
Abstraction of Situation Calculus Concurrent Game Structures

Yves Lespérance1, Giuseppe De Giacomo2, Maryam Rostamigiv3, Shakil M. Khan3

1York University, Toronto, ON, Canada
2University of Oxford, Oxford, UK

3University of Regina, Regina, SK, Canada
lesperan@eecs.yorku.ca, giuseppe.degiacomo@cs.ox.ac.uk, maryam.rostamigiv@uregina.ca, shakil.khan@uregina.ca

Abstract
We present a general framework for abstracting agent behav-
ior in multi-agent synchronous games in the situation calcu-
lus, which provides a first-order representation of the state
and allows us to model how plays depend on the data and
objects involved. We represent such games as action theo-
ries of a special form called situation calculus synchronous
game structures (SCSGSs), in which we have a single action
tick whose effects depend on the combination of moves se-
lected by the players. In our framework, one specifies both
an abstract SCSGS and a concrete SCSGS, as well as a re-
finement mapping that specifies how each abstract move is
implemented by a Golog program defined over the concrete
SCSGS. We define notions of sound and complete abstrac-
tion with respect to a mapping over such SCSGS. To ex-
press strategic properties on the abstract and concrete games
we adopt a first-order variant of alternating-time µ-calculus
µATL-FO. We show that we can exploit abstraction in veri-
fying µATL-FO properties of SCSGSs under the assumption
that agents can always execute abstract moves to completion
even if not fully controlling their outcomes.

Introduction
Many multi-agent applications can be viewed games where
some agents try to ensure that certain objectives hold no
matter how the environment and other agents behave. Log-
ics such as Alternating-Time Temporal Logic (ATL) (Alur,
Henzinger, and Kupferman 2002), Coalition Logic (CL)
(Pauly 2002), and Strategy Logic (SL) (Chatterjee, Hen-
zinger, and Piterman 2010; Mogavero et al. 2014) have
been defined to specify properties of such systems and ver-
ify them through techniques like model checking. However,
as the game/system becomes more complex, it becomes
very important to use abstraction to explain how the game
evolves and do strategic reasoning more effectively.

(Banihashemi, De Giacomo, and Lespérance 2017)
(BDL17) recently proposed a formal account of agent ab-
straction based on the situation calculus (McCarthy and
Hayes 1969; Reiter 2001) and the ConGolog agent program-
ming language (De Giacomo, Lespérance, and Levesque
2000). They assume that one has a high-level/abstract ac-
tion theory, a low-level/concrete action theory, both repre-
senting the agent’s behavior at different levels of detail, and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a refinement mapping between the two. The refinement map-
ping specifies how each high-level action is implemented by
a low-level ConGolog program and how each high-level flu-
ent can be translated into a low-level formula. This work
defines notions of abstraction between such action theories
in terms of the existence of a suitable bisimulation rela-
tion (Milner 1971) between their respective models. Such
abstractions have many useful properties that ensure that
one can reason about the agent’s actions (e.g., executabil-
ity, projection, and planning) at the abstract level, and refine
and concretely execute them at the low level. The frame-
work can also be used to generate high-level explanations
of low-level behavior. More recently, (Banihashemi, De Gi-
acomo, and Lespérance 2023), building upon (De Giacomo
and Lespérance 2021), extended their abstraction framework
to agents operating in nondeterministic environments, where
the agent does not fully control the outcome of its actions.

In this paper, we further generalize this abstraction frame-
work to apply to multi-agent synchronous games. To repre-
sent such games, we follow (De Giacomo, Lespérance, and
Pearce 2016) and use action theories of a special form called
situation calculus synchronous game structures (SCSGSs),
where we have a single action tick whose effects depend
on the combination of moves selected by the players. The
SCSGS specifies the legal moves available to each agent in
each situation and how fluents change value when a tick
joint move by all the agents is performed. To express strate-
gic properties on the abstract and concrete games we adopt
a first-order variant of alternating-time µ-calculus µATL-FO.

In our game abstraction framework, one specifies both an
abstract SCSGS and a concrete SCSGS, as well as a refine-
ment mapping that specifies how each abstract move is im-
plemented by a Golog (Levesque et al. 1997) program de-
fined over the concrete SCSGS.

We show that we can exploit abstraction in verifying
µATL-FO properties of SCSGSs under the assumption that
agents can always execute abstract moves to completion
even if not fully controlling their outcomes. Our framework
is based on the situation calculus which provides a first-order
representation of the state, allowing us to model how sys-
tem processes depend on the data and objects involved. Our
account is more general than (Banihashemi, De Giacomo,
and Lespérance 2023), as we support multiple agents that
act synchronously.

While this paper has a foundational nature, we note that
our results are relevant for concrete applications where var-
ious agents need to be controlled and coordinated in a first-
order state setting, such as those in the context of Smart
Manufacturing (De Giacomo et al. 2022) and Smart Busi-
ness Process Management (Marrella, Mecella, and Sardiña
2017).

Preliminaries
Situation Calculus. The situation calculus is a well
known predicate logic language for representing and rea-
soning about dynamically changing worlds (McCarthy and
Hayes 1969; Reiter 2001). All changes to the world are the
result of actions, which are terms in the language. A pos-
sible world history is represented by a term called a sit-
uation. The constant S0 is used to denote the initial sit-
uation. Sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor sit-
uation resulting from performing action a in situation s.
Predicates and functions whose value varies from situation
to situation are called fluents, and are denoted by sym-
bols taking a situation term as their last argument (e.g.,
Open(Door1, s)). The abbreviation do([a1, . . . , an], s)
stands for do(an, do(an−1, . . . , do(a1, s) . . .)); for an ac-
tion sequence a⃗, we write do(⃗a, s) for do([⃗a], s). In this lan-
guage, a dynamic domain can be represented by a basic ac-
tion theory (BAT), where successor state axioms (SSA) rep-
resent the causal laws of the domain and and provide a solu-
tion to the frame problem (Reiter 2001). A special predicate
Poss(a, s) is used to state that action a is executable in situ-
ation s; the precondition axioms characterize this predicate.
Executable(s) means that every action done in reaching sit-
uation s was executable in the situation in which it occurred.

Synchronous Game Structures. Following (De Gia-
como, Lespérance, and Pearce 2016), we focus on games
where there are n players/agents each of whom chooses a
move at every time step. All such moves are executed syn-
chronously and determine the next state of the game. At each
time step, the state of the game is fully observable by all
agents, as are all past moves of every agent. To represent
such multi-player synchronous games, we use a special class
of BATs, called situation calculus synchronous game struc-
tures (SCSGSs), which are defined as follows.
Agents A SCSGS D involves a finite set of n agents, and we
use a subsort Agents of Objects which includes these finitely
many agents Ag1, . . . ,Agn, each denoted by a constant, and
for which unique names Ag i ̸= Agj for i ̸= j and domain
closure Agent(x) ≡ x = Ag1 ∨ · · · ∨ x = Agn hold.
Moves. We also use a second subsort Moves of Objects, rep-
resenting the possible moves of the agents. These come in
finitely many types, represented by function symbols Mi(x⃗),
which are parameterized by objects x⃗ , with Move(m) ≡∨

i ∃x⃗.m = Mi(x⃗). Given that the parameters range over
Objects, each agent may have an infinite number of possible
moves at each time step. We have unique name and domain
closure axioms (parameterized by objects) for these func-
tions Mi(x⃗) ̸= Mj(y⃗) for i ̸= j, and Mi(x⃗) = Mi(y⃗) ⊃
x⃗ = y⃗.

