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Abstract

We present Pure-Past Action Masking (PPAM), a lightweight
approach to action masking for safe reinforcement learning.
In PPAM, actions are disallowed (“masked”) according to
specifications expressed in Pure-Past Linear Temporal Logic
(PPLTL). PPAM can enforce non-Markovian constraints, i.e.,
constraints based on the history of the system, rather than
just the current state of the (possibly hidden) MDP. The fea-
tures used in the safety constraint need not be the same as
those used by the learning agent, allowing a clear separation
of concerns between the safety constraints and reward spec-
ifications of the (learning) agent. We prove formally that an
agent trained with PPAM can learn any optimal policy that
satisfies the safety constraints, and that they are as expressive
as shields, another approach to enforce non-Markovian con-
straints in RL. Finally, we provide empirical results showing
how PPAM can guarantee constraint satisfaction in practice.

1 Introduction
While AI agents based on reinforcement learning (RL) (Sut-
ton and Barto 2018) have been remarkably successful in a
variety of domains, ensuring the safety of agents developed
using learning remains a major research challenge (Amodei
et al. 2016; Hadfield-Menell et al. 2017; Orseau and Arm-
strong 2016). Achieving safe and robust behaviour us-
ing state-of-the-art learning algorithms and a single re-
ward function is challenging (Leike et al. 2017). In sim-
ulated environments, agents are able to explore the whole
action space, regardless of the consequences of their ac-
tions. However, in safety-critical applications where agents
must learn in the real environment, such as autonomous cars
(Mirchevska et al. 2018; Kendall et al. 2019), or chemical
processes (Zhou, Li, and Zare 2017; Savage et al. 2021), un-
constrained exploration can lead to catastrophic failure, both
during training and following deployment. In such cases,
it is necessary to ensure that that only safe actions are ex-
plored during learning. Such approaches are termed “prov-
ably safe” in (Krasowski et al. 2023).

A number of approaches to provably safe RL have been
proposed in the literature, including: action replacement,
e.g., (Hunt et al. 2021), where unsafe actions are replaced
by (default or sampled) safe ones; action projection, e.g.,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Cheng et al. 2019), where unsafe actions are replaced by
projecting them to the safe action space; and action masking,
e.g., (Krasowski, Wang, and Althoff 2020), where the agent
is able to choose actions only from the safe action space.
However, most provably safe approaches to RL are Marko-
vian, that is, the set of actions which are considered “safe” is
based only on the current state. There has been some work in
which safety constraints are expressed in temporal logic. For
example, shields (Alshiekh et al. 2018; ElSayed-Aly et al.
2021) is an action masking approach in which safety con-
straints are expressed in Safety LTL. The use of temporal
logic means safety constraints can be specified over execu-
tion traces rather than states, allowing a much richer set of
non-Markovian safety constraints to be used, e.g., “do not
close the valve if it was opened within the last three sec-
onds” (Alshiekh et al. 2018). However, generating a shield
from a Safety LTL specification requires solving a safety
game over an abstraction of the underlying MDP and is dou-
ble exponential in the size of the Safety LTL specification.
Moreover, the agent must learn in the resulting doubly ex-
ponential product MDP.

In this paper, we present Pure-Past Action Masking
(PPAM), a novel, lightweight approach to safe reinforce-
ment learning. In PPAM, safety specifications are expressed
in Pure Past Linear-time Temporal Logic (PPLTL) (De Gia-
como et al. 2020). PPLTL is a variant of Linear-time Tempo-
ral Logic in which formulas are evaluated over finite traces
and only past modalities are allowed. PPLTL formulas have
a very natural interpretation: the formula must be true at
the end of the trace and is evaluated “backwards”. Many
specifications about actions are easier and more natural to
express when referring to the past (Lichtenstein, Pnueli,
and Zuck 1985), and past temporal logics have been used
in closely related problems with non-Markovian aspects,
e.g., non-Markovian models in reasoning about actions (Ga-
baldon 2011), non-Markovian rewards in MDPs (Bacchus,
Boutilier, and Grove 1996), and expressing norms in multi-
agent systems (Alechina et al. 2015). PPAM has the same
expressive power as shields but has significantly lower com-
putational complexity (linear overhead in the state size).
Moreover, the features used in the safety constraint need not
be the same as those used by the learning agent, allowing
a clearer separation of concerns between safety constraints
and reward specifications than with shields. Critically, we



show that PPAM does not lead to any loss of generality, i.e.,
an agent trained with a mask is able to learn any optimal
and safe (with respect to the safety constraints) policy in the
MDP, if there is one. We illustrate our approach with a num-
ber of examples from the literature, and present experimen-
tal results which show that, in addition to ensuring safety,
PPAM can improve sample efficiency.

2 Background
In this section, we briefly recall Markov Decision Processes
(MDPs), and shields (Alshiekh et al. 2018; ElSayed-Aly
et al. 2021) approach to safe RL.

2.1 Markov Decision Process
The (learning) agent and its environment are modelled as a
Markov Decision Process (MDP).

Definition 1 (Markov Decision Process) A (factorized)
Markov Decision Process Mag = (F, S, s0, Act, A, Tr,
R, γ) is a tuple where:

• F are the (boolean) features of the MDP1;
• S = 2F is a set of states (corresponding to features eval-

uations);
• s0 is the initial state;
• Act is a finite non-empty set of actions;
• A : S → 2Act is an action availability function which

maps each state of the MDP to the set of actions available
in that state;

• Tr : S × Act ⇀ Pr(S) is a transition function which
for a pair of state s and action a returns a probability
distribution for the resulting state if a ∈ A(s), and is
otherwise undefined;

• R : S ×Act× S → R a reward function; and
• γ ∈ [0, 1) is the discount factor.

