Unleashing the Power of Ontologies in Data Integration
The SELEX Case Study

Diego Calvanese
Free University of Bozen-Bolzano

Semantic Days
Stavanger, Norway – 19 May, 2009
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI

4. Conclusions
Data Integration

- Data Integration is the problem of providing a unified and transparent access, through a global schema to a collection of data stored in multiple, autonomous, and heterogeneous data sources.

- From [Bernstein & Haas, CACM Sept. 2008]:
 - Large enterprises spend a great deal of time and money on information integration (e.g., 40% of information-technology shops’ budget).
 - Market for data integration software estimated to grow from $2.5 billion in 2007 to $3.8 billion in 2012 (+8.7% per year) [IDC. Worldwide Data Integration and Access Software 2008-2012 Forecast. Doc No. 211636 (Apr. 2008)].
Conceptual Architecture for Data Integration

- A global schema and various data sources.
- Mappings relate data sources to global schema.
- Integration Services (e.g., query answering) are expressed over the global schema.
Ontology-based Data Integration

• The global schema is represented through an ontology.
• We assume the data sources to be relational.
• The mappings specify how to construct objects in the ontology from the data items in the sources.
Unleashing the power of ontologies in information integration

QuOnto Integration Architecture

QuOnto

C1 -> C2 -> C3

SQL queries on the global schema associated to ontology elements

Ontology DL-Lite

Mapping

Federated Schema

Wrapping

Data Sources

Relational Data Federation Tool

S1 -> S2 -> S3
Data Integration through QuOnto

- **Global schema** - *DL-Lite Ontology*

 DL-Lite [C. et al. JAR-07, JODS-08] is a tractable Description Logic (DL) that captures basic ontology languages and allows for query answering through relational database technology.

 The global schema is a set of assertions over concepts and roles, i.e., binary relations between concepts (essentially an UML class diagram).

- **Data Sources** - represented by a *relational schema*

 This schema can be obtained by means of a data federation tool which manages source wrapping (we call it federated schema).

- **Mappings** - *Global-As-View (GAV)*

 I.e., a set of assertions of the form

 \[C \leftarrow Q \]

 where \(C \) is an element of the global schema and \(Q \) is an SQL query over the federated schema.

If we go beyond the above expressiveness the system loses its nice computational properties [C. et al. SKDB-08, KR-06].
Query answering in QuOnto

Query Q1:
Generated by the QuOnto Reasoner, preserving the semantics of the ontology

Query Q2 (in SQL):
Preserves the semantics of the mappings and of the wrapping

Ontology

Mapping

Wrapping

Query Execution
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI

4. Conclusions
C&DM at SELEX-SI

- SELEX-SI is a Finmeccanica company that is world leader in the provision of integrated defence, air traffic, and mission critical systems, with customer base in over 150 countries.

- C&DM is a technical management model that governs the entire products’ life cycle, enforcing product consistency with respect to requirements, design, and operational data.

- SELEX-SI produces and maintains systems with very long life cycle, which require a correct configuration management after delivery → C&DM is “The hub of the wheel” in SELEX-SI.

- C&DM in SELEX-SI involves three main processes: Project & Product, Manufacturing, and In-Service Config. Management.

- In this case study, we mainly focused on Manufacturing and In-Service CM, and in particular on:
 - component design and production
 - component deployment
 - analysis of component’s obsolescence
Data Integration for C&DM

• Currently, several different tools are used for the various C&DM processes (e.g., RDBMS-based tools like SAP R3, SAP Customer Support, Odb, or XML-based tools like eDEA).

• This results in a set of heterogeneous data sources, completely autonomous or weakly integrated, managing overlapping data.

• Data integration is manually performed by C&DM experts, with great efforts in terms of time and resources and no guarantees on reliability and effectiveness of the retrieved information.

• Desiderata: Simplify and automatize the data integration process!

