI >= RJ.

:- id(I+1,RI), id(I,RJ), RI <= RJ.

% Labels must match node’s arity

arity(X,0) :- node(X), not edge(X,_).

arity(X,2) :- node(X), edge(X,Y), edge(X,Y1), Y < Y1.

arity(X,1) :- node(X), not arity(X,0), not arity(X,2).

:- arity(X,N), label(X,Y), not symbol(Y,N).

symbol(A,0) :- proposition(A).

symbol(next,1). symbol(until,2). symbol(eventually,1). symbol(always,1).

symbol(neg,1). symbol(and,2). symbol(or,2). symbol(implies,2).

Encoding examples. We encode π ∈ E+ as a positive example which includes the
constant sat in the inclusion set and an empty exclusion set, while π ∈ E− includes
the constant unsat in the inclusion set and an empty exclusion set. In both cases, the
context of the example consists of P (π) for π ∈ E+ ∪ E−. Similarly, we drop the term
TID from the predicates trace/3, trace/2 as for the background knowledge program.

6 Evaluation

This section reports an experimental evaluation that aims at assessing both ASP-based
approaches presented in the previous section, and to compare existing solutions based

12 A. Ielo et al.

on SAT and SMT. In the experimental evaluation we used the event logs pertaining
to the passive learning of attack signatures on cellular networks, and partitioned each
event log into positive and negative traces. Signatures are formulae of kind Gφ, which
characterize the positive traces of each log on each time instant. A comprehensive
description of each log is available in [2] and its technical report. We compare our
ILASP-based solution with our plain ASP solution in order to assess whether ILP can
help in this setting, as well as other SAT-based approaches previously implemented in
literature, referring to their implementation in the SySLite system. Experimental data
and full encodings are available on GitHub (https://github.com/ilp2023-27/data).

Execution environment. All experiments were executed on an Intel(R) Xeon(R)
Gold 5118 CPU @ 2.30GHz, 512GB RAMmachine, using Clingo version 5.4.0, Python
3.10, ILASP 4.2.0 and the version of SySLite available in the authors’ repository. All
experiments were run in parallel using GNU Parallel [33]. We report execution time in
seconds, with a timeout of 3600 seconds execution time on each event log. Currently,
the most appropriate ILASP version for the task is ILASP 2i, which is the one we use
to run the experiments.

Data. The dataset is composed by 18 logs: AKA Bypass (AKA), uthentication Failure
(AF), Bank Transaction (BT), Chinese Wall Policy (CWP), Dynamic Separation Policy
(DSP), EMM Information (EMM), Financial Institute (FI), GLBA, HIPPA 16450A2
(HIPPA-1), HIPPA 16450A3 (HIPPA-2), Identity Malformed (IM), IMSI Catching
(IMSI-1), IMSI Cracking (IMSI-2), Measurement Report (MR), NULL Encryption
(NE), Numb Attack (NA), Paging with IMSI (IMSI-3), RLF Report (RLF). We consid-
ered each log as an instance for the passive learning problem. Since SySLite algorithms
target pure-past formulae, we reverse each trace in the log in order to use our encodings

Table 1. Execution time in seconds for compared methods over the event logs. Best
execution time is in bold. T.O denotes timeout (execution time >3600s).

Event Log SySLitesygus ILASP 2i Abduction SySLitesat SySLiteguided sat

AKA 144.2 62.542 612.31 T.O. T.O.

AF 1.98 3.32 4.705 360.7 T.O.

BT 2.17 1.437 13.239 659.23 133.19

CWP 22.01 7.739 148.891 T.O. T.O.

DSP T.O. T.O T.O T.O. T.O.

EMM 4.64 5.78 7.207 1155.18 T.O.

FI 51.59 19.865 510.189 T.O. T.O.

GLBA 26.86 13.606 183.542 T.O. T.O.

HIPPA-1 25.96 31.994 194.694 T.O. T.O.

HIPPA-2 2.41 1.693 15.962 707.43 153.41

IM 4.04 4.483 5.837 977.77 T.O.

IMSI-1 3.72 3.584 4.877 774.34 T.O.

IMSI-2 6.89 4.782 8.092 1144.58 T.O.

MR 995.85 55.622 T.O T.O. T.O.

NE 2.43 4.301 4.706 480.18 T.O.

NA 2.54 2.545 2.8 1877.79 T.O.

IMSI-3 16.55 11.652 98.643 T.O. T.O.