In RL, the transition dynamics and reward (i.e., the Tr
and R functions) are typically hidden from the agent, who
has to learn the optimal policy by trial-and-error. A policy
ρ : S+ → Pr(Act) maps a sequence of states s⃗ = s0 . . . sn
to a probability distribution over actions, with the property
that for any action a ∈ Act with a /∈ A(sn) the proba-
bility of action a according to ρ(s⃗) is zero. The value of a
policy is the expected sum of rewards obtained by an agent
choosing actions according to the policy, discounted by the
discount factor γ, when starting in the initial state. The re-
inforcement learning problem is to learn an optimal policy
ρ∗ that maximises the expected discounted future reward.
Since by (Puterman 1994) there is always a Markovian op-
timal policy, we can define a solution to the reinforcement
learning problem given an MDP M as an optimal policy of
the form ρ : S → Pr(Act) where for each s ∈ S and each
action a, if ρ(s)(a) > 0, then a ∈ A(s).

1For simplicity we consider only boolean features, but all our
results extend to arbitrary features or even featureless MDPs.

2.2 Shields
Shields are an approach to guarantee satisfaction of safety
constraints both during and after training (Alshiekh et al.
2018; ElSayed-Aly et al. 2021). Shields are synthesised
from Safety LTL specifications, allowing them to express
non-Markovian constraints over traces. Safety LTL (Manna
and Pnueli 1995) is the fragment of LTL (Pnueli 1977) in
which only the # (“next”) and 2 (“always”) modalities are
allowed. Shields come in two variants: post-posed and pre-
emptive. Post-posed shields act after the agent has chosen
an action to perform. When a post-posed shield detects that
the chosen action would or could lead to a constraint viola-
tion, it modifies the action to a safe default one. Preemptive
shields act before the agent has chosen an action to perform.
A preemptive shield outputs, at each timestep, the set of ac-
tions it considers to be safe, from which the agent chooses
one to perform. As PPAM is an action masking approach,
we focus on preemptive shields, and we will refer to them as
simply “shields” below.
Definition 2 (Shield (Alshiekh et al. 2018)) A (preemp-
tive) shield is a tuple S = (Q, q0,ΣI ,ΣO, δ, λ), where:
• Q is the finite set of states;
• q0 is the initial state;
• ΣI is the input alphabet, where ΣI = Σ1

I × Σ2
I ;

• ΣO = 2Act is the output alphabet;
• δ : Q× ΣI → Q is the state transition function;
• λ : Q× Σ1

I → ΣO is the output function.
An MDP observer function f : S → L maps states of the
underlying MDP to observations from a set L. The input
alphabet ΣI is given by L×Act, and Σ1

I = L.
A shield is built from a Safety LTL specification and an

abstraction of the underlying MDP. The abstraction is a de-
terministic safety word automaton that rejects prefixes of se-
quences that do not correspond to possible runs of the under-
lying MDP (restricted to the relevant sets of features); essen-
tially, it describes the physics of the system. Given an infi-
nite run that is physically possible, it cycles through accept-
ing states indefinitely. The Safety LTL specification is trans-
lated into a safety automaton (Kupferman and Vardi 2001).
A safety automaton is a tuple As = (Qs, q0s ,Σs, δs, Fs),
where Qs is the set of states of the automaton, q0s the ini-
tial state, Σs the input alphabet, δs : Qs × Σs → Qs the
transition function, and Fs ⊆ Qs the set of “safe” states. An
infinite word over Σs is accepted by a safety automaton if
and only if the run induced by it visits only safe states, i.e.,
states in Fs.

The product of the safety automaton and the abstract MDP
can be seen as a infinite game between the agent and the
environment, where the agent wins if only safe states (i.e.,
states in which the Safety LTL specification is satisfied) are
visited. By computing the winning region of the game, we
know which states the agent is allowed to reach. The shield
is extracted from the winning strategy in the game, and re-
stricts the action space available to the agent (through its
output function λ) to that specified by the winning strategy.

Synthesising a shield requires time double exponential in
the Safety LTL specification and linear in the size of the ab-
stracted MDP. Given a Safety LTL formula φ, it is possible



to build a safety automaton Aφ of size double exponential
in the size of φ, such that τ, i |= φ iff τi ∈ L(Aφ). Gener-
ating and solving the product game between the automaton
and the abstracted MDP can be done in linear time through
standard safety games-solving techniques (Mazala 2002).

As an illustration, we briefly recall the “hot water tank”
scenario from (Alshiekh et al. 2018).

Example 1 In the “hot water tank” scenario, the aim is to
learn an energy-efficient controller for a hot water storage
tank with a maximum capacity of 100 litres. A reward is as-
sociated with each water tank level, depending on how much
energy is needed to keep the water in the tank hot. The out-
flow from the tank is always between 0 and 1 litres per sec-
ond. The agent can open or close the tank intake valve. The
inflow is between 1 and 2 litres per second when the valve
is open. Whenever the value is opened or closed, the set-
ting must be maintained for at least three seconds to prevent
the valve from wearing out. The safety specification is that
“the tank water level must always be greater than 0 and less
than 100, and if the valve is opened (closed) it should re-
main open (closed) for at least three seconds”. The safety
constraints can be expressed using the following Safety LTL
formula:

□(level > 0) ∧□(level < 100) ∧
□((open ∧#close) → ## close ∧###close) ∧
□((close ∧#open) → ## open ∧###open)

The first two conjuncts specify that the storage level should
always be between 1 and 99 liters. The last two establish
that whenever the inflow is switched off (respectively, on),
then it remains so for the next three seconds.

3 Pure-Past Linear-time Temporal Logic
PPAM safety properties are expressed in Pure-Past Linear-
time Temporal Logic (PPLTL) (De Giacomo et al. 2020). As
the name suggests, PPLTL is the past-time version of LTL
on finite traces, in which formulas are evaluated on the last
state in the history looking back towards the beginning of the
trace. As a result, the paths on which formulas are evaluated
are naturally finite.

Given a set of propositional symbols (or “fluents”) Prop,
the formulas of PPLTL are defined by:

φ ::= p | ¬φ | φ ∧ φ | ⊖φ | φSφ
where p ∈ Prop. ⊖φmeans “in the previous state, φ” (‘yes-
terday’), and φ1Sφ2 means “φ2 happened in the past, and
since then φ1 is true” (‘since’). We also define the abbrevia-
tions 3−φ as true Sφ (meaning “in some state in the past φ”)
and ⊟φ as ¬3−¬φ (“in all states in the past φ”).

Formulas of PPLTL are interpreted over finite traces τ =
τ0τ1 . . . τn−1 where τi at instant i is a propositional interpre-
tation over Prop. n = length(τ) is the length of τ . Given τ ,
a PPLTL formula φ, and instant i, the relation τ, i |= φ (φ
holds at i in τ ) is defined inductively as follows:
• τ, i |= p iff p ∈ τi;
• τ, i |= ¬φ iff τ, i ̸|= φ;
• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= ⊖φ iff τ, i − 1 |= φ, with i > 0, or i = 0 and
φ ≡ ⊥, i.e., φ is a contradiction;

• τ, i |= φ1Sφ2 iff there exists k with 0 ≤ k ≤ i such that
τ, k |= φ2 and for all j with k < j ≤ i, τ, j |= φ1.

Given a PPLTL formula φ, we will write τ |= φ as an
abbreviation of τ, length(τ) |= φ.

In order to evaluate a PPLTL formula φ on a trace τ , it is
sufficient to know the truth values of the subformulas of φ
in the current and previous timestep; formally:

Proposition 1 Let φ be a PPLTL formula and Subf (φ) the
set of its subformulas. Moreover, let τ and τ ′ be two finite
traces of length n and n′ respectively, such that τn = τ ′n′

and τ, n− 1 |= ψ iff τ ′, n′ − 1 |= ψ for each ψ ∈ Subf (φ).
Then, it holds that τ, n |= φ iff τ ′, n′ |= φ.

This claim follows from results in (De Giacomo, Favorito,
and Fuggitti 2022) which are stated in a somewhat different
form.

Due to the fact that Subf (φ) is linear in φ itself, the
proposition above implies the following.

Observation 1 Evaluating a PPLTL formula φ on a trace τ
can be done in time linear in |φ| and constant in length(τ),
given that the truth values of subformulas of φ in the pre-
ceding state are known.

Crucially, this allows us to evaluate the truth value of a
PPLTL specification using only a set of truth values that
is linear in size of the formula, regardless of how many
timesteps have elapsed.

4 Pure-Past Action Masking
In this section, we introduce Pure-Past Action Masking
(PPAM). In PPAM, a safety specification comprises a set
of PPLTL formulas evaluated on the history which specify
the set of actions allowed given the history. For each action
a ∈ Act, a PPAM mask contains a PPLTL formula φa over
the mask’s features (fluents) Prop, and the action a is avail-
able if and only if φa is true. Notice how there is no coupling
between the set of features available to the agent and those
available to the mask.

Definition 3 (PPAM mask) Given a (learning) agent mod-
elled by an MDP Mag = (F, S, s0, Act, A, Tr,R, γ), a
PPAM mask (L, {φa : a ∈ Act}) is a pair where:

• L = 2Prop is the set of states of the mask;
• {φa : a ∈ Act} is a set containing a PPLTL formula φa

over Prop for each action a ∈ Act, specifying when a is
permitted.

As an example, we show how the safety specification for
the “hot water tank” scenario can be expressed using PPAM
action specifications.

Example 2 The “hot water tank” safety specification (see
Example 1) can be expressed using the following PPLTL ac-
tion specifications:

φopen = level ≤ 93 ∧ (close → ⊖close ∧ ⊖⊖ close)

φclose = level ≥ 4 ∧ (open → ⊖open ∧ ⊖⊖ open)



Figure 1: Interaction between the environment, agent and the
PPAM mask. Allowed Actions ⊆ A(s) is the set of permitted
actions output by the PPAM mask, v ∈ L is the PPAM mask’s
state, a ∈ Allowed Actions is the action chosen by the agent, R
is the reward given by the environment after a is performed, and
w is the resulting state of the environment. From w, we obtain the
MDP state s through the learning agent’s feature extractor, and f
through the feature extractor of the PPAM mask (notice these need
not be aligned).

We now state the learning problem for PPAM.

Definition 4 (PPAM Learning Problem) An instance of
an RL problem with a PPAM mask is a pair Mppam

ag =
⟨Mag,PPAM⟩ where Mag = (F, S, s0, Act, A, Tr,R, γ) is
a factorized MDP with Tr and R hidden, and PPAM =
(L, {φa : a ∈ Act}) is a PPAM mask with a set of PPLTL
formulas φa over Prop, where L = 2Prop .

A solution to the problem is a policy ρ∗ : (S × L)+ →
Pr(Act) that maximises the expected discounted cumulative
reward and conforms to the PPAM mask’s specification, that
is, for every τ ∈ (S × L)+, ρ∗(τ)(a) > 0 only if τ ′ |=
φa where τ ′ is τ projected on the second component (the
sequence of sets of mask fluents).

Note that the solution is a policy in which all actions are safe
(an action only has non-zero probability if the correspond-
ing ‘precondition’ formula holds). In the following, we will
assume that the PPAM learning problem is such that, for any
possible trace that can be generated, there is always at least
one action that can be taken, i.e., that the problem has at least
one solution.

We now show how to solve the PPAM learning problem.
We begin by lifting the evaluation of formulas on sequences
of mask states from atomic fluents to all subformulas of
mask formulas. By Subf (φ) we denote the set of subformu-
las of φ (nodes in its parse tree). Let V = 2{Subf (φa):a∈Act}

be the set of all possible truth assignments to {Subf (φa) :
a ∈ Act}. Given a sequence τ ∈ L+, and the valuation
of fluents in each state, it is possible to evaluate formulas
from v ∈ V on τ according to the truth definition for PPLTL
formulas. In fact, as we have seen earlier, it is sufficient to
know the valuation of {Subf (φa) : a ∈ Act} in the preced-
ing state and the valuation of fluents in the current state in
order to evaluate {Subf (φa) : a ∈ Act}.

Note that each v ∈ V determines the set of actions that
are permitted given the mask’s specification (those a ∈ Act
where φa ∈ v, that is, φa is true). We are going to use this
to reduce the non-Markovian PPAM learning problem to a
Markovian learning problem.

Below we prove (Theorem 1) that the PPAM learning
problem always has a Markovian solution ρ : S × V →
Pr(Act) that maximises the expected discounted cumula-
tive reward and is safe (only actions permitted by the mask
are used). The transition to a Markovian policy is possible
because each v ∈ V encodes sufficient information about
the history of the system.

First, we define an important construction used in the
proof of Theorem 1. It is an MDP that is essentially a product
of the original MDP and the mask’s states and transitions.

Definition 5 (Product MDP) Given an instance of a PPAM
learning problem Mppam

ag = ⟨Mag,PPAM⟩ with Mag =
(F, S, s0, Act, A, Tr,R, γ) and PPAM = (L, {φa : a ∈
Act}), we define a new product MDP Mag×ppam =
(F ′, S′, s′0, Act

′, A′, T r′, R′, γ), where

• F ′ = F ;
• S′ = S × V where V = 2{Subf (φa):a∈Act} (states are

pairs of a state in S and a set of mask’s subformulas);
• s′0 = (s0, v0) where v0 contains the set ℓ0 of mask’s

fluents true in the corresponding state of the world and
{ψ ∈ Subf (φa) : a ∈ Act and ℓ0 |= ψ};

• Act′ = Act;
• A′((s, v)) = A(s) ∩ {a : φa ∈ v} (only safe actions are

available);
• Tr′ : S × V ×Act ⇀ Pr(S × V ) is defined as follows.

As in (De Giacomo et al. 2019), we assume that there is
a probability distribution Trag×ppam : S × L × Act ⇀
Pr(S×L) induced by the world (since the mask’s fluents
are caused by the agent acting in the world). This prob-
ability distribution is unknown to the agent, just as Tr is
unknown. We lift the probability distribution Trag×ppam

to Tr′ : S × V × Act ⇀ Pr(S × V ) as follows. The
probability of transitioning from (s, v) to (s′, v′) on ex-
ecuting action a is the same as the probability given by
Trag×ppam of transitioning from (s, f) to (s′, f ′) by a,
where f is the set of fluents in v, and v′ is the maximal
subset of {Subf (φa) : a ∈ Act} that is true given the set
of formulas true in (‘the previous set’) v and the ‘current’
set of fluents f ′. This set v′ is unique by Proposition 12;

• R′((s, v), a, (s′, v′)) = R(s, a, s′).

Note that the size of each state (s, v) is linear in the size
of s and the size of the mask. The key feature of this product
MDP is that only safe (permitted by the mask) actions are
available to the agent. We prove in Theorem 1 below that
learning on the product MDP with access to only the safe
actions is sufficient for solving the PPAM learning problem.
Critically, the optimality of learning with only safe actions

2Observe that the construction of the transition function in the
product MDP is the reason to include subformulas of φa in v, and
the transition function can be computed in linear time by Observa-
tion 1.



is entailed by the proof : it is not part of the definition of the
PPAM learning problem.

Theorem 1 An RL problem with a PPAM mask Mppam
ag =

⟨Mag,PPAM⟩, with Mag = (S, s0, Act, A, Tr,R, γ) and
PPAM = (L, {φa : a ∈ Act}), can be reduced to RL over
the product MDP Mag×ppam such that optimal policies for
Mppam

ag can be learned by learning corresponding optimal
Markovian policies for Mag×ppam.

Proof. First, observe that the actions available to the
agent in Mppam

ag after each (s0, ℓ0) . . . (sn, ℓn) (where ℓi
are sets of fluents at timestep i) are the same as the actions
available to the agent in the MDP Mag×ppam in (sn, vn)
where vn is the set of ψ ∈ {Subf (φa) : a ∈ Act} such that
ℓ0 . . . ℓn |= ψ. This is because the evaluation of formulas
from {Subf (φa) : a ∈ Act} including φa for each a ∈ Act
is the same in (s0, ℓ0) . . . (sn, ℓn) and in (sn, vn). Hence,
instead of masking actions based on (s0, ℓ0) . . . (sn, ℓn),
we can mask them depending on (sn, vn) without loss of
information. Note that the rewards are the same in both
MDPs. This means that the reward for performing a after
(s0, ℓ0) . . . (sn, ℓn) is the same as the reward for performing
a in (s, vn). Since Tr′ : S × V × Act ⇀ Pr(S × V )
corresponds to Trag×ppam : S×L×Act ⇀ Pr(S×L), the
optimal non-Markovian policy ρ∗ : (S × L)+ → Pr(Act)
produces exactly the same reward as a Markovian policy
ρ : S × V → Pr(Act) obtained by replacing ℓ0, . . . , ℓn
with the corresponding vn. □

Note that, by construction, the learned policy is guaran-
teed to conform to the PPAM mask specification (since it is
learned in the product MDP Mag×ppam where only safe ac-
tions are available) and to be optimal (among policies that
conform to the PPAM mask specifications). In other words,
this result tells us that PPAM masks do not restrict agents
from finding optimal (safe) policies for the original learning
problem, while at the same time automatically guaranteeing
safety.

Moreover, the input to the learning algorithm is the prod-
uct MDP Mag×ppam. In the product MDP, the number of
new features added to the states is linear with respect to the
size of the mask’s specification, as the new feature space
is exactly the union of F (the feature space of Mag) and
{Subf (φa) : a ∈ Act}. This leads to the following corol-
lary regarding the complexity of using PPAM.

Corollary 1 RL with a PPAM mask incurs a single expo-
nential, in the size of the mask specification, overhead in the
size of the state space. Moreover, if the MDP is factorized, a
PPAM mask leads to a linear, again in the size of the mask
specification, overhead in the size of the feature space.

In practice, the increase in the size of the state space may
be lower than the single exponential blowup in Corollary 1,
as the truth value of some subformulas may imply that of
other subformulas.

5 Comparison with Shields
In this section, we briefly compare the expressive power
of PPAM and shields. Such a comparison is not entirely

straightforward. Shields are built using an abstraction of the
underlying MDP that describes the dynamics of the learning
environment. In contrast, the set of fluents used to specify
PPAM safety constraints are independent of the features of
the MDP seen by the learning agent. For the comparison to
be meaningful, we must assume that the states in the abstract
MDP used to build the shield are a subset of the fluents avail-
able to the PPAM.

Let S = (Q, q0,ΣI ,ΣO, δ, λ) be a shield synthesised
from some safety automaton (Safety LTL specification) As,
where Q = QM × Qs is the set of states, QM is the set of
states of the MDP abstraction, Qs is the sets of states of the
safety automaton used to synthesise S , and ΣI = L×Act.

First, we prove a lemma connecting DFAs, built from
(Safety) LTL formulas, and PPLTL.

Lemma 1 For any state qs of the safety automaton As used
to synthesise the shield S, it is possible to provide a PPLTL
formula ϕqs describing exactly the paths leading to qs from
the initial state of As.

Proof. As the safety automaton As is synthesised from a
(Safety) LTL formula, it must be counter-free (Manna and
Pnueli 1990). The claim then follows via a result from (Zuck
1986), showing that for any given counter-free automaton
it is possible to build a PPLTL formula ϕq recognizing all
paths leading to any of its states q. □

Notice that, if the MDP abstraction is a counter-free au-
tomaton, then we could apply Lemma 1 to obtain a PPLTL
formula for each of its states qM. For generality, we assume
that it is an arbitrary DFA and include the set of states QM
of the MDP abstraction amongst the fluents that we can use
to define our PPLTL formulas.

The next lemma is crucial for stating our expressive-
ness result. We assume that we have access to the state of
the MDP abstraction, the observation from L and the ac-
tion executed by the agent, i.e., that the set of fluents is
Prop = QM ∪ L ∪ Act.3 We show how, for each action
a ∈ Act, we can build a PPLTL formula φa that will con-
strain a in exactly the same way as S.

Lemma 2 Given a shield S, for any action a ∈ Act we can
build a PPLTL formula φa over fluents Prop = QM ∪ L ∪
Act such that, for any shield state (qM, qs) and observation
ℓ reached by S after some trace τ , a ∈ λ((qM, qs), ℓ) if and
only if τ |= φa.

Proof. First, let a ∈ Act be an arbitrary action. If an
MDP abstract state-observation pair (qM, ℓ) is such that
a ∈ λ((qM, qs), ℓ) for any safety automaton state qs (reach-
able from the initial state q0) and for which ℓ is observable
from (qM, qs), then qM and ℓ being the current MDP ab-
straction state and observation is a sufficient precondition to
allow the agent to take action a. Thus, we define Λa as the
set of all such MDP abstraction state-observation pairs.

3We implicitly assume that finite traces we consider
when evaluating the formula φa will be of the form
(q0M, ℓ0)a0(q1M, ℓ1)a1 . . . (qnM, ℓn), where ai is the action
taken after (qiM, ℓi).



Now, let qM be an MDP abstraction state and ℓ an ob-
servation such that there are two distinct safety automaton
states qs, q′s for which: (i) both qs and q′s are reachable from
q0, (ii), ℓ can be observed in both (qM, qs) and (qM, q′s),
and (iii), a ∈ λ((qM, qs), ℓ) and a ̸∈ λ((qM, q′s), ℓ). For
qM and ℓ, we need to keep track of the current state qs
in the safety automaton, so that we allow a if and only if
the current state qs is such that a ∈ λ((qM, qs), ℓ). Let
Qa,qM,ℓ

s = {qs ∈ Qs : a ∈ λ((qM, qs), ℓ)}. Thanks to
Lemma 1, we can build for each of these qs ∈ Qa,qM,ℓ

s a
PPLTL formula ϕqs that is satisfied if and only if, given the
current history, the safety automaton As is in state qs.4

We are now ready to define the PPLTL formula φa that
will constrain action a. In the formula we implicitly omit all
the (qM, ℓ) ∈ (QM × L) \ Λa such that Qa,qM,ℓ

s = ∅.

φa =
∨

(qM,ℓ)∈Λa

(qM ∧ ℓ) ∨

∨
(qM,ℓ)∈(QM×L)\Λa

qM ∧ ℓ ∧

 ∨
qs∈Q

a,qM,ℓ
s

ϕqs


We now show that action a is allowed by the shield S if

and only if the current trace τ satisfies φa. Let (qM, qs) be
the current state of the shield and ℓ the current observation,
reached after following the trace τ . Observe that for a ∈
λ((qM, qs), ℓ), we either have that a ∈ λ((qM, q′s), ℓ) for
any state of the safety automaton q′s such that (qM, q′s) is
reachable from q0,S and ℓ is observable at (qM, q′s), or not.

In the first case, it means that whenever the state of the
MDP abstraction is qM and the observation is ℓ, the shield
will always allow action a. Notice that the fluent for state qM
and for observation ℓ are true in the last timestep of trace τ
if and only if qM is the current state of the MDP abstraction
and ℓ the current observation. Hence, S allows action a if
and only if τ |= φa, since τ |= qM ∧ ℓ for (qM, ℓ) ∈ Λa.

In the second case, it means that the current safety
automaton state qs is such that, when coupled with
the current MDP abstraction state qM and observation
ℓ, a ∈ λ((qM, qs), ℓ). This is true if and only if the
trace τ is such that: (i) qM and ℓ are true at its fi-
nal timestep, and (ii), τ |= ϕqs , by Lemma 1. Hence,
we have again that S allows action a if and only if
τ |= φa, since τ |= qM ∧ ℓ ∧

(∨
qs∈Q

a,qM
s

ϕqs

)
for

(qM, ℓ) ∈ (QM × L) \ Λa and qs ∈ Qa,qM,ℓ
s . □

Theorem 2 For every shield S for a safety property φ, there
exists a PPAM mask over fluents Prop = QM∪L∪Act such
that the policy learned with it will satisfy φ.

Proof. For each action a ∈ Act, we build the formula φa

from Lemma 2. Then, it is easy to see that the resulting
PPAM mask constrains actions just like the input shield S

4Notice that the safety automaton transitions on inputs from L×
Act, hence we also need Act to be included in the set of fluents
available to define the PPLTL formula φa.

does. Therefore, the agent learns exactly the same policy. □

Theorem 2 shows that, when provided with the same in-
formation, PPAM masks have the same expressive power as
shields in constraining actions.

We conclude this section by briefly discussing some prac-
tical considerations relating to the use of PPAMs and shields.
PPAMs require that the conditions for the safe execution
of each action are specified directly by the designer of the
mask. In contrast, with shields, the safety property is speci-
fied at system behavior level, and the constraints on actions
are synthesised during the construction of the shield. While
this avoids the designer of the shield having to specify action
conditions, construction of the shield requires that an ab-
straction of the underlying MDP is available (which may be
challenging for cyber-physical systems that learn in the real
environment), and entails significant computational over-
head compared to PPAM masks. PPAMs are therefore more
appropriate in situations where there is a straightforward
correspondence between safety specifications and actions,
and/or an abstraction of the underlying MDP is unavailable.
Another clear difference between the two approaches fol-
lows from the logics that they employ, i.e., Safety LTL and
PPLTL. Safety LTL has only future modalities, and as result,
shields are more appropriate when the specification con-
strains how the system can evolve in the future. On the other
hand, PPLTL (as the name suggests) has only past modal-
ities, and so PPAMs are more appropriate when the action
constraints depend on what has happened in the past.

6 Experimental Evaluation
In this section, we illustrate our approach with two exam-
ples from the literature, COCKTAILPARTY (De Giacomo
et al. 2019) and BOATRACE (Leike et al. 2017), and present
experimental results which show that, in addition to en-
suring safety, PPAMs can also improve sample efficiency.
Code and more details about the environments is available
in a GitHub repository at: github.com/giovannivarr/PPAM-
AAAI24/. The repository also includes a PPAM implemen-
tation of the WATERTANK environment from (Alshiekh et al.
2018). We have not not included the WATERTANK results
here, as they follow directly from Theorem 2 in the previous
section: both the PPAM- and shield-based agents are con-
strained in the same way, and learn exactly the same poli-
cies. All experiments were performed on an Apple M1 chip
with a 16 GB RAM, macOS Ventura 13.5 laptop.

6.1 COCKTAILPARTY

In the COCKTAILPARTY scenario the agent learns with a
restraining bolt (RB), which provides additional rewards
to the agent depending on whether the safety specification
is satisfied. However, restraining bolts do not provide any
safety guarantees, either during training or deployment. In
the scenario, the agent is a robot which serves drinks (coke
and beer) and snacks (biscuits and chips) to four guests at
a party. The environment is a 5×5 grid. The robot knows
the locations of drinks and snacks and the locations of peo-
ple, and can execute actions to move in the environment,



grasp items and serve them to people. The robot gets a re-
ward when a delivery task is completed. Some of the guests
are children who should not be served alcohol, and the robot
should not serve more than one drink or snack to each guest.
However, as the robot is unable to distinguish different kinds
of people and has no memory of who has been served pre-
viously, it will simply learn to bring a drink or snack to any
person (choosing the shortest path).

To enforce the constraint that children should not be
served alcohol and each guest should be served one drink
or snack, we use a PPAM mask to constrain the “serve”
action, using the following PPLTL formula:

φserve =
∨

g∈Guests

[at g ∧

((¬3−served food g ∧ holding food)∨
(¬3−served drink g ∧ holding drink∧

(¬minor g ∨ ¬holding alcohol)))]

where at g is true if the robot is in the cell occupied by
guest g, holding food is true if the robot is holding a snack
in the current timestep, holding drink is true if the robot
is holding a drink, holding alcohol is true if the robot is
holding an alcoholic drink, minor g is true if guest g is a
minor, served food g is true if guest g has been served food
previously, and served drink g is true if the guest has been
served a drink previously.

We use the same experimental setup as in (De Giacomo
et al. 2019): both agents are trained using n-step Sarsa,
configured with learning rate γ = 0.999, exploration rate
ϵ = 0.2, and n = 100. We performed 10 runs, each consist-
ing of 4000 iterations lasting at most 1000 steps. Each run
is split into non-overlapping intervals containing 100 con-
secutive iterations. For each such interval, we evaluate the
average reward obtained by the agent. Figure 2 shows the
median average rewards per interval and the shaded areas en-
close the 25th and 75th percentiles. As can be seen, the PRB
agent achieves a higher median average reward and learns to
complete all four serving tasks more quickly than the RB
agent. This is consistent with the observation in (Huang and
Ontañón 2022), that the improvement in sample efficiency
is due to the fact that the PPAM agent has fewer actions to
choose from. Moreover, the median number of violations of
the safety specification by the RB agent was 164.5.

6.2 BOATRACE

BOATRACE is an “AI Safety Gridworld” (Leike et al. 2017)
designed to illustrate ‘reward gaming’ (Skalse et al. 2022), a
general phenomenon where an agent exploits an unintended
loophole in the reward specification to obtain rewards in un-
intended (and possibly unsafe) ways. The environment is a
5×5 grid, and the the agent sails around a track, going past
4 different checkpoints, one for each cardinal direction. The
agent should learn to complete as many clockwise laps as
possible (performance wrt the goal is measured as the num-
ber of clockwise movements minus the number of counter-
clockwise movements the agent has taken across the entirety
of the episode). The agent receives a reward of -1 for each

Figure 2: Median reward of PPAM and RB agents.

step taken, and, if it arrives on a checkpoint from the “cor-
rect” clockwise direction, it also receives a reward of 3. As
a result, the agent can maximize its reward by stepping back
and forth on a checkpoint. This is not the desired behavior
and may be unsafe, e.g., if there are other agents in the envi-
ronment.

To ensure correct behavior, we use a PPAM that con-
strains the agent’s movement actions. The PPLTL formula
constraining the “move west”’ action is:

φmove west = (¬(north ∨ west))S(south ∨ east)

where the fluent corresponding to each cardinal direction
is true whenever the agent moves onto the corresponding
checkpoint in the track. The constraint checks that the last
checkpoint that was visited was either east or south, as after
these the agent can move west. The PPLTL formulas for the
other movement actions are analogous: the agent is allowed
to perform the move north action only if the last check-
point visited was either west or south; the agent is allowed
to perform the move south action only if the last check-
point was either north or east, and the agent is allowed to
perform the move east action, only if the last checkpoint
was either north or west.

We compare a Q-learning agent trained with a PPAM to
a vanilla Q-learning agent. Both agents are configured with
learning rate γ = 0.5, and initial exploration rate ϵ = 1, lin-
early annealed to 0.01 over 100000 training steps. We per-
formed 10 runs, each consisting of 200000 training steps.
The maximum performance obtainable is 100. Lines in Fig-
ure 3 show the median performance during training.

As can be seen, the PPAM-based agent learns the optimal
policy with respect to the performance function, i.e., it learns
how to correctly complete laps. In contrast, the vanilla agent
achieves a performance score of 0, meaning that it performs
as many clockwise and counter-clockwise movements: in
other words, it has learned to exploit the reward function and
moves back and forth over a single checkpoint. Note that the
poor performance of the non-PPAM agent is not due to the
use of Q-learning. In (Leike et al. 2017) agents were trained



Figure 3: Median performance of PPAM and Q agents.

using deep RL algorithms (Rainbow (Hessel et al. 2018) and
A2C (Mnih et al. 2016)), but did not manage to learn a pol-
icy that optimizes performance in this environment.

7 Related Work
Markovian action masking is widely used in reinforcement
learning, both for efficiency (removing invalid actions) and
for removing unsafe actions.

Huang and Ontañón (2022) focus mainly on masking in
deep reinforcement learning. They give theoretical founda-
tions for the use of action masking in policy gradient meth-
ods, and show that it generates a valid policy gradient. Using
a simplified real-time strategy game they show experimen-
tally that invalid action masking scales better with respect
to the size of the action space than invalid action penalty,
which penalizes agents for taking invalid actions.

Kanervisto, Scheller, and Hautamäki (2020) classify ac-
tion masking (which they call “remove actions”) as a cat-
egory of “action space shaping” approaches. They present
ablation studies in game domains, showing the positive ef-
fect of action masking during learning on sample efficiency.

Krasowski et al. (2023) compare three approaches to
provably safe RL in experiments where a set of safety con-
straints must be satisfied. Their results show that provably
safe approaches are able to converge to optimal policies in
roughly the same time as other approaches, while ensuring
that safety constraints are satisfied. However, unlike in our
approach, they provide no formal guarantee that removing
actions does not eliminate optimal safe policies.

Preemptive shields (Alshiekh et al. 2018; ElSayed-Aly
et al. 2021) can be seen as a form of non-Markovian ac-
tion masking. We have already compared our approach to
shields in Section 5. Other logic-based approaches to enforc-
ing non-Markovian constraints include (Wen, Ehlers, and
Topcu 2015) and (Mason et al. 2017).

Similarly to shields, Wen, Ehlers, and Topcu (2015) pro-
pose an approach that requires the transformation of a
Safety LTL formula into an automaton. They then synthe-
sise a maximally permissive strategy using the underlying
MDP (rather than an abstract MDP, as in shields). Their
approach is therefore double exponential in the input for-
mula in general. However, the complexity reduces to linear
for a subset of Safety LTL formulas (formulas of the form
φ0 ∧ 2φ1 where φ0 and φ1 are Boolean combinations of

atomic propositions, and formulas of the form ⃝q where q
is an atomic proposition).

Mason et al. (2017) present an approach in which they
build an abstract MDP from the MDP in which the agent
learns. In the abstract MDP, they synthesise abstract policies
that satisfy constraints expressed in Probabilistic Computa-
tion Tree Logic (PCTL) (Hansson and Jonsson 1994); the
abstract policies are then used to constrain the set of actions
the agent can perform when learning in the original MDP.
If the abstract MDP correctly captures the dynamics of the
underlying MDP, their approach guarantees that any abstract
policy returned satisfies the constraints and is Pareto optimal
with respect to the candidate policies explored; however, it
is not guaranteed to find a policy if one exists.

8 Conclusions and Future Work

We have presented pure-past action masking: a lightweight,
modular formalism for specifying safe or permitted actions
of reinforcement learning agents. The mask specification
comprises a set of PPLTL formulas evaluated on the history,
and specifies the set of actions permitted in the current state.
As formulas are evaluated on the history rather than just the
current state, PPAM enables non-Markovian action mask-
ing. The PPAM specification is enforced by construction:
a PPAM agent will always learn an optimal policy which
never violates its safety specification during either training
or execution. PPAM can be applied in any setting where the
fluents relevant to the safety specification can be perceived
by the mask, and where the conditions on action availability
can be expressed in PPLTL, which is as expressive as Safety
LTL. Moreover, using PPAM incurs only a single exponen-
tial blowup wrt the size of the PPLTL formula.

In future work, we plan to extend the framework of PPAM
to multi-agent reinforcement learning, as has been done with
shields (ElSayed-Aly et al. 2021). We would also like to in-
vestigate possible ways of implementing PPAM in environ-
ments with continuous action spaces, as in, e.g., (Krasowski
et al. 2023). Finally, another interesting extension would be
to employ PPAMs in partially observable MDPs (POMDPs).
As PPAMs make no assumptions about the underlying struc-
ture of the (PO)MDP, if the PPAM’s fluents are fully ob-
servable, then this trivially reduces to the present work. If
the PPAM’s fluents are not full observable, we can build on
work on evaluating temporal logic formulas on incomplete
traces, e.g., (Joshi, Tchamgoue, and Fischmeister 2017).
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X.; and Althoff, M. 2023. Provably Safe Reinforcement
Learning: Conceptual Analysis, Survey, and Benchmarking.
arXiv:2205.06750.
Krasowski, H.; Wang, X.; and Althoff, M. 2020. Safe re-
inforcement learning for autonomous lane changing using
set-based prediction. In 2020 IEEE 23rd International Con-
ference on Intelligent Transportation Systems (ITSC), 1–7.
IEEE.
Kupferman, O.; and Vardi, M. Y. 2001. Model Checking of
Safety Properties. Formal Methods in System Design, 19(3):
291–314.
Leike, J.; Martic, M.; Krakovna, V.; Ortega, P. A.; Everitt,
T.; Lefrancq, A.; Orseau, L.; and Legg, S. 2017. AI Safety
Gridworlds. CoRR, abs/1711.09883.
Lichtenstein, O.; Pnueli, A.; and Zuck, L. 1985. The glory
of the past. In Logics of Programs, 196–218. Springer Berlin
Heidelberg.
Manna, Z.; and Pnueli, A. 1990. A Hierarchy of Temporal
Properties (Invited Paper, 1989). In Proceedings of the 9th
Annual ACM Symposium on Principles of Distributed Com-
puting (PODC 1990), 377–410. Association for Computing
Machinery.
Manna, Z.; and Pnueli, A. 1995. Temporal verification of
reactive systems: safety. Springer New York.
Mason, G. R.; Calinescu, R. C.; Kudenko, D.; and Banks, A.
2017. Assured reinforcement learning with formally verified
abstract policies. In 9th International Conference on Agents
and Artificial Intelligence (ICAART 2017). York.



Mazala, R. 2002. Infinite Games. In Grädel, E.; Thomas, W.;
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