• Our Solution: Integrate C&DM data sources through the QuOnto ontology-based data integration management system
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI
 i. Federating C&DM Data Sources
 ii. Designing the SELEX-SI C&DM Ontology
 iii. Relating Data Sources to the SELEX-SI C&DM Ontology through QuOnto
 iv. Querying the System

4. Conclusions
Data Exports from C&DM Tools

Project & Product Configuration Management Tools

- **UGS TEAMCENTER**: data on apparatus components and their configuration states, seen at the design level, **exported in HTML format** (~2 MB export with ~10,000 records)

Manufacturing Configuration Management Tools

- **SAP R3**: data partially overlapping with USG Teamcenter data, as well as data on components obsolescence, **exported in Excel format** (~3 MB export with ~30,000 records)

In-Service Configuration Management Tools

- **SAP CS**: data on physical components realized from design items, **exported in Excel format** (~1 MB export with ~5,000 records)
- **Edea**: XML data on the deployment of physical components, partially overlapping with SAP CS data (**~5 MB DB dump with ~5,000 nodes**)
- **Odb**: relational data on components obsolescence, possible substitutions, and requests of purchasing or producing new components (**~110 MB SQLServer DB Dump with ~50,000 tuples**)
Data Export: Example (From SAP R3)

<table>
<thead>
<tr>
<th>Materiale</th>
<th>R603B</th>
<th>OF</th>
<th>Alt</th>
<th>Imp</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCR 33S VERS BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qtà imp.</td>
<td>1,000</td>
<td>NR</td>
<td>Qtà base</td>
<td>1,000</td>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lev</th>
<th>Pos.</th>
<th>PN</th>
<th>Quant</th>
<th>UM</th>
<th>CtP</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definizione</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>05R107B</td>
<td>2,000</td>
<td>NR</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIGITAL RECEIVER UNIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>05R108B</td>
<td>1,000</td>
<td>NR</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RF/IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>06R077</td>
<td>1,000</td>
<td>NR</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLID STATE TX 10S BASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Y.NT 1074</td>
<td>YNT 0</td>
<td>16,000</td>
<td>PZ</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PASSIVAZIONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>YNTGEN000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>701370G1</td>
<td>SUPP.CONN.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>194892P1</td>
<td>32,000</td>
<td>NR</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERN0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOCENGG100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>19E004P112</td>
<td>0,160</td>
<td>KG</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MANCA DESCRIZIONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OBSGENN000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>19E004P115</td>
<td>0,160</td>
<td>KG</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>19E004P118</td>
<td>0,160</td>
<td>KG</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OBSGENN000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>19E004P118</td>
<td>0,160</td>
<td>KG</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>
Federated Schema

• The data federation tool used in this case study is the IBM WebSphere Federation Server (FS), which provides support to wrap in relational format heterogeneous data, such as Excel, XML, HTML, textual data.

• All data sources to be integrated are represented in WebSphere FS by means of non-materialized relational views called nicknames.

• Each nickname is the output of a semi-automatic process of wrapping. Roughly:
 • A nickname is associated to each Excel sheet and to each HTML file.
 • A nickname is associated to each XML document representing data at its nodes, whereas other nicknames represent the father-child relation between document nodes.
 • A nickname is associated to each SQLServer relational table.

• Resulting federated schema: relational schema with 50 relations, each with around 15 attributes.
Federation: Example (TAB_1_SAP_R3 T)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>varchar(50)</td>
<td>YES</td>
<td>MUL</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>DEFINIZIONE</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>VERSIONE</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>QUANT</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>TIPOLOGIA</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>UM_CTP</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI
 i. Federating C&DM Data Sources
 ii. Designing the SELEX-SI C&DM Ontology
 iii. Relating Data Sources to the SELEX-SI C&DM Ontology through QuOnto
 iv. Querying the System

4. Conclusions
Ontology Design (Some Relevant Elements)

Concepts

- **(virtual) Item**: everything that is used in a project (e.g., a component). It can be **configurable** (can have several configuration states - CS) and **serializable** (each corresponding implementation has a serial number).

- **Physical Part**: implementation of a virtual item, possibly associated to a serial number (if it corresponds to a serializable item).

- **Physical Item**: physical part deployed in a larger component.

- **Specification**: state of obsolescence of an item.

- **Obsolete**: obsolete item (items that are no longer available). A substitution (role **Substitution**) for it can be specified.