RLF 560.44 23.266 T.O T.O. T.O.

Towards ILP-based LTLf passive learning 13

and samples2ltl tool. In this way, all approaches are able to learn the same formulae
up to dual relabeling of temporal operators involved in the formulae. In particular, we
indicate by SySLiteL, L ∈ {sygus, sat, sat guided} the different algorithms available in
SySLite, implementing SMT- and SAT-based algorithms. In particular, the sygus algo-
rithm is SMT-based, exploiting bit-vector theories for efficient computations. ILASP 2i

column refers to our ILASP encoding, and Abduction column refers to our (incremen-
tal) plain ASP encoding that uses abduction. Since the SySLite tool targets pure-past
formulae rooted on the historically operator (the pure-past dual of G), we (i) invert
the traces before defining our LAS and ASP encoding; (ii) add to our encoding the
constraint that target formulae must be rooted in G. Since ILASP currently does not
support incremental solving (wrt the definition of the hypothesis space), but rather
solves a complexity-wise harder optimization task, we assume the maximum size of the
target formula is known beforehand. All systems support the same set of temporal logic
operators {X,U,F,G,∧,∨,¬}. We run the different algorithms available in SySLite with
a timeout of one hour, along with ILASP and our abductive encoding, on a suite of
event logs. The solution based on ILASP compares favorably, as shown in Table 1, with
the algorithms implemented in SySLite, and even outperforms it on some event logs.
Our plain ASP solution is noticeably slower than the sygus SMT-based algorithm and
ILASP alike. This suggests that ILP based on ILASP might be a viable approach to
scale beyond current model-based techniques without over-relying on pure enumerative
approaches.

7 Related works

The seminal work [28] defines two algorithms for the passive learning problem of LTLf

formulae. One of them introduces SAT solvers as practical tools for LTLf passive learn-
ing, encoding formulae’s syntax trees and their evaluation over traces as a satisfiability
problem, while the other exploits a decision tree to propositionally combine smaller
LTLf formulae, addressing scalability but dropping the “optimality” of the solution (in
terms of formula size). Another approach [30], in order to improve scalability, targets
the directed fragment of LTLf, which however is not as expressive as LTLf as it is un-
able to express the until temporal operator. Other SAT-based works target equivalent
formalisms (such as alternate automata [4]), that can then be translated into LTLf for-
mulae. The SySLite [2] system targets pure-past LTLf formulae of the form Hφ, where
H is the past version of the operator G. It implements different SAT-based algorithms
(the ones in [31] as well as SMT-based syntax-guided synthesis [31] enumeration which
exploits bit-vector theories for fast evaluation. Recently, an approach based solely on
a highly optimized exhaustive search has been proposed [16] that enumerates formulae
of increasing size and performs pruning on syntactic and semantic criteria on a single
trace at a time. A direct comparison with [16] could not be implemented since the
tool does not expose an API to force learning of specific formulae, e.g. starting with
G. Thus implementing a comprehensive empirical comparison, in the specific case of
learning signatures, would require a modification of the tool of [16].From the theoret-
ical standpoint, computational complexity-wise, the authors of [10] identify multiple
fragments of LTL for which the passive learning problem is already NP-complete, and
sample complexity-wise (e.g., how many examples are required to guarantee a given
formula is learned) it is known [4] passive learning of arbitrary LTLf formulae can be
done with an exponential number of examples under some conditions.

14 A. Ielo et al.

8 Conclusion

In this paper, we presented an ILP approach based on the ILASP system for the passive
learning of LTLf formulae. Our approach embeds LTLf semantics into a normal logic
program, similar to previous works based on SAT, which is provided as the background
knowledge. We outperform SAT-based techniques as implemented in SySLite and com-
pare favorably against its best-performing SMT-based syntax-guided enumeration al-
gorithm. We also implement an abduction-based algorithm based on ASP, proving our
performance gains are due to ILASP’s inductive loop rather than the use of plain ASP
with respect to SAT or SMT encoding. As future work we plan to improve the scalabil-
ity of our proposed method and extend it to take into account data attached to events
that occur during the system’s execution. A comparison with the approach of [16] is
also in our plans to possibly demonstrate there is an advantage versus exhaustive search
methods. Another interesting extension we are interested in, which would extend the
applicability of passive learning in real-world settings, is to apply our techniques to
noisy domains [13, 27] (where traces or their labels might contain errors) by exploiting
ILASP’s support for example’s penalties and ASP optimization techniques. It would
also be interesting to check whether a compilation-based ASP system [26] can be ben-
eficial to improve the performance of the abductive approach, where we conjecture the
number of symbols generated by evaluating candidate solutions over the event log is
one of the causes of performance degradation.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-
ing between flexibility and support. Comput. Sci. Res. Dev. 23(2), 99–113 (2009)

2. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: FM-
CAD. pp. 93–103 (2020)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

4. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS. pp. 621–630 (2019)

5. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in
computer science, Springer (1990)

6. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. Trans. Petri
Nets Other Model. Concurr. 2, 278–295 (2009)

7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

8. Dodaro, C., Fionda, V., Greco, G.: LTL on weighted finite traces: Formal founda-
tions and algorithms. In: IJCAI. pp. 2606–2612 (2022)

9. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and
complexity. Theor. Comput. Sci. 189(1-2), 129–177 (1997)

10. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: ICGI. pp. 237–250 (2021)

11. Fionda, V., Greco, G.: LTL on finite and process traces: Complexity results and a
practical reasoner. J. Artif. Intell. Res. 63, 557–623 (2018)

Towards ILP-based LTLf passive learning 15

12. Furelos-Blanco, D., Law, M., Jonsson, A., Broda, K., Russo, A.: Induction and
exploitation of subgoal automata for reinforcement learning. J. Artif. Intell. Res.
70, 1031–1116 (2021)

13. Gaglione, J., Neider, D., Roy, R., Topcu, U., Xu, Z.: Maxsat-based temporal logic
inference from noisy data. Innov. Syst. Softw. Eng. 18(3), 427–442 (2022)

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

16. Ghiorzi, E., Colledanchise, M., Piquet, G., Bernagozzi, S., Tacchella, A., Natale,
L.: Learning linear temporal properties for autonomous robotic systems. IEEE
Robotics Autom. Lett. 8(5), 2930–2937 (2023)

17. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI. pp. 854–860. IJCAI/AAAI (2013)

18. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based
system?! Theory Pract. Log. Program. 23(1), 299–361 (2023)

19. Kazmi, M., Schüller, P., Saygın, Y.: Improving scalability of inductive logic pro-
gramming via pruning and best-effort optimisation. Expert Systems with Applica-
tions 87, 291–303 (2017)

20. Kolter, R.: Inductive temporal logic programming. Ph.D. thesis, University of
Kaiserslautern (2009)

21. Law, M., Russo, A., Broda, K.: The ILASP system for learning answer set pro-
grams. www.ilasp.com (2015)

22. Law, M., Russo, A., Broda, K.: Simplified reduct for choice rules in ASP. Tech.
rep., Department of Computing (DTR2015-2), Imperial College London (2015)

23. Law, M., Russo, A., Broda, K.: The complexity and generality of learning answer
set programs. Artif. Intell. 259, 110–146 (2018)

24. Law, M., Russo, A., Broda, K.: Logic-based learning of answer set programs. In:
Reasoning Web. pp. 196–231 (2019)

25. Li, J., Pu, G., Zhang, Y., Vardi, M.Y., Rozier, K.Y.: Sat-based explicit ltlf satisfi-
ability checking. Artificial Intelligence 289, 103369 (2020)

26. Mazzotta, G., Ricca, F., Dodaro, C.: Compilation of aggregates in ASP systems.
In: AAAI. pp. 5834–5841. AAAI Press (2022)

27. Mrowca, A., Nocker, M., Steinhorst, S., Günnemann, S.: Learning temporal spec-
ifications from imperfect traces using bayesian inference. In: DAC. p. 96. ACM
(2019)

28. Neider, D., Gavran, I.: Learning linear temporal properties. In: FMCAD. pp. 1–10
(2018)

29. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE Computer
Society (1977)

30. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: TACAS. Lecture Notes in Computer
Science, vol. 13243, pp. 263–280 (2022)

31. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart and
Fast Term Enumeration for Syntax-Guided Synthesis. In: CAV. pp. 74–83 (2019)

32. Ribeiro, T., Folschette, M., Magnin, M., Okazaki, K., Kuo-Yen, L., Inoue, K.:
Diagnosis of Event Sequences with LFIT. In: The 31st International Conference
on Inductive Logic Programming (ILP) (2022)

33. Tange, O.: GNU parallel: The command-line power tool. login Usenix Mag. 36(1)
(2011)

