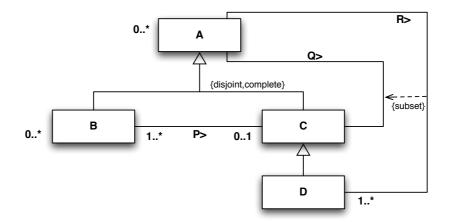
Sapienza Università di Roma


Facoltà di Ingegneria – Corso di Laurea Magistrale in Ingegneria Informatica

Metodi Formali per il Software e i Servizi

AA 2010/11 – Appello del **26/07/2011**

Tempo per completare la prova: 2 ore

Parte 1. Sia dato il seguente diagramma delle classi UML.

- i. Esprimere tale diagramma in logica del prim'ordine.
- ii. Esprimere tale diagramma come una TBox nella logica descrittiva ALCQI o SHIQ.
- iii. Esprimere tale diagramma come una TBox nella logica descrittiva DL-lite_A, mettendo in evidenza eventuali aspetti del diagramma non esprimibili.
- iv. Si consideri la seguente ABox: $ABox = \{C(o)\}\$ Si restituisca la risposta alla sequente query, facendo uso dell'algoritmo di riscrittura delle query congiuntive di DL-lite_A: q(x) := Q(x,y), Q(y,z).

Parte 2. Sia dato il transition system *T* in figura. Verificare, applicando l'algoritmo di model checking di CTL e mu-calculus, se le seguenti formule sono vere o false nello stato *s1* di *T*:

$$EGAFa \qquad \mu X.\nu Y.((a \lor \langle next \rangle X) \land \langle next \rangle Y)$$

Parte 3. Si considerino le seguenti query congiuntive booleane:

$$q() := e(r,g), e(g,b), e(b,r).$$

 $q'() := e(x,y), e(y,z), e(z,w), e(z,x).$
 $q''() := e(x,y), e(y,z), e(z,w), e(z,x), e(w,y).$

Verificare se:

- 1. q() è contenuta in q'()
- 2. q() è contenuta in q''()

In caso positivo esibire l'omomorfismo tra i database canonici delle stesse, in caso negativo, spiegare perché il contenimento non sussiste.