Roles

- **SubComponent**: relation between an item and the items that are its sub-components.

- **Implements**: relation between an item and the physical parts that implement it.

- **PartOf**: relation between a physical item and its parts (phys. items), possibly associated to the **position** that the part has in the physical item.
Ontology Fragment (UML Approximation)

- Item
 - PartN: String
 - SubComponent
 - Obsolete
 - AssociatedSpec
 - part
 - Substitution
 - Implements
 - ItemSer
 - ItemConf
 - CS: String {0..n}
 - PartOf
 - Position: String {0..1}

- PhysicalPart
 - SerialN: String

- AssociatedSpec
 - part

- SubComponent
 - part

- Specification

- Implements
 - PhysicalPart

- PhysicalPartSer

Unleashing the power of ontologies in information integration

Diego Calvanese
Ontology fragment DL-Lite Specification

\[\text{ItemSer} \sqsubseteq \text{Item} \]
\[\text{ItemConf} \sqsubseteq \text{Item} \]
\[\text{Obsolete} \sqsubseteq \text{Item} \]
\[\text{Item} \sqsubseteq \delta(\text{PartN}) \]
\[\text{func}(\text{PartN}) \]
\[\rho(\text{PartN}) \sqsubseteq \text{String} \]
\[\exists \text{Implements} \sqsubseteq \text{Item} \]
\[\exists \text{Implements}^\sim \sqsubseteq \text{PhysicalPart} \]
\[\exists \text{Substitution} \sqsubseteq \text{Item} \]
\[\exists \text{Substitution}^\sim \sqsubseteq \text{Obsolete} \]
\[\exists \text{SubComponent} \sqsubseteq \text{Item} \]
\[\exists \text{SubComponent}^\sim \sqsubseteq \text{Item} \]
\[\text{PhysicalPartSer} \sqsubseteq \text{PhysicalPart} \]
\[\text{PhysicalItem} \sqsubseteq \text{PhysicalPart} \]
\[\exists \text{partOf} \sqsubseteq \text{PhysicalItem} \]
\[\exists \text{partOf}^\sim \sqsubseteq \text{PhysicalItem} \]
\[\rho(\text{Position}) \sqsubseteq \text{String} \]
\[\text{func}(\text{Position}) \]
\[\text{PhysicalPartSer} \sqsubseteq \delta(\text{SerialN}) \]
\[\rho(\text{SerialN}) \sqsubseteq \text{String} \]
\[\exists \text{AssociatedSpec} \sqsubseteq \text{Item} \]
\[\exists \text{AssociatedSpec}^\sim \sqsubseteq \text{Specification} \]
\[\text{func}(\text{Implements}^\sim) \]
\[\text{PhysycalPart} \sqsubseteq \exists \text{Implements}^\sim \]
\[\text{PhysycalPartSer} \sqsubseteq \exists \text{Implements1} \]
\[\exists \text{Implements1} \sqsubseteq \text{ItemSer} \]
\[\exists \text{Implements1} \sqsubseteq \neg \text{ItemConf} \]
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI
 i. Federating C&DM Data Sources
 ii. Designing the SELEX-SI C&DM Ontology
 iii. Relating Data Sources to the SELEX-SI C&DM Ontology through QuOnto
 iv. Querying the System

4. Conclusions
Mapping Assertions

- The instances of **Item** are objects constructed with the part numbers retrieved from TAB_1_SAP_R3 of the SAP_R3 system

\[
\text{Item}(f(T.pn)) \leftarrow \text{SELECT T.pn} \\
\text{FROM TAB}_1\text{.SAP}_R3 \ T
\]

- The instances of **Substitution** are defined as follows

\[
\text{Substitution}(f(T.pn), f(T.def)) \leftarrow \text{SELECT T.pn, T.def} \\
\text{FROM TAB}_1\text{.SAP}_R3 \ T \\
\text{WHERE T.tipologia} = 'O' \\
\text{AND T.pn IN (} \\
\text{SELECT T2.pn} \\
\text{FROM TAB}_1\text{.SAP}_R3 \ T2)
Outline of the Talk

