
A NOTE ON THE EXHAUSTIVENESS OF

SLDNF�RESOLUTION FOR NORMAL PROGRAMS

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Universit�a di Roma �La Sapienza�

Via Salaria ���� ���	
 Roma� Italia

Email� degiacom�assi
ing
uniroma�
it

Abstract

We prove� by means of results on partial evaluation� that� given a normal program

P � whose completion comp�P � is consistent� and a normal goal G� if P � fGg has a

�nite non�failing SLDNF�tree T � then the computed answers resulting from T are all

the correct answers for comp�P � � fGg �modulo instantiation��

�� Introduction

In this paper we present the following result� let P be a normal program such that comp�P �

is consistent� and let G be a normal goal� if P � fGg has a �nite non�failing tree T � then the

answers computed by T are all the correct answers for comp�P ��fGg �modulo instantiation�


A full proof of this claim ��rst stated by Clark in ����� has never been published
 We prove

it here by using the machinery for partial evaluation developed by Lloyd and Shepherdson

�����


Such an exhaustiveness result has been somewhat disregarded in the classical literature

on SLDNF�resolution
 For example� Lloyd does not report it at all in ���
 Shepherdson just

mentioned it in connection with completeness results for SLDNF�resolution� ���� and �����

pointing out that it is not very useful by itself because it is not easy to decide whether a

goal has a �nite SLDNF�tree �actually such a property is tightly bound with the termination

problem for SLDNF�resolution� which is undecidable�


From a practical point of view the result has its own importance
 In fact� as a consequence

of it we have that every time an SLDNF�resolution interpreter �e
g
 a sound Prolog� terminates

while evaluating a goal� it provides a complete logical characterization of the goal
 Indeed� if

the goal fails� by Clark�s theorem on soundness of negation as failure� the goal is false
 On

the other hand� if any answer is actually computed� by the result proved here� the computed

answers are all the correct answers for it �modulo instantiation�


�



The the paper is organized as follows� after summarizing some well�known de�nitions of

logic programming in Section �� we introduce partial evaluation in Section �� and �nally we

prove the result in Section �


�� Preliminaries

We assume the reader familiar with the standard theoretical results of logic programming�

which are contained in ���
 The basic de�nitions are brie�y recalled here


De�nition A normal program is a �nite set of program clauses of the form

A� L�� � � � � Ln �

where A is an atom and L�� � � � � Ln are literals
 The de�nition of a predicate symbol p in a

normal program P is the set of all program clauses in P which have p in their head
 A normal

goal �W is a clause of the form

� L�� � � � � Ln �

where L�� � � � � Ln are literals
 �

As usual� the completion of a program P � denoted as comp�P �� is the collection of completed

de�nitions of the predicate symbols in P together with Clark�s Equality Theory


De�nition Let P be a normal program and � W a normal goal
 A correct answer for

comp�P � � f�Wg is a substitution � for the free variables in W such that comp�P � implies

the universal closure of W��

comp�P � j� �W��

�

�� On partial evaluation

In view of the literature on partial evaluation �cf
 ���� ���� it is convenient to use slightly more

general de�nitions of SLDNF�derivation and SLDNF�tree here than those given in ���
 In ����

an SLDNF�derivation is either in�nite� successful or failed
 We also allow it to be incomplete�

in the sense that at any step we are allowed to simply not select any literal and terminate the

derivation
 Likewise in SLDNF�tree we may neglect to unfold a goal


A concept that is needed to de�ne partial evaluation is that of resultant


De�nition A resultant is a �rst order formula of the form

Q� � Q��

where Qi �i � �� ��� either is missing� or �if present� is a conjunction of literals
 Any variables

in Q� or Q� are assumed to be universally quanti�ed at the front of the resultant
 �

�



Notice that� a resultant is not a clause� in general� because Q� stands for a conjunction

and not a disjunction of literals


De�nition Let P be a normal program� G a normal goal � Q� and G� � G�G�� � � � � Gn

an SLDNF�derivation P � fGg� where the sequence of substitutions is ��� � � � � �n and Gn is

� Qn
 Let � be the restriction of ��� � � � � �n to the variables in G
 Then we say the derivation

has length n with computed answer � and resultant Q� � Qn
 �Notice that� if n � �� then

the resultant is Q� Q
� �

It can be shown that the resultant Q� � Qn of an SLDNF�derivation from Q down to

the goal Qn� is a logical consequence of the completed de�nition of the predicate symbols in

the heads of the �input� clauses used in the derivation together with the associated Clark�s

Equality Theory


Now� we give the de�nition of partial evaluation �shortly PE�
 Note that the de�nition

refers to three kinds of PE� the PE of an atom in a program� of a set of atoms in a program�

and of a program wrt a set of atoms


De�nition Let P be a normal program� A an atom� and T a �not necessarily complete�

SLDNF�tree for P � f� Ag
 Let G�� � � � � Gr be �non�root� goals in T chosen so that each

non�failed branch of T contains exactly one of them
 Let Ri �i � �� � � � � r� be the resultant of

the derivation from � A down to Gi associated with the branch leading to Gi


� The set of resultants � � fR�� � � � � Rrg is a PE of A in P 
 These resultants have the

following form�

Ri � A�i � Qi �i � �� � � � � r��

where we have assumed Gi �� Qi

� Let A � fA�� � � � � Asg be a �nite set of atoms� and �i �i � �� � � � � s� a PE of Ai in P 