Actions. In SCSGSs, there is only one action type,
tick(m1, . . . ,mn), which represents the execution of a joint
move by all the agents at a given time step. The action
tick has exactly n parameters, m1, . . . ,mn, one per agent,
which are of sort Moves and corresponds to the simultaneous
choice of the move to perform by the n different agents.
Legal moves. The legal moves available to each agent in a
given situation are specified formally using a special predi-
cate LegalM , which is defined by statements of the follow-
ing form (one for each agent Ag i and move type Mi):

LegalM (Agi,Mi(x⃗), s)
.
= ΦAgi,Mi(x⃗, s)

i.e., agent Ag i can legally perform move Mi(x⃗) in situation
s if and only if ΦAgi,Mi(x⃗, s) holds. Technically LegalM is
an abbreviation for ΦAgi,Mi(x⃗, s), which is a uniform for-
mula (i.e., a formula that only refers to a single situation s).
Precondition axioms. The precondition axiom for the action
tick is fixed and specified in terms of LegalM as follows:

Poss(tick(m1, . . . ,mn), s) ≡
∧

i=1,...,n

LegalM (Ag i,mi, s)

Thus the joint action by all agents tick(m1, . . . ,mn) is exe-
cutable if and only if each selected move mi is a legal move
for agent Ag i in situation s. Since we only have one action
type tick , this is the only precondition axiom in Dposs.
Successor state axioms. We have successor state axioms
Dssa, specifying the effects and frame conditions of the joint
moves tick(m1, . . . ,mn) on the fluents. Such axioms, as
usual in basic action theories, are domain specific, and char-
acterize the actual game under consideration. Within such
axioms, the agent moves, which occur as parameters of tick ,
determine how fluents change as the result of joint moves.1

Initial situation description. Finally, the initial state of the
game is axiomatized in the initial situation description DS0

as usual, in a domain specific way.

High-Level Programs and Golog. To represent and rea-
son about complex actions or processes obtained by suit-
ably executing atomic actions, various so-called high-level
programming languages have been defined. Here we con-
centrate on (a variant of) Golog (Levesque et al. 1997) that
includes the following constructs:

δ ::= α | φ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗

In the above, α is an action term, possibly with parameters. φ
is a situation-suppressed formula, i.e., a formula with all sit-
uation arguments in fluents suppressed. As usual, we denote
by φ[s] the formula obtained from φ by restoring the situa-
tion argument s into all fluents in φ. The sequence of pro-
gram δ1 followed by program δ2 is denoted by δ1; δ2. Pro-
gram δ1|δ2 allows for the nondeterministic choice between
programs δ1 and δ2, while πx.δ executes program δ for some
nondeterministic choice of a binding for object variable x

1In many cases, moves don’t interfere with each other and the
effects are just the union of those of each move. One can also ex-
ploit previous work on axiomatizing parallel actions to generate
successor state axioms (Reiter 2001; Pinto 1998).

(observe that such a choice is, in general, unbounded). δ∗
performs δ zero or more times.

Formally, the semantics of Golog can be specified
in terms of single-step transitions, using two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ
in situation s may lead to situation s′ with δ′ remaining
to be executed; and (ii) Final(δ, s), which holds if pro-
gram δ may legally terminate in situation s. The definitions
of Trans and Final that we use are as in (De Giacomo,
Lespérance, and Pearce 2010); differently from (De Gia-
como, Lespérance, and Levesque 2000), the test construct
φ? does not yield any transition, but is final when satisfied.
Predicate Do(δ, s, s′) means that program δ, when executed
starting in situation s, has as a legal terminating situation s′,
and is defined as Do(δ, s, s′)

.
= ∃δ′.T rans∗(δ, s, δ′, s′) ∧

Final(δ′, s′) where Trans∗ denotes the reflexive transitive
closure of Trans .

For simplicity in this paper, we use a restricted class of
Golog programs which are situation-determined (SD) (De
Giacomo, Lespérance, and Muise 2012), i.e., for every se-
quence of actions, the remaining program is uniquely deter-
mined by the resulting situation: SitDet(δ, s)

.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′.

Move-Based Golog. In this paper, we will use “standard”
Golog programs to specify tasks for the system or a coalition
of agents in it; we call these system programs. But we will
also use a special kind of Golog programs defined in (De
Giacomo, Lespérance, and Pearce 2016) that we call move-
based programs to specify the legal moves of an agent in a
SCSGS as well as how high-level moves are implemented
at the low level. Move-based programs are Golog programs
where atomic actions are replaced by atomic moves. Apart
from this change the syntax remains the same.

To define the semantics of such programs, they introduce
the predicate TransM (δ, s, δ′,m) to mean that the program
δ in situation s can perform move m leaving δ′ as the re-
maining program to execute, and the predicate FinalM (δ, s)
to mean that program δ can be considered terminated in sit-
uation s.

We can then define the legal moves of agents procedurally
in terms of such programs by introducing a special fluent
CurrProg(Ag i, δi, s) that stores the remaining program of
each agent in the situation:

LegalM (Agi,m, s)
.
=

CurrProg(Ag i, δi, s) ∧ ∃δ′i.TransM (δi, s, δ
′
i,m)

where the successor state axiom for CurrProg is:2

CurrProg(Ag i, δ
′
i, do(tick(m1, . . . ,mn), s)) ≡

CurrProg(Agi, δi, s) ∧ TransM (δi, s, δ
′
i,mi)

That is, a move mj is legal for agent Agj in situation s if
her current remaining program δj in s can perform mj , and

2Here, we assume that move-based programs are move de-
termined: MoveDet(δ, s)

.
= ∀m, δ′, δ′′.TransM (δ, s, δ′,m) ∧

TransM (δ, s, δ′′,m) ⊃ δ′ = δ′′. Each agent’s pro-
gram should remain move determined in every game situation:
∀s.δi.Executable(s)∧CurrProg(Ag i, δi, s) ⊃ MoveDet(δi, s).

when a joint move tick(m1, . . . ,mn) is performed, the cur-
rent remaining program of each agent Ag i is updated to be
what remains of her current program after her move mi. We
use C to denote the axioms defining the Golog language, in-
cluding TransM and FinalM for move-based programs.

Abstraction of SCSGSs
In this section, we show how we can extend the agent ab-
straction framework of (BDL17) to handle SCSGSs. As in
(BDL17), we assume that there is a high-level/abstract (HL)
action theory Dh and a low-level/concrete (LL) action the-
ory Dl representing the agent’s possible behaviors at differ-
ent levels of detail. In (BDL17), these are standard BATs;
here, we assume that they are both SCSGSs. Dh (resp. Dl)
involves a finite set of agents Agents , a finite set of move
types Movesh (resp. Moves l), a set of primitive actions
Ah = {tickh} (resp. Al = {tick l}) , and a finite set of
primitive fluent predicates Fh (resp. Fl). The terms of ob-
ject sort are assumed be a countably infinite set N of stan-
dard names for which we have the unique name assumption
and domain closure. Also, Dh and Dl are assumed to share
no domain specific symbols except for the set of standard
names for objects N . For simplicity and w.l.o.g., it is as-
sumed that there are no functions other than constants and
no non-fluent predicates.

Refinement Mapping. In (BDL17), one relates the HL
and LL BATs by defining a refinement mapping that spec-
ifies how HL atomic actions are implemented at the LL
and how HL fluents can be translated into LL state for-
mulas. In a BAT, one can simply map each HL atomic ac-
tion type to a LL program that the agent uses to imple-
ment the action. In a SCSGS however, we need to spec-
ify how each HL move is implemented at the LL. Thus
we say that a SCSGS refinement mapping m is a triple
⟨mm,ma,mf ⟩ where mm associates each HL move type m
in Movesh to a move-determined (MD) move-based Golog
program δm defined over the LL SCSGS theory that im-
plements the move, i.e., mm(m(x⃗)) = δm(x⃗), ma maps
the unique HL action tickh ∈ Ah to a Golog system pro-
gram that executes the mapping of the moves involved
synchronously in parallel, i.e., ma(tick(m1, . . . ,mn)) =
sync(mm(m1), . . . ,mm(mn)), and (as in (BDL17)) mf

maps each situation-suppressed HL fluent F (x⃗) in Fh

to a situation-suppressed formula ϕF (x⃗) defined over the
LL theory that characterizes the concrete conditions under
which F (x⃗) holds in a situation, i.e., mf (F (x⃗)) = ϕF (x⃗).

We support the synchronous concurrency construct by ex-
tending the Golog semantics as follows:

Trans(sync(δm1 , . . . , δmn), s, δ
′, s′) ≡

∃δ′m1
, . . . δ′mn

.∃m1, . . . ,mn.δ
′ = sync(δ′m1

, . . . , δ′mn
) ∧

TransM(δm1 , s, δ
′
m1

,m1) ∧ . . . ∧ TransM(δmn , s, δ
′
mn

,mn)
∧ s′ = do(tick(m1, . . . ,mn), s)

Final(sync(δm1 , . . . , δmn), s) ≡
FinalM(δm1 , s) ∧ . . . ∧ FinalM(δmn , s)

We can extend a mapping to a sequence of system
actions in the obvious way, i.e., ma(α1, . . . , αn)

.
=

ma(α1); . . . ;ma(αn) for n ≥ 1 and ma(ϵ)
.
= nil. We also

extend the notation so that mf (ϕ) stands for the result of
substituting every fluent F (x⃗) in situation-suppressed for-
mula ϕ by mf (F (x⃗)).

We also need to ensure that the mapping captures all the
legal behaviors that agents can display at the LL. This is
essential if we want to do strategic reasoning at the HL and
be able to refine the resulting strategies into LL ones that
achieve the objectives. This can be done analogously to how
BATs for nondeterministic domains (NDBATs) are mapped
in (Banihashemi, De Giacomo, and Lespérance 2023). But
there is a new complication here. We need to ensure that at
the LL, all agents start their HL moves at the same time and
end them at the same time, otherwise ensuring bisimilarity
with respect to (wrt) the mapping becomes very difficult. To
get this, we impose the following constraint:

Constraint 1 (Proper Refinement Mapping)
For every high-level system action sequence α⃗ and every
agent i ∈ Agents, we have that:

Dl ∪ C |= ∀s.(Do(ma(α⃗), S0, s) ⊃
∀mi, s

′.(Do(sync(⃗(πm.m)∗,mm(mi), ⃗(πm.m)∗), s, s′) ⊃
∃m1, . . . ,mi−1,mi+1, . . . ,mn.

Do(ma(tick(m1, . . . ,mi−1,mi,mi+1, . . . ,mn)), s, s
′)))

This ensures that for every situation s′ that can be reached
by an agent i executing a refinement of a HL move mi with
other agents executing arbitrary legal LL moves, there exist
HL legal moves by the other agents that make the system
reach s′. To guarantee this, we have to ensure that at the
LL, agents only perform moves that refine HL moves, and
that all agents begin and end refinements of HL moves at
the same time. We discuss below how we can specify the
legal moves to respect this. We say that a SCSGS refinement
mapping m is proper with respect to low-level SCSGS Dl if
this constraint holds.

m-Bisimulation. To relate the HL and LL models/theo-
ries, (BDL17) define a variant of bisimulation (Milner 1971,
1989). Let Mh be a model of the HL theory Dh, and Ml

a model of the LL theory Dl ∪ C. We say that situation
sh in Mh is m-isomorphic to situation sl in Ml, written
sh ∼Mh,Ml

m sl, if and only if

Mh, v[s/sh] |= F (x⃗, s) iff Ml, v[s/sl] |= m(F (x⃗))[s]
for every high-level primitive fluent F (x⃗) in Fh and
every variable assignment v (v[x/e] stands for the
assignment that is like v except that x is mapped to e).

A relation B ⊆ ∆Mh

S ×∆Ml

S (where ∆M
S stands for the sit-

uation domain of M) is an m-bisimulation relation between
Mh and Ml if ⟨sh, sl⟩ ∈ B implies that:

1. sh ∼Mh,Ml
m sl, i.e., sh and sl evaluate HL fluents the

same;
2. for every HL primitive action type A in Ah , if

there exists s′h such that Mh, v[s/sh, s
′/s′h] |=

Poss(A(x⃗), s) ∧ s′ = do(A(x⃗), s), then there exists s′l
such that Ml, v[s/sl, s

′/s′l] |= Do(ma(A(x⃗)), s, s′) and
⟨s′h, s′l⟩ ∈ B; and

3. for every HL primitive action type A in Ah , if there exists
s′l such that Ml, v[s/sl, s

′/s′l] |= Do(ma(A(x⃗)), s, s′),
then there exists s′h such that Mh, v[s/sh, s

′/s′h] |=
Poss(A(x⃗), s) ∧ s′ = do(A(x⃗), s) and ⟨s′h, s′l⟩ ∈ B.

Mh is m-bisimilar to Ml, written Mh ∼m Ml, if and only if
there exists an m-bisimulation relation B between Mh and
Ml such that (SMh

0 , SMl
0) ∈ B.

The definition of m-bisimulation for SCSGSs can remain
as in (BDL17) where conditions (ii) and (iii) are applied to
the high-level primitive action tickh and its mapping ma.
The definition of m-bisimulation ensures that performing a
HL tick action results in m-bisimilar situations.

(BDL17) use m-bisimulation to define notions of sound/
complete abstraction. Dh is a sound abstraction of Dl rel-
ative to refinement mapping m if and only if, for all mod-
els Ml of Dl ∪ C, there exists a model Mh of Dh such that
Mh ∼m Ml. With a sound abstraction, whenever the HL
theory entails that a sequence of actions is executable and
achieves a certain condition, then the LL must also entail
that there exists an executable refinement of the sequence
such that the mapped condition holds afterwards. Moreover,
whenever the LL takes the executability of a refinement of
a HL action to be satisfiable, then the HL does as well. A
dual notion is also defined: Dh is a complete abstraction of
Dl relative to refinement mapping m if and only if, for all
models Mh of Dh, there exists a model Ml of Dl ∪ C such
that Ml ∼m Mh.

Example. Our running example involves a repair shop
where a set of agents collaborate to repair items and ship
them to customers. The set of agents consists of two repair
robots RR1 and RR2, a dispatcher Disp that assigns items
to either of these, a shipper Sh, and an agent representing the
customers Cust. We assume that items arrive at the shop, are
assigned to one of the repair robots by the dispatcher, then
are repaired, and finally are shipped by the shipper.

The HL SCSGS Drs
h has the following LegalM axioms:

LegalM (ag, arrive(i), s)
.
= ag = Cust ∧ ¬Arrived(i, s)

LegalM (ag, assign(i, ag′), s)
.
=

ag = Disp ∧ (ag′ = RR1 ∨ ag′ = RR2) ∧
Arrived(i, s) ∧ ¬∃ag′′.Assigned(i, ag′′, s)

LegalM (ag, repair(i), s)
.
= (ag = RR1 ∨ ag = RR2) ∧

Assigned(i, ag, s) ∧ ¬Repaired(i, s)
LegalM (ag, ship(i), s)

.
=

ag = Sh ∧Repaired(i, s) ∧ ¬Shipped(i, s)
LegalM (ag, wait, s)

.
= True

Drs
h also includes the following SSAs (we use the short-

hand notation m ∈ a to mean that move m is one of the
moves in the joint move a = tick(m1, . . . ,mn)):

Arrived(i, do(a, s)) ≡ arrive(i) ∈ a ∨Arrived(i, s)

Assigned(i, ag, do(a, s)) ≡
assign(i, ag) ∈ a ∨Assigned(i, ag, s)

Repaired(i, do(a, s)) ≡ repair(i) ∈ a ∨Repaired(i, s)

Shipped(i, do(a, s)) ≡ ship(i) ∈ a ∨ Shipped(i, s)

Drs
h also contains the following initial state axioms:

∀i.Arrived(i, S0) ≡ i = 1 ∀i, ag.¬Assigned(i, ag, S0)
∀i.¬Repaired(i, S0) ∀i.¬Shipped(i, S0)

Before presenting the LL theory, let us define the refine-
ment mapping mrs (we use subscripts to disambiguate HL
and LL moves with the same name):

mrs(arriveHL(i)) = ¬ArrivedLL(i)?; arriveLL(i);waitLL

mrs(assignHL(i, ag)) = ((ag = RR1 ∨ ag = RR2)
∧ArrivedLL(i) ∧ ¬∃ag′.AssignedLL(i, ag

′))?;
assignLL(i, ag);waitLL

mrs(repair(i)) = (AssignedLL(i, ag) ∧ ¬(Diagnosed(i)
∧ Fixed(i)))?; diagnose(i); fix(i)

mrs(ship(i)) = (Diagnosed(x) ∧ Fixed(i)
∧¬(Packed(i) ∧DroppedOff (i)))?; pack(i); dropOff (i)

mrs(waitHL) = waitLL;waitLL

mrs(ArrivedHL(i)) = ArrivedLL(i)

mrs(AssignedHL(i, ag)) = AssignedLL(i, ag)

mrs(Repaired(i)) = Diagnosed(i) ∧ Fixed(i)

mrs(Shipped(i)) = Packed(i) ∧DroppedOff (i)

We specify agents’ LL legal moves procedurally using the
move-based Golog language discussed earlier. Thus, in the
LL SCSGS Drs

l , we have the following initial state axioms
specifying the agents’ initial move-based programs:

CurrProg(Cust, δi, S0) ≡
δi = ((πi.mrs(arriveHL(i)))|mrs(wait))∗

CurrProg(Disp, δi, S0) ≡
δi = ((πi, ag.mrs(assignHL(i, ag)))|mrs(wait))∗

CurrProg(ag, δi, S0) ≡ (ag = RR1 ∨ ag = RR2) ∧
δi = ((πi.mrs(repair(i)))|mrs(wait))∗

CurrProg(Sh, δi, S0) ≡ δ = ((πi.mrs(ship(i)))|mrs(wait))∗

This says that agents can perform any sequence of refine-
ments of their HL moves as specified by the mapping.

We also have the standard legal move axiom for proce-
dural move-based Golog legal move specifications, as well
as the standard SSA for CurrentProg, as discussed earlier.
Drs

l also includes the following SSAs:

Arrived(i, do(a, s)) ≡ arrive(i) ∈ a ∨Arrived(i, s)

Assigned(i, ag, do(a, s)) ≡
assign(i, ag) ∈ a ∨Assigned(i, ag, s)

Diagnosed(i, do(a, s)) ≡ diagnose(i) ∈ a ∨Diagnosed(i, s)

Fixed(i, do(a, s)) ≡ fix(i) ∈ a ∨ Fixed(i, s)

Packed(i, do(a, s)) ≡ pack(i) ∈ a ∨ Packed(i, s)

DroppedOff (i, do(a, s)) ≡ dropOff (i) ∈ a ∨DroppedOff (i, s)

Drs
l also contains the following initial state axioms:

∀i.Arrived(i, S0) ≡ i = 1 ∀i, ag.¬Assigned(i, ag, S0)
∀i.¬Diagnosed(i, S0) ∀i.¬Fixed(i, S0)
∀i.¬Packed(i, S0) ∀i.¬DroppedOff (iS0)

In general, to ensure that a LL SCSGS satisfies Constraint
1, we need to make sure that agents begin and end refine-
ments of HL moves at the same time. A simple way to en-
sure this is to have all HL moves perform the same number

of LL moves, as we did above. But a more flexible way to do
this is to add synchronization moves at the LL.3 As well as
ensuring that refinements of HL moves begin and end at the
same time, we must make sure that the LL move sequences
produced match those allowed by the HL move mapping. If
we specify agents’ legal moves at the LL procedurally using
Golog programs as above, this is easy to do. If instead we
want to provide a declarative specification, then we need to
tailor the LL legal move conditions to ensure that moves can
only occur as allowed by the mapping.

We can show that:

Proposition 2 SCSGS Drs
h is a sound and complete ab-

straction of SCSGS Drs
l wrt refinement mapping mrs.

Proof Sketch We use Theorems 9 and 12 from (BDL17)
which identify a number of properties that must be entailed
by the low-level theory to have sound and complete abstrac-
tion wrt a mapping. First, we must show that after any re-
finement of a HL action sequence, a refinement of a HL ac-
tion is executable if and only if the mapped precondition
of the HL action holds. Second, we must show that after
any refinement of a HL action sequence, the mapped HL
successor state axioms hold over any refinement of a HL
action. Finally, we must show that the initial situations are
m-isomorphic (as we have complete information about the
initial state here).

Proposition 3 SCSGS refinement mapping mrs is proper
wrt SCSGS Drs

l .

Proof Sketch We prove this by induction on the length of
α⃗. Drs

l uses a procedural specification of legal moves, so the
proof is easy: the only legal moves at the LL are those that
are produced by a sequence of refinements of the agent’s HL
moves.

Notice that our framework supports synchronous moves
by the agents, not just turn-based games. In our example, we
can have a joint move where a repair robot repairs an item
at the same time as the shipper agent ships another item.
Furthermore, the effects of a joint move can depend on the
moves of several agents and their interaction, e.g., we can
represent a domain two robots are able to lift a heavy object
only if they both make a lift move synchronously.

Abstraction in Verifying Strategic Properties
µATL-FO. To express properties about SCSGSs, (De Gi-
acomo, Lespérance, and Pearce 2016) introduces the logic
µATL-FO, inspired by alternating-time µ-calculus, µATL, a
well-known generalization of ATL (Alur, Henzinger, and

3We can do this by introducing a new fluent
DoneHLmove(agt, s) and new moves setDoneHLmove(agt)
and unsetDoneHLmove(agt) that toggle it. We then modify the
implementation of moves to ensure that after completing a refine-
ment of their HL move, agents first do setDoneHLmove(self)
and then repeatedly do a wait move until all agents have set their
DoneHLmove; also, before starting a refinement of a HL move,
all agents must do unsetDoneHLmove(self).

Kupferman 2002). This logic is a first-order variant of the µ-
calculus (Bradfield and Stirling 2007) that works on games,
by suitably considering coalitions acting towards the realiza-
tion of a temporally extended goal, as in µATL.

We have the following syntax for µATL-FO formulas:

Ψ← φ | Z | ¬Ψ | Ψ1 ∧Ψ2 | ∃x.Ψ | ⟨⟨G⟩⟩ ⃝Ψ | µZ.Ψ(Z)

In the above, φ is an arbitrary, possibly open, situation-
suppressed situation calculus uniform formula and Z is a
predicate variable of a given arity. ⟨⟨G⟩⟩ ⃝ Ψ means that
coalition G can force Ψ to hold next, i.e., there is a vector
of legal moves for the agents in G such that for all legal
moves by the other agents, Ψ holds afterwards. µZ.Ψ(Z) is
the least fixpoint construct from the µ-calculus, which de-
notes the least fixpoint of the formula Ψ(Z) (we use this no-
tation to emphasize that Z may occur free, i.e., not quantified
by µ in Ψ). Similarly νZ.Ψ(Z), defined as ¬µZ.¬Φ[Z/¬Z]
(where we denote with Φ[Z/¬Z] the formula obtained from
Φ by substituting each occurrence of Z with ¬Z), denotes
the greatest fixpoint of Ψ(Z). We also use the usual abbre-
viations for first-order logic such as disjunction (∨) and uni-
versal quantification ∀. Moreover we denote by [[G]] ⃝ Ψ
the dual of ⟨⟨G⟩⟩ ⃝Ψ, i.e., [[G]]⃝Ψ

.
= ¬⟨⟨G⟩⟩ ⃝ ¬Ψ.

As usual in the µ-calculus, formulas of the form µZ.Ψ(Z)
(and νZ.Ψ(Z)) must obey the syntactic monotonicity of
Ψ(·) w.r.t. Z, which states that every occurrence of the
second-order variable Z in Ψ(Z) must be within the scope
of an even number of negation symbols. This ensures that
both the least fixpoint µZ.Ψ(Z) and the greatest fixpoint
νZ.Ψ(Z) always exist.

Using these least and greatest fixpoint constructs, we can
express the ability of forcing arbitrary temporal and dynamic
properties. For instance, to say that group G has a strat-
egy to force achieving φ(x⃗) eventually, where φ(x⃗) is a
situation suppressed formula with free variables x⃗, we use
µZ. φ(x⃗)∨⟨⟨G⟩⟩⃝Z; in a first-order ATL, this could be ex-
pressed as ⟨⟨G⟩⟩3φ(x⃗). Other ATL constructs such as G can
force always φ(x⃗), ⟨⟨G⟩⟩2φ(x⃗), and G can force φ(x⃗) to
hold until φ′(y⃗), ⟨⟨G⟩⟩φ(x⃗)U φ′(y⃗). can also be expressed.

The formal semantics of µATL-FO is based on character-
izing how to evaluate µATL-FO formulas in a situation cal-
culus model M . To do so, since µATL-FO contains formulas
with both individual and predicate free variables, we need
to introduce an individual variable valuation v, and a pred-
icate variable valuation V , i.e., a mapping from predicate
variables Z to subsets of the set of all situations S. Then, we
assign meaning to formulas by associating to M , v, and V
an extension function (·)Mv,V , which maps formulas to sub-
sets of S, and is defined inductively as follows:

(φ)Mv,V = {s ∈ S |M |= φ[s]}
(¬Ψ)Mv,V = S − (Ψ)Mv,V
(Ψ1 ∧Ψ2)

M
v,V = (Ψ1)

M
v,V ∩ (Ψ2)

M
v,V

(∃x.Ψ)Mv,V = {s ∈ S | exists t s.t. s ∈ (Ψ)Mv[x/t],V }
(⟨⟨G⟩⟩ ⃝Ψ)Mv,V = {s ∈ S | s ∈ Pre(G, (Ψ)Mv,V)}
(Z (⃗t)Mv,V) = V (Z)
(µZ.Ψ)Mv,V =

⋂
{E ⊆ S | (Ψ)Mv,V [Z/E] ⊆ E}

where Pre(G, E) = {s ∈ S |
∃mg1 , ...,mgk .

∧
gi∈{g1,...,gk}=G(M |= LegalM (gi,mgi , s)) ∧

∃mgk+1 , ...,mgn .
∧

gj∈{gk+1,...,gn}=G(M |= LegalM (gj ,mgj , s)) ∧
∀mgk+1 , ...,mgn .

∧
gj∈{gk+1,...,gn}=G(M |= LegalM (gj ,mgj , s))

⊃ do(tick(mg1 , . . . ,mgn), s) ∈ E}

Note that given a valuation V and a predicate variable Z
and a set of situations E we denote by V [Z/E] the valuation
obtained from V by changing the value of Z to E , and sim-
ilarly for v. Notice also that when a µATL-FO formula Ψ is
closed (w.r.t. individual and predicate variables), its exten-
sion (Ψ)Mv,V does not depend on the valuations v and V , and
we denote the extension of Ψ simply by (Ψ)M . We say that
a closed formula Ψ holds in the situation calculus model M ,
denoted by M |= Ψ, if S0 ∈ (Ψ)M .

Strategic Ability to Execute Programs. Adapting (De
Giacomo and Lespérance 2021), we define an agent strategy
as a function from situations to (instantiated) agent moves.
That is, f(s) = M (⃗t) denotes that the strategy f applied to
situation s returns M (⃗t) as the agent’s next move. The spe-
cial agent move stop (with no effects and always legal) may
be returned when the strategy wishes to stop. Given an agent
strategy fi for every agent i in a coalition C, we denote the
joint strategy where every agent i in C follows agent strategy
fi by f⃗C , where f⃗C(i) = fi for all i ∈ C.

To represent the ability of a coalition C to execute
a system program/task δ in a SCSGS domain, we write
CanForceBy(C, δ, s, f⃗C), which can be viewed as an ad-
versarial version of Do in presence of agents outside the
coalition. This predicate states that joint strategy f⃗C exe-
cutes SD Golog system program δ in situation s considering
its nondeterminism angelic, as in the standard Do, but also
considering the nondeterminism of agents outside the coali-
tion devilish/adversarial:

CanForceBy(C, δ, s, f⃗C)
.
= ∀P.[. . . ⊃ P (δ, s)]

where . . . stands for
[((∀i ∈ C.fi(s) = stop) ∧ Final(δ, s)) ⊃ P (δ, s)] ∧
[∀i ∈ C.∃mi.(fi(s) = mi ̸= stop ∧ ∀j ∈ C̄.
(∃mj .Poss(tick(m⃗im⃗j), s)) ∧
∀mj .Poss(tick(m⃗im⃗j), s) ⊃
∃δ′.T rans(δ, s, δ′, do(tick(m⃗im⃗j), s)) ∧

P (δ′, do(tick(m⃗im⃗j), s)))
⊃ P (δ, s)]

Note that the coalition’s joint move m⃗i selected by its strat-
egy must successfully complete the task for every legal joint
move m⃗j by agents outside the coalition. We also say that
predicate CanForce(C, δ, s) holds if and only if there ex-
ists a joint strategy f⃗C for agents in coalition C such that
CanForceBy(C, δ, s, f⃗c) holds.

Strategic reasoning in executing refinements of HL
moves. To exploit abstraction in verifying strategic prop-
erties, we first need to consider how much strategic reason-
ing an agent (resp. a coalition) needs to do to execute a HL
atomic move (resp. joint move) at the LL. A given HL agent
move M(x⃗) is mapped to a LL agent program mm(M(x⃗))

that implements it. In m-bisimilar models, if a coalition
C has a vector of legal moves m⃗C and the agents outside
the coalition also have legal moves m⃗C̄ , then there exists a
terminating execution of ma(tick(m⃗Cm⃗C̄)) at the LL for
any vector of legal moves m⃗C̄ by agents outside the coali-
tion. But this does not mean that all executions of mm(m⃗C)
terminate when executed together with legal moves by the
agents outside the coalition mm(m⃗C̄), as some executions
may block or diverge, due to choices of the agents in the
coalition or that of agents outside it. In general, the agents
in the coalition must do strategic reasoning to ensure that
the execution of mm(m⃗C) terminates (and the agents out-
side the coalition may need to cooperate as well). But we
can impose further constraints on the mapping of HL moves
to avoid this or ensure that an execution strategy exists. Note
that ensuring that the execution of mm(m⃗C) terminates does
not mean that the agents in C control the joint move’s out-
come; the outcome still depends on the moves that the agents
outside the coalition select.

One simple approach to ensure that we can refine HL
strategies into LL ones is to constrain the mapping of HL
moves to ensure that the implementation program always
terminates and no LL strategic reasoning is required to en-
sure termination. But here we follow a less restrictive ap-
proach that requires that for any HL move by an agent that
is possibly executable at the LL, the agent has a strategy to
execute it to termination no matter how the other agents act
(even if not controlling the outcome). Formally:

Constraint 4 (Agents Can Always Execute HL Moves)
For every high-level system action sequence α⃗ and every
agent i ∈ Agents, we have that:

Dl ∪ C |= ∀s.(Do(ma(α⃗), S0, s) ⊃
∀mi, s

′.(Do(sync(⃗(πm.m)∗,mm(mi), ⃗(πm.m)∗), s, s′) ⊃
CanForce({i}, sync(⃗(πm.m)∗,mm(mi), ⃗(πm.m)∗), s)))

Given this constraint, it follows that for any HL joint action
by a non-empty coalition that is possibly executable at the
LL, the coalition has a strategy to execute it to termination
no matter how the agents outside the coalition behave.

Proposition 5 Constraint 4 holds for SCSGS Drs
l and re-

finement mapping mrs.

Proof Sketch We prove this by induction on the length of
α⃗. According to Drs

l , the only legal moves at the LL are
those that are produced by a sequence of refinements of the
agent’s HL moves. We can show that the implementations
of the HL moves that can be executed synchronously by
the agents never interfere with each other. The only non-
determinism in the implementation of the HL moves them-
selves is the initial choice of item (as well as the agent for
assign(i, agt′)); when the initial test is satisfied, the body
can always be executed successfully.

Using abstraction in Verifying µATL-FO Properties. We
would like to show that if we have m-bisimilar models and
a µATL-FO property Ψ holds in some situation sh at the HL,
then at the LL the mapped version of Ψ holds in any situation

sl that is m-bisimilar to sh. The first question we face is how
to map µATL-FO formulas, in particular ⟨⟨G⟩⟩ ⃝ Ψ. Since
HL moves are mapped to programs, if a condition Ψ holds
at the next instant at the HL, then the mapped condition will
hold not at the next LL instant but in the one where the re-
finements of the HL moves have finished executing, at the
next LL state where a HL joint move has been completed.

First, following (BDL17), we will impose a constraint on
the refinements of high-level joint moves/actions:

Constraint 6 For any distinct ground high-level system ac-
tion terms α and α′ we have that:
(a) Dl ∪ C |= ∀s, s′.Do(ma(α), s, s

′) ⊃
¬∃δ.Trans∗(ma(α

′), s, δ, s′)
(b) Dl ∪ C |= ∀s, s′.Do(ma(α), s, s

′) ⊃
¬∃a∃δ.Trans∗(ma(α), s, δ, do(a, s

′))
(c) Dl ∪ C |= ∀s, s′.Do(ma(α), s, s

′) ⊃ s < s′

Part (a) ensures that different HL primitive system actions
have disjoint sets of refinements; (b) ensures that once a re-
finement of a HL primitive system action is complete, it can-
not be extended further; and (c) ensures that a refinement of
a HL primitive system action will produce at least one LL
action. As shown in (BLD17), these restrictions ensure that
we can map a LL system action sequence back to a unique
HL system action sequence that produced it.

Proposition 7 Constraint 6 holds for SCSGS Drs
l and re-

finement mapping mrs.

Proof Sketch The result follows easily from the fact that
the HL moves are mapped to programs that each contains a
distinctive LL move. Also, they all perform exactly two LL
moves.

We will also assume that the LL model/theory tracks
when refinements of HL actions start and end through a state
formula Hlc(s), which means that a HL action sequence has
just completed in situation s:

Constraint 8 Dl ∪ C |= Hlc(s) if and only if there ex-
ists a HL system action sequence α⃗ such that Dl ∪ C |=
Do(α⃗, S0, s).

Hlc can be defined in various ways. If all refinements of
HL actions have the same number of LL actions k, we can
add a fluent ctr that counts how many LL actions have
occurred since that last HL action completed and define
Hlc(s)

.
= ctr mod k = 0. If we add synchronization

moves and fluents at the low level as discussed in the previ-
ous section, we can use them to define Hlc (e.g., Hlc(s)

.
=

∀agt.DoneHLmove(agt, s)).

Proposition 9 Constraint 8 holds for SCSGS Drs
l and re-

finement mapping mrs.

Proof Sketch We can introduce a counter fluent ctr and
define Hlc(s)

.
= ctr mod 2 = 0 as discussed above. The

result can then be shown easily by induction on the length
of α⃗.

Using this, we can introduce an abbreviation ⟨⟨G⟩⟩⃝hΨ,
meaning that coalition G can force Ψ to hold next after the
execution of one HL action:

⟨⟨G⟩⟩ ⃝h Ψ
.
= ⟨⟨G⟩⟩ ⃝ (¬Hlc U (Hlc ∧Ψ))

.
= ⟨⟨G⟩⟩ ⃝ µZ.((Hlc ∧Ψ) ∨ ⟨⟨G⟩⟩ ⃝ (¬Hlc ∧ Z))

Using this, we extend the mapping to µATL-FO formulas:

ml(φ)
.
= mf (φ)

ml(¬Ψ)
.
= ¬ml(Ψ)

ml(Ψ1 ∧Ψ2)
.
= ml(Ψ1) ∧ml(Ψ2)

ml(∃x.Ψ)
.
= ∃x.ml(Ψ)

ml(⟨⟨G⟩⟩ ⃝Ψ)
.
= ⟨⟨G⟩⟩ ⃝h ml(Ψ)

ml(Z (⃗t))
.
= Z (⃗t)

ml(µZ.Ψ)
.
= µZ.ml(Ψ)

We can now show that we can exploit abstraction in ver-
ifying µATL-FO properties. First, we will show this for the
sublanguage of µATL-FO without predicate variables and the
µ operator, call this ATL-FO:

Lemma 10
For any ATL-FO formula Ψ, if Mh ∼m Ml, Constraints 4,
6, and 8 hold, sh ∼Mh,Ml

m sl, and sh ∈ (Ψ)Mh
v , then sl ∈

(ml(Ψ))Ml
v .

Proof By induction of the structure of Ψ.
Base case: If Ψ is a situation-suppressed situation calcu-

lus formula, the result follows immediately by Lemma 1 in
(BDL17).

Inductive step: If Ψ is ¬Ψ′, Ψ1 ∧ Ψ2, or ∃x.Ψ, the result
follows by the induction hypothesis and the definition of the
extension function.

If Ψ is ⟨⟨G⟩⟩ ⃝ Ψ′, then at the high level, by the defi-
nition of of the extension function, we have that there ex-
ists a HL joint move m⃗C for agents in the coalition such
that there exists a joint move m⃗C̄ by agents outside the
coalition such that Mh, v[s/sh] |= Poss(tick(m⃗Cm⃗C̄), s),
and for all joint moves m⃗C̄ by agents outside the coali-
tion, if Mh, v[s/sh] |= Poss(tick(m⃗Cm⃗C̄), s) then
do(tick(m⃗Cm⃗C̄), s) ∈ (Ψ′)Mh

v,V .
Since Constraint 4 holds, the coalition always knows

how to execute joint high-level moves to completion
at the low level, and thus there exists a low-level
strategy g⃗l for the coalition such that Ml, v[s/sl] |=
CanForce(C, sync(mm(m⃗C), ⃗(πm.m)∗), s, g⃗l).

Take an arbitrary s′l such that Ml, v[s/sl, s
′/s′l] |=

Do(sync(g⃗l, ⃗(πm.m)∗), s, s′). By Constraint 1, we have
that there exist some vector of HL moves for the agents
outside the coalition m⃗C̄ such that Ml, v[s/sl, s

′/s′l] |=
Do(ma(tick(m⃗Cm⃗C̄)), s, s

′). Since sh ∼Mh,Ml
m sl, it then

follows that there exists s′h such that Mh, v[s/sh, s
′/s′h] |=

Do(tick((m⃗Cm⃗C̄), s, s
′) and s′h ∼Mh,Ml

m s′l. Then by the
induction hypothesis, we have that s′l ∈ (ml(Ψ

′))Ml

v,V . By
Constraint 6, it must be the case that at least one LL ac-
tion occurs between sl and s′l and that no refinement of a
HL action is complete between them. Then by Constraint
8, we have that Ml, v[s/sl, s

′/s′l] |= Hlc(s′) ∧ ∀s′′.s <
s′′ < s′ ⊃ ¬Hlc(s′′). Thus, we also have that sl ∈
(⟨⟨G⟩⟩ ⃝h ml(Ψ))Ml

v,V .

We can now extend the result to all of µATL-FO:

Theorem 11
For any µATL-FO formula Ψ, if Mh ∼m Ml, Constraints
4, 6, and 8 hold, sh ∼Mh,Ml

m sl, and sh ∈ (Ψ)Mh

v,V , then
sl ∈ (ml(Ψ))Ml

v,V .

Proof We prove the theorem in two steps. First, we show
that Lemma 10 can be extended to the infinitary version of
ATL-FO that supports arbitrary infinite disjunction of for-
mulas sharing the same free variables (van Benthem 1983).
Then, we recall that fixpoints can be translated into this in-
finitary logic, thus guaranteeing that the result extends to the
whole µATL-FO logic.

Let Γ be a a possibly infinite set of open ATL-FO formu-
las. The semantics of

∨
Γ is sh ∈ (

∨
Γ)Mh

v if and only
if sh ∈ (Ψ′)Mh

v for some Ψ′ ∈ Γ. Arbitrary infinite con-
junction is obtained for free through negation. Lemma 10
extends to this arbitrary infinite disjunction. By the induc-
tion hypothesis, we have that if sh ∈ (Ψ)Mh

v , then sl ∈
(ml(Ψ))Ml

v . Given the semantics of
∨

Γ above, this implies
that if sh ∈ (

∨
Γ)Mh

v , then sl ∈ (ml(
∨

Γ))Ml
v (we assume

that ml(
∨
{Ψ, . . . ,Ψ′}) .

=
∨
{ml(Ψ), . . . ,ml(Ψ

′)}).
In order to extend the result to the whole µATL-FO, we

translate µ-calculus approximates into the infinitary ATL-FO
(see (Bradfield and Stirling 2007; van Benthem 1983)),
where the approximate of index α is denoted by µαZ.Ψ for
least fixpoint formulas µZ.Ψ and ναZ.Ψ for greatest fix-
point formulas νZ.Ψ. This is a standard result that holds
also for µATL-FO. In particular, such approximates are as
follows:

µ0Z.Ψ = False ν0Z.Ψ = True
µβ+1Z.Ψ = Ψ[Z/µβZ.Ψ] νβ+1Z.Ψ = Φ[Z/νβZ.Ψ]

µλZ.Ψ =
∨

β<λ µβZ.Ψ νλZ.Ψ =
∧

β<λ νβZ.Ψ

where λ is a limit ordinal, and the notation Ψ[Z/νβZ.Ψ]
denotes the formula obtained from Ψ by replacing each oc-
currence of Z by νβZ.Ψ. By the Tarski and Knaster Theo-
rem (Tarski 1955), the fixpoints and their approximates are
connected by the following properties:

• s ∈ (µZ.Ψ)Mv,V if and only if there exists an ordinal α
such that s ∈ (µαZ.Ψ)Mv,V and, for every β < α, it holds
that s ̸∈ (µβZ.Ψ)Mv,V ;

• s ̸∈ (νZ.Ψ)Mv,V if and only if there exists an ordinal α
such that s ̸∈ (ναZ.Ψ)Mv,V and, for every β < α, it holds
that s ∈ (νβZ.Ψ)Mv,V .

Since each approximate, including the ones corresponding
exactly to the least and greatest fixpoints, can be written as
an infinitary ATL-FO formula, we get the thesis.

Notice that the HL game structure is usually much smaller
than the LL one, so verifying that a µATL-FO property holds
at that HL would typically be much easier than doing so at
the LL. By the above theorem, if a µATL-FO property holds
at the HL, then it immediately follows that the mapped prop-
erty also holds at the LL, provided that the constraints are
satisfied.

Example Cont. Using µATL-FO, we can express a wide
range of strategic properties involving temporally ex-
tended goals. For a first example, consider the first-
order ATL∗ property that the dispatcher and first re-
pair robot can ensure that some item is eventually
repaired ⟨⟨{Disp,RR1}⟩⟩3∃i.Repaired(i), which can
be expressed in µATL-FO as µZ. ∃i.Repaired(i) ∨
⟨⟨{Disp,RR1}⟩⟩⃝Z, call this ΨFr

h . This holds at the HL,
i.e., S0 ∈ (ΨFr

h)M
rs
h , because item 1 has arrived initially,

and the joint strategy where Disp assigns the item to RR1

who then repairs it achieves the goal no matter what other
agents do. Since Constraints 4, 6, and 8 hold, by Theorem
11 it follows that the mapped property holds at the LL as
well, i.e., S0 ∈ (ml(Ψ

Fr
h))M

rs
l

For a second example, consider the first-order ATL∗

property stating that the coalition of all the repair shop
agents C = {Disp,RR1, RR2, Sh} has a joint strategy to
ensure that all the items that arrive are eventually shipped
⟨⟨C⟩⟩ ∀i.2(Arrived(i) ⊃ 3Shipped(i)), which can be ex-
pressed in µATL-FO as

∀i.νX.(Arrived(i) ⊃
µY.Shipped(i) ∨ ⟨⟨C⟩⟩ ⃝ Y) ∧ ⟨⟨C⟩⟩ ⃝X

We can show that this property, call it ΨGaFs
h holds at

the HL, i.e., S0 ∈ (ΨGaFs
h)M

rs
h .4 By Theorem 11, it fol-

lows that the mapped property also holds at the LL: S0 ∈
(ml(Ψ

GaFs
h))M

rs
l .

Discussion and Conclusion
In this paper, we presented a general first-order framework
for abstraction of synchronous multi-agent game structures.
We showed that we can exploit abstraction in verifying
strategic properties expressed in µATL-FO over SCSGSs if
we assume that agents can always execute abstract moves to
completion even if not fully controlling their outcomes.

Note that our approach is quite different from the usual
abstraction techniques employed in model checking (Clarke
et al. 2000). The latter apply “automatic” abstraction and
refinement methods to address state-explosion in the verifi-
cation of system specifications. Such techniques have also
been proposed for concurrent game structures and strategy
logics, e.g., (Belardinelli, Ferrando, and Malvone 2023).
The abstractions that these methods generate need not be
meaningful to users of the system. Our abstractions involve
new HL fluents and moves that are meaningful to the users
and can be used to express many HL temporally extended
goals. They can be used to speed up strategic reasoning and
verifying strategic properties, and also to give HL explana-
tions of system behavior.

In future work, we would like to extend µATL-FO to sup-
port the use of programs to express dynamic properties. In
the propositional setting our programs could be captured by

4A suitable strategy is for the dispatcher to assign the items to a
repair agent in the order in which they arrive, for each repair agent
to repair the items in the order in which they are assigned to them,
and for the shipper to ship the items in the order they are repaired.

Linear Dynamic Logic on Finite Traces (LDLf) (De Gia-
como and Vardi 2013), for which verification and synthe-
sis have been shown to be decidable and effective (De Gi-
acomo and Vardi 2015; De Giacomo and Rubin 2018; Ca-
macho et al. 2018). However, when we move to the (first-
order) situation calculus, reasoning becomes undecidable in
general. Interestingly, conditions for decidability are known
both for verification (De Giacomo, Lespérance, and Patrizi
2016; Calvanese et al. 2022) and synthesis (De Giacomo
et al. 2022). It would be worthwhile to investigate how to
leverage these results in our context.

We are also interested in developing techniques for auto-
mated generation of abstractions that serve users’ purposes.
(Luo et al. 2020) shows that one can use the notion of forget-
ting (of LL fluent and action symbols) to automatically ob-
tain a sound and complete HL abstraction of a LL BAT for a
given mapping under certain conditions; they also show that
such an abstraction is computable in the propositional case.
(Luo 2023) studies automated verification of the existence of
a propositional agent abstraction given a LL finite-state la-
beled transition system and a refinement mapping where HL
actions are mapped into loop-free LL programs. He shows
that the problem can be reduced to a CTLK (an extension
of CTL with an epistemic operator) model checking prob-
lem, which can be solved in PTIME. But in general, there
are many different abstractions of a LL theory, each of which
may be useful for a different purpose. So defining an abstract
language and mapping for a domain is non-trivial. Some hu-
man input is likely to be required, e.g., the modeler might
specify the goals of the abstraction, or which details can be
considered unimportant.

We also want to generalize our framework for imperfect
information game settings. There has been a lot of work on
strategy logics for such settings including the case where one
wants to ensure that each agent knows her strategy (van der
Hoek and Wooldridge 2002; Jamroga and van der Hoek
2004; van der Hoek, Jamroga, and Wooldridge 2005; Herzig,
Lorini, and Walther 2013; Xiong and Liu 2016; Berthon
et al. 2021). The Game Description Language has also been
extended for them (Thielscher 2010; Schiffel and Thielscher
2014; Engesser et al. 2021) and there is also related work in
multi-agent epistemic planning (Muise et al. 2015; Le et al.
2018; Bolander et al. 2020). Finally, we plan to investigate
the use of multi-tier game models/structures (Ciolek et al.
2020) to support flexible strategic reasoning, where one only
considers unlikely contingencies when necessary, as well as
reasoning about cooperative strategies where agents dele-
gate subgoals to others without knowing how these agents
will achieve the delegated subgoals.

Acknowledgements

This work is partially supported by the National Science and
Engineering Research Council of Canada, by the ERC Ad-
vanced Grant WhiteMech (No. 834228), by the EU ICT-48
Project TAILOR (No. 952215), by York University, and by
the University of Regina.

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM, 49(5): 672–713.
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2017.
Abstraction in Situation Calculus Action Theories. In AAAI,
1048–1055.
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2023.
Abstraction of Nondeterministic Situation Calculus Action
Theories. In IJCAI, 3112–3122.
Belardinelli, F.; Ferrando, A.; and Malvone, V. 2023. An
abstraction-refinement framework for verifying strategic
properties in multi-agent systems with imperfect informa-
tion. Artif. Intell., 316: 103847.
Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. Y. 2021. Strategy Logic with Imperfect Information.
ACM Trans. Comput. Log., 22(1): 5:1–5:51.
Bolander, T.; Charrier, T.; Pinchinat, S.; and Schwarzentru-
ber, F. 2020. DEL-based epistemic planning: Decidability
and complexity. Artif. Intell., 287: 103304.
Bradfield, J.; and Stirling, C. 2007. Modal mu-calculi. In
Handbook of Modal Logic, volume 3, 721–756.
Calvanese, D.; De Giacomo, G.; Montali, M.; and Patrizi,
F. 2022. Verification and Monitoring for First-Order LTL
with Persistence-Preserving Quantification over Finite and
Infinite Traces. In IJCAI, 2553–2560.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A.
2018. Finite LTL Synthesis as Planning. In ICAPS, 29–38.
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Inf. Comput., 208(6): 677–693.
Ciolek, D. A.; D’Ippolito, N.; Pozanco, A.; and Sardiña, S.
2020. Multi-Tier Automated Planning for Adaptive Behav-
ior. In ICAPS, 66–74.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In
CAV, volume 1855 of Lecture Notes in Computer Science,
154–169.
De Giacomo, G.; Felli, P.; Logan, B.; Patrizi, F.; and Sardiña,
S. 2022. Situation calculus for controller synthesis in manu-
facturing systems with first-order state representation. Artif.
Intell., 302: 103598.
De Giacomo, G.; and Lespérance, Y. 2021. The Nondeter-
ministic Situation Calculus. In KR, 216–226.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, A Concurrent Programming Language Based on
the Situation Calculus. Artif. Intell, 121(1–2): 109–169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On
supervising agents in situation-determined ConGolog. In
AAMAS, 1031–1038.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2016.
Bounded Situation Calculus Action Theories. Artif. Intell,
237: 172–203.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation Calculus Based Programs for Representing and
Reasoning about Game Structures. In KR.

De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2016.
Situation Calculus Game Structures and GDL. In ECAI,
408–416.
De Giacomo, G.; and Rubin, S. 2018. Automata-Theoretic
Foundations of FOND Planning for LTLf and LDLf Goals.
In IJCAI, 4729–4735.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI,
854–860.
De Giacomo, G.; and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on Finite Traces. In IJCAI, 1558–1564.
Engesser, T.; Mattmüller, R.; Nebel, B.; and Thielscher, M.
2021. Game description language and dynamic epistemic
logic compared. Artif. Intell., 292: 103433.
Herzig, A.; Lorini, E.; and Walther, D. 2013. Reasoning
about Actions Meets Strategic Logics. In LORI, volume
8196 of Lecture Notes in Computer Science, 162–175.
Jamroga, W.; and van der Hoek, W. 2004. Agents that Know
How to Play. Fundam. Informaticae, 63(2-3): 185–219.
Le, T.; Fabiano, F.; Son, T. C.; and Pontelli, E. 2018. EFP
and PG-EFP: Epistemic Forward Search Planners in Multi-
Agent Domains. In ICAPS, 161–170.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A Logic Programming Lan-
guage for Dynamic Domains. J. Logic Programming, 31:
59–84.
Luo, K. 2023. Automated Verification of Propositional
Agent Abstraction for Classical Planning via CTLK Model
Checking. In AAAI, 6475–6482.
Luo, K.; Liu, Y.; Lespérance, Y.; and Lin, Z. 2020. Agent
Abstraction via Forgetting in the Situation Calculus. In
ECAI, volume 325, 809–816.
Marrella, A.; Mecella, M.; and Sardiña, S. 2017. Intelligent
Process Adaptation in the SmartPM System. ACM Trans.
Intell. Syst. Technol., 8(2): 25:1–25:43.
McCarthy, J.; and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the Standpoint of Artificial Intelligence.
Machine Intelligence, 4: 463–502.
Milner, R. 1971. An Algebraic Definition of Simulation Be-
tween Programs. In IJCAI, 481–489.
Milner, R. 1989. Communication and concurrency. PHI
Series in computer science. ISBN 978-0-13-115007-2.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2014. Reasoning About Strategies: On the Model-Checking
Problem. ACM Trans. Comput. Log., 15(4): 34:1–34:47.
Muise, C. J.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller,
T.; Pearce, A. R.; and Sonenberg, L. 2015. Planning Over
Multi-Agent Epistemic States: A Classical Planning Ap-
proach. In AAAI, 3327–3334.
Pauly, M. 2002. A Modal Logic for Coalitional Power in
Games. J. Log. Comput., 12(1): 149–166.
Pinto, J. 1998. Concurrent Actions and Interacting Effects.
In KR, 292–303.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems.

Schiffel, S.; and Thielscher, M. 2014. Representing and Rea-
soning About the Rules of General Games With Imperfect
Information. J. Artif. Intell. Res., 49: 171–206.
Tarski, A. 1955. A lattice-theoretical fixpoint theorem and
its applications. Pacific J. of Mathematics, 5(2): 285–309.
Thielscher, M. 2010. A General Game Description Lan-
guage for Incomplete Information Games. In AAAI.
van Benthem, J. 1983. Modal Logic and Classical Logic.
van der Hoek, W.; Jamroga, W.; and Wooldridge, M. J. 2005.
A logic for strategic reasoning. In AAMAS, 157–164.
van der Hoek, W.; and Wooldridge, M. J. 2002. Tractable
multiagent planning for epistemic goals. In AAMAS, 1167–
1174.
Xiong, L.; and Liu, Y. 2016. Strategy Representation and
Reasoning for Incomplete Information Concurrent Games
in the Situation Calculus. In IJCAI, 1322–1329.