1. Ontology-based Data Integration and the QuOnto System

2. Configuration and Data Management (C&DM) at SELEX Sistemi Integrati (SELEX-SI)

3. Experiencing QuOnto for C&DM at SELEX-SI
 i. Federating C&DM Data Sources
 ii. Designing the SELEX-SI C&DM Ontology
 iii. Relating Data Sources to the SELEX-SI C&DM Ontology through QuOnto
 iv. Querying the System

4. Conclusions
Query 1

Return the pairs of part numbers \(<p,p'> \) such that \(p \) is the part number of an obsolete item for which there exists a deployed implementation, and \(p' \) is the part number of a substitution of \(p \)

\[
q(it, sub) :- \text{PartN}(X, it), \text{Obsolete}(X), \text{Substitution}(X, Y), \\
\text{PartN}(Y, sub), \text{Implements}(X,Z), \text{PhysicalItem}(Z)
\]
Query 1 specified over the federated schema

```
SELECT T_SPEC.SPEC_ID as part_number, T_SPEC.SPEC_DEF as substitution,
FROM PAOLO."R603B_PROD_SAP_INFO$" AS "R603B_PROD_SAP_INFO$", PAOLO.T_SPEC AS T_SPEC
WHERE "R603B_PROD_SAP_INFO$".N_COMPONENTI = T_SPEC.SPEC_ID AND
    "R603B_PROD_SAP_INFO$".TIPOLOGIA = 'O'
UNION
SELECT T_SPEC.SPEC_ID as part_number, T_SPEC.SPEC_DEF as substitution,
FROM PAOLO.T_SPEC AS T_SPEC, PAOLO."X08R009_PROD_SAP_INFO$" AS "X08R009_PROD_SAP_INFO$
WHERE T_SPEC.SPEC_ID = "X08R009_PROD_SAP_INFO$".N_COMPONENTI AND
    "X08R009_PROD_SAP_INFO$".O = 'O'
UNION
SELECT T_SPEC.SPEC_ID as part_number, T_SPEC.SPEC_DEF as substitution,
FROM PAOLO.T_SPEC AS T_SPEC, PAOLO."U08011971_PROD_SAP_INFO$" AS "U08011971_PROD_SAP_INFO$
WHERE T_SPEC.SPEC_ID = "U08011971_PROD_SAP_INFO$".N_COMPONENTI AND
    "U08011971_PROD_SAP_INFO$".O = 'O'
UNION ........ Complete Query
```
Query 2 (importance of reasoning)

Return all items

\[q(X) :\neg \text{Item}(X) \]

- If we evaluate the query \(q \) without exploiting the reasoning capabilities of QuOnto, we get 577 objects in the answer.
- These are indeed the items directly mapped on the concept \text{Item}.
- The ontology specifies also that
 - Obsolete items are items (\text{Obsolete} \sqsubseteq \text{Item})
 - Objects that are used as item substitutions are items (\exists \text{Substitution} \sqsubseteq \text{Item})
 - ...
- Exploiting this knowledge (and the mappings specified on \text{Obsolete}, \text{Substitution}, etc.) through a sound and complete query answering algorithm, we get 1562 objects in the answer.
Conclusions

Our experience can be considered successful from different point of views, in particular:

- **Access** (i.e., query answering) to distributed and heterogeneous data has been centralized and automatized.
- Exploiting the conceptual representation of the domain of interest (i.e., the \textit{DL-Lite} global schema), non-experts can now have both a more clear picture of the domain and access to data integration features.
- Exploiting reasoning capabilities of QuOnto, implicit knowledge automatically comes into play to produce complete answers to user queries.

Ongoing and future work

- Extending the C&DM ontology.
- Adding other C&DM data sources.
- Testing new QuOnto features: answering complex (i.e., EQL) queries, constraints, data update.
Thank You!

People involved in this work:
• Alfonso Amoroso1
• Giuseppe De Giacomo2
• Gennaro Esposito1
• Domenico Lembo2
• Paolo Urbano2
• Raffaele Vertucci2

1 SELEX Sistemi Integrati
2 Sapienza Univ. of Rome