Then � � �� � � � � � �s is a PE of A in P 


� Let P � be the normal program resulting from P when the de�nitions therein of the

predicate symbols in A are replaced by a PE of A in P 
 Then P � is a PE of P wrt A


�

The next theorem is the main result on the declarative semantics
 First we report the

de�nition of closedness condition to be used in the theorem


De�nition Let S be a set of �rst order formulas and A a �nite set of atoms
 We say S is

A�closed if each atom in S containing a predicate symbol occurring in A is an instance of an

atom in A
 �

�



The reason we need this condition is� intuitively� that if we �specialize� the de�nition of a

predicate symbol p wrt an atom A containing p� then we can not expect to be able to correctly

answer calls to p that are not instances of A


Theorem � �Lloyd Shepherdson� Let P be a normal program� W a closed �rst order

formula� A a �nite set of atoms� and P � a PE of P wrt A such that P � � fWg is A�closed�

If W is a logical consequence of comp�P ��� then is a logical consequence of comp�P ��

The converse of this theorem does not hold� as the following classical example shows


Example By partially evaluating wrt A� fr� sg the following strati�ed normal program P

p�� q

q � r�� s

r � s

s� r�

we can obtain the program P �

p�� q

q � r�� s

r � r

s� s�

Now p is a logical consequence of comp�P �� but not of comp�P ��
 �

	� An exhaustiveness theorem

Here we arrive at the core of this paper�

Theorem � Let P be a normal program such that comp�P � is consistent� and let G be a

normal goal� If P � fGg has a �complete� non�failing �nite SLDNF�tree T � then for every

correct answer � for comp�P � � fGg there exists an SLDNF�refutation in T with computed

answer �� and a substitution � such that � � ���

Proof Let G be �W � ans a predicate symbol not occurring in P de�ned as

ans�X��W�

where X are the free variables occurring in W � and P ans is the normal program

P � fans�X��Wg�

Let T � be the SLDNF�tree obtained from T adding an arc leading from � ans�X� to � W

�notice that� every SLDNF�tree for P ans�fans�X�g has the goal�W at depth ��
 Consider

the following PE of ans in P ans obtained from the non failing leaves of T �

ans�X��� �





ans�X��r ��

�



where �i � fX�Ti�Yi�g� Ti�Yi� are tuples of terms� and Yi are the free variables therein
 Let

P ans
�

be the corresponding PE of P ans wrt A � fans�X�g
 The completed de�nition for ans

in P ans
�

is

�X�ans�X�� �Y��X � T�� � � � � � �Yr�X � Tr���

The above formula is A�closed� hence by Theorem � we have

comp�P ans� j� �X�ans�X�� �Y��X � T�� � � � � � �Yr�X � Tr���

Considering the completed de�nition for ans in P ans� i
e
 �X�ans�X��W �� we can replace

ans�X� by W � getting

comp�P ans� j� �X�W � �Y��X � T�� � � � � � �Yr�X � Tr���

Now� since the predicate symbol ans does not appear in �X�W � �Y��X � T���� � ���Yr�X �

Tr�� or in comp�P � we can drop the axiom �X�ans�X��W � from comp�P ans� arriving at

comp�P � j� �X�W � �Y��X � T�� � � � � � �Yr�X � Tr���

Therefore� the thesis follows
 �

By the theorem above� we have that� every time an SLDNF�resolution interpreter �e
g


a sound Prolog� terminates after providing a �nite set of computed answers� we have got

a complete set of correct answers
 Actually� we have characterized the set of all ground

correct answers
 On the other hand� if P � fGg has a �nitely failed SLDNF�tree� then by

Clark�s theorem on soundness of negation as failure �cf
 ���� we have that G is a logical

consequence of comp�P � �i
e
� assuming G �� W � we have that comp�P � j�� �W � where

�W is the existential closure of W �
 Hence� as anticipated in the Introduction� every time an

SLDNF�resolution interpreter terminates while evaluating a goal� we get a complete logical

characterization of the goal


As an easy consequence of the theorem above� we get the following corollary� which ensures

that we are totally free in the choice of the non�failing �nite SLDNF�tree to be used in the

generation of the computed answers


Corollary � Let P be a normal program such that comp�P � is consistent� and let G be a

normal goal� Then� every �complete� non�failing �nite SLDNF�tree for P � fGg returns the

same computed answers�

Acknowledgments

I would like to thank Eugenio Omodeo for stimulating discussions and helpful suggestions


�



References

��� K
 Benkerimi� J
 W
 Lloyd� A Partial Evaluation Procedure for Logic Programs�

Proc� of North American Conf� on Logic Programming� S
 K
 Derbray � M
 Hermenegildo�

eds
� MIT Press� �		�


��� K
 L
 Clark� Negation as Failure� Logic and Data Bases� H
 Gallaire� J
 Minker� eds�

Plenum Press� New York� �	�



��� J
 W
 Lloyd� Foundations of Logic Programming ��nd edition�� Springer�Verlag� �	
�


��� J
 W
 Lloyd� J
 C
 Shepherdson� Partial Evaluation in Logic Programming� The

Journal of Logic Programming� �������� October�November �		�


��� J
 C
 Shepherdson� Negation as Failure II� The Journal of Logic Programming� �����

October �		�


��� J
 C
 Shepherdson� Negation in Logic Programming� Foundations of Deductive

Database and Logic Programming� J
 Minker� ed
� Morgan Kaufmann� �	




�


