Intensional Query Answering:
An Application of Partial Evaluation

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia
e-mail: degiacom@assi.ing.uniromal.it

Abstract

We consider intensional answers to be logical formulas expressing suf-
ficient conditions for objects to belong to the usual answer to a query
addressed to a knowledge base. We show that in the SLDNF-resolution
framework, complete and procedurally complete sets of intensional an-
swers can be generated by using partial evaluation. Specific treatments
of recursion and negation are also presented.

1 Introduction

Intensional answers are responses that provide an abstract description of the
conventional answer to a query addressed to a knowledge base. They are ex-
pected to “provide compact and intuitive characterizations of sets of facts, mak-
ing explicit why a specific set of facts answers the query instead of just which
facts belong to the answer” ([PR89]). Various research studies have investigated
this kind of answers (e.g., [CD86], [CD88], [Corella84], [Demolombe92], [DFI91],
[Imielinski87], [Motro89], [Motro91], [MY90], [PR89], [PRZ91], [SMS8S], etc.).
Following [CD86], [PR89], [PRZ91], we consider intensional answers to be log-
ical formulas expressing sufficient conditions for objects to belong to the con-
ventional answer to a query.

We assume knowledge bases to be, essentially, programs whose proof pro-
cedure is the SLDNF-resolution, as in [Lloyd87]. Partial evaluation (PE) for
programs in the SLDNF-resolution framework is defined in [LS91]. Although it
is usually considered an optimization technique, we use it for quite a different
aim in this paper.

We show that given a program P and a query Q(X), a new program P’ =
PU{q(X) — Q(X)} (where ¢ is a predicate symbol not occuring in P) can be
defined such that for every PE of ¢(X) in P’ there corresponds a complete set
of intensional answers to Q(X) in P. Furthermore, each set Sy4 of intensional
answers computed in this way is procedurally equivalent to the original query
Q(X), i.e., the conventional answers that can be computed from S;4 in P are
exactly those that can be computed from Q(X) in P.

Having pointed out this correspondence we have a tool to produce inten-
sional answers for a very general class of queries and programs, i.e., for every

query in every program intended to run under SLDNF-resolution. Therefore, in
principle, we can deal with function symbols, recursion and negation, something
usually ruled out by other approaches to intensional query answering.

Specifically, we suggest a simple but quite effective way to return inten-
sional answers when recursion is involved. Notice first of all that by PE we can
obtain recursion-free intensional answers for a query involving recursive pred-
icate symbols. On the other hand, if we cannot remove a recursive predicate
symbol p from an intensional answer, then we return, together with the inten-
sional answer, an auziliary definition for p. This is a specialized definition that
is general enough to cover the meaning of p in the context of the intensional
answers in which it appears. Note that, if a recursive predicate symbol p’ other
than p shows up in the auxiliary definition for p, then we return an auxiliary
definition for p’ as well.

The pair < Sya, AD >, where Sj4 is a set of intensional answers to a query
Q(X), and AD is a set of auxiliary definitions for Sy, can be interpreted as
the implicit representation of the infinite set of all the intensional answers to
Q(X), which can be inferred from Sy 4, using the axioms corresponding to AD.

With regard to negation, we remind the reader that if a negative literal
is found at a certain point of the PE process, then either it is completely
evaluated, or the atom in the negative literal is partially evaluated and the
definition obtained is added to the PE to be returned (e.g. see [BL90]).

We could follow a similar approach in the generation of intensional answers,
returning auxiliary definitions for the atoms in the negative literals that cannot
be evaluated. Yet, this would be quite unsatisfactory, because we would lose the
“interactions” between the positive part and the negative part of an intensional
answer. To avoid this problem, we make some additional logical transforma-
tions. Roughly, we consider the completions of such auxiliary definitions, negate
both sides of the equivalences, perform some logical manipulations on the right
sides, and replace the negative literals in the intensional answers by the proper
instances of the corresponding right parts of the equivalences obtained.

The rest of the paper is organized as follows. After recalling some prelim-
inary notions in the next section, the basic results are presented in Section 3.
Our treatments of recursion and negation are described in Sections 4 and 5,
respectively. Conclusions and further work end the paper. Due to lack of space
only sketches of the proofs are reported. The full proofs appear in [DeGia-
como92].

2 Preliminaries

In this section we introduce some basic definitions, the knowledge bases con-
sidered, intensional answers and partial evaluation.

We assume that the reader is familiar with the standard theoretical results
of logic programming (cf. [Lloyd87]).!

1We mainly use the same notation as [Lloyd87] except that we denote sequences of terms
by a single capital letter. Few other differences are pointed out when encountered.

As usual, a program is a finite set of statements of the form A « W, where
A is an atom and W is a first order formula. All the statements of a program
P, which have the same predicate symbol p in their head, form the definition of
pin P. Statements whose bodies are conjunctions of literals are called program
clauses or just clauses. A program whose statements are program clauses is
called a normal program.

The completion of a program P, denoted as comp(P), is the collection of
completed definitions of the predicate symbols in P together with Clark’s equal-
ity theory.

Definition Let P and P’ be two programs, G and G’ two goals with the same
free variables. We say that P U {G} and P’ U {G'} are procedurally equivalent
if the following holds:

1. PU{G} has an SLDNF-refutation with computed answer 6 iff P’ U {G'}
does.

2. PU{G} has a finitely failed SLDNF-tree iff P’ U {G'} does.

O

When we talk about SLDNF-resolution for non-normal programs we re-
fer to the corresponding normal forms obtained by applying Lloyd & Topor’s
transformations (cf. [LT84], [Lloyd87]).

Definition Let S be a set of predicate symbol definitions. We call comp’(S) the
set of the corresponding completed definitions together with Clark’s equality
theory. O

Notice that, given a program P, comp’(P) is the subset of comp(P) formed
by the completed definitions of the predicate symbols explicitly defined in P
(i.e., the predicate symbols appearing in the head of a statement of P). To
further clarify the concept let us see an example.

Example Consider the following program P = {p(z) « r(z) A s(x),r(a) <},
comp(P) is {Vz(p(x) < r(x) A s(x)),Vz(r(z) < (z = a)),Vz(~ s(z))} while
comp'(P) is {Vz(p(z) < r(z) A s(z)),Va(r(z) < (z =a))}. O

We consider a knowledge base KB essentially constituted by a program
divided in two strata IDB and EDB.

e /DB is a program such that the predicate symbols defined therein may
depend upon predicate symbols defined in EDB. We call such a program
the intensional program of the knowledge base K B.

e EDB is a program such that no predicate symbol defined therein depends
upon predicate symbols defined in IDB. We call such a program the
extensional program of the knowledge base K B.

Typically, IDB and EDB are intended to model the intensional knowledge
and the extensional knowledge of K B respectively.?

We say that an intensional program I DB is a normal intensional program
if it is a normal program. In the same way, we say that an extensional program
EDB is a normal extensional program if it is a normal program.

A query to a knowledge base can be any first order formula3.

We now turn our attention to intensional answers. We adopt the same
definitions as in [CD86], [PR89], [PRZ9I1], etc, adapting them to the SLDNF-
resolution framework. Let IDB be the intensional program of a knowledge
base KB, and Q(X) a query whose free variables are X. Since in the present
paper we do not use integrity constraints to generate intensional answers, we
are actually considering a special kind of intensional answers defined as follows.

Definition A first order formula A;(X), whose free variables are X, is an
intensional answer for Q(X) (wrt KB) if

comp/(IDB) = VX (Ai(X) — Q(X)).
O
Obviously not all the intensional answers are interesting, e.g. we can drop

intensional answers which are variants of the query, those inconsistent wrt
comp'(IDB), and those subsumed by other ones.

Definition A set Sr4 of intensional answers for Q(X) (wrt K B) is complete if
comp/(IDB) EVX(('/ 4i(X)) = Q(X)).
Ai€SraA
O

Since, SLDNF-resolution is sound but not complete in general, it makes
sense to introduce the notion of a set of intensional answers, complete from the
procedural point of view.

Definition A set St of intensional answers for Q(X) (wrt K B) is procedurally
complete if for every possible extensional program EFDB of KB,

IDBUEDBU{— \/ 4i(X)} and IDBUEDBU {~ Q(X)}
A;E€SraA

are procedurally equivalent. O

2Note that, there are no restrictions on the form of the statements neither in /DB nor in
EDB.
31n [Lloyd87] a query is a goal. Let «— W be a goal, we call “query” the first order formula

We finish the preliminary section introducing partial evaluation (PE)*. The
formal notion and result described here are from [LS91]. We refer to normal
programs and normal goals only. It is convenient to use slightly more general
definitions of SLDNF-derivation and SLDNF-tree than those given in [Lloyd87].
In [Lloyd87], an SLDNF-derivation is either infinite, successful or failed. We
also allow it to be incomplete, in the sense that at any step we are allowed
simply not to select any literal and terminate the derivation. Likewise, in an
SLDNF-tree we may neglect to unfold a goal.

Definition A resultant is a first order formula of the form @1 «— @2, where
Qi, (i =1,2), is either absent or a conjunction of literals. Any variables in @1
or ()2 are assumed to be universally quantified in front of the resultant. O

Definition Let P be a normal program, G a normal goal « @, and Gy =
G,G,...,Gy, an SLDNF-derivation P U {G}, where the sequence of substitu-
tions is 04,...,60, and G, is < @Q,. Let 0 be the restriction of 6, ...6,, to the
variables in G. Then we say the derivation has length n with computed answer
0 and resultant Q0 — Q.. ° O

Definition Let P be a normal program, A an atom, and 7" a (not necessarily
complete) SLDNF-tree for P U {« A}. Let Gi,...,G, be a set of (non-root)
goals in 7" such that each non-failed branch of T' contains exactly one of them.
Let R; (i = 1,...,7) be the resultant of the derivation from «— A down to G;
associated with the branch leading to G;.

e The set of resultants m = { Ry, ..., R, } isa PE of A in P. These resultants
have the following form R; = Af; «— Q; (i = 1,...,r), where we have
assumed G; =« Q.

o Let A ={A4;,...,A,} be a finite set of atoms, and 7; (i =1,...,s) a PE
of A;in P. Then Il =m; U...Uws is a PE of A in P.

e Let P’ be the normal program resulting from P when the definitions
therein of the predicate symbols in A are replaced by a PE of A in P.
Then P’ is a PE of P wrt A.

The next two theorems are the main results on partial evaluation.

Definition Let S be a set of first order formulas and A a finite set of atoms.
We say S is A-closed if each atom in S containing a predicate symbol occurring
in A is an instance of an atom in A. O

4Recently, in the context of logic programming, it has been proposed to replace the name
partial evaluation with the name partial deduction, leaving the original name to denote the
optimization oriented use of such a machinery. In this paper we stick to the name partial
evaluation in conformity with [LS91] and [BL90] whose results are extensively used.

5Note that, if n = 0, the resultant is Q — Q.

Definition Let A be a finite set of atoms. We say A is independent if no pair
of atoms in A have a common instance. O

Theorem 1 (Lloyd Shepherdson) Let P be a normal program, W a closed
first order formula, A a finite set of atoms, and P’ a PE of P wrt A such that
P 'U{W} is A-closed. If W is a logical consequence of comp(P'), then it is a
logical consequence of comp(P), i.e., comp(P') = W = comp(P) = W.

Theorem 2 (Lloyd Shepherdson) Let P be a normal program, G a normal
goal, A a finite, independent set of atoms, and P' a PE of P wrt A such that
P'U{G} is A-closed®. Then PU{G} and P'U{G} are procedurally equivalent.

Note that the PE of a program wrt a goal is not directly defined. Anyway,
there are procedures (e.g. [BL90]) that, given a program P and a goal G, com-
pute a set of atom A and a PE of the program P wrt A such that the original
program and the partially evaluated program are procedurally equivalent wrt
the goal G.

3 Intensional query answering by partial
evaluation

The intensional program I DB of a knowledge base K B is an “open program”,
i.e., a program for which some predicate symbol definitions are missing, hence
it should be considered more as a collection of predicate symbol definitions than
as a running program. It is clear that for IDB, the completion comp(IDB)
does not make sense, while comp’(IDB) does.

The partial evaluation theorems seen in the previous section are not directly
useful in dealing with intensional programs. Here, we give analogous theorems
more suitable for such programs. First, we need the next definition reported
from [BL90].

Definition Let L be a set of predicate symbols. We say that a literal is
L-selectable if its predicate symbol is in L. We say that an SLDNF-tree is L-
compatible if the predicate symbol of each selected literal in the tree (including
subsidiary refutations and trees) is in L. O

Let IDB be a normal intensional program of a knowledge base KB, Lipp
the set of predicate symbols defined in /DB, A a finite set of L;pp-selectable
atoms, and IDB’ a PE of IDB wrt A obtained from a L;pp-compatible
SLDNF-tree, such that IDB’ is A-closed. The following two theorems hold.

Theorem 3 Let W be a first order formula which is A-closed. Then
comp'(IDB') E W = comp’(IDB) &= W.

6In this theorem, the closedness condition can be replaced by the coveredness condition
(cf. [LS91)).

Sketch of the proof By Theorem 1, for every normal extensional program
EDB: comp(IDB'"UEDB) = W = comp(IDBU EDB) = W. Now, the
thesis is proved by contradiction, showing that there exists an £ DB, namely
EDB* = {A «— A : the predicate symbol in A is not defined in IDB, and
an instance of A occurs in the body of a program clause in 7DB}, such that
Theorem 1 would not hold.]

Theorem 4 Let G be a normal goal which is A-closed. If A is independent,
then for every possible normal extensional program EDB of KB: IDBUEDBU
{G} and IDB' U EDB U{G} are procedurally equivalent.

Sketch of the proof From the definition of PE it is obvious that IDB'UEDB
isa PE of IDBU EDB wrt A. By Theorem 2 the thesis follows. a

We are now ready to describe the first results on generating intensional
answers by using partial evaluation.

1) Let «— W be a normal goal. We define a new predicate symbol (i.e., a
predicate symbol not appearing in P or W), as

g X)W

where X are the free variables occurring in W, and we add such a new definition
to IDB, getting

IDB? = IDBU{q(X) — W}.

2) Let Lippa be the set of the predicate symbols defined in ITDB?. We choose
a PE 7 of ¢(X) in IDB? obtained from an L;ppge-compatible SLDNF-tree for
IDBTU{« q(X)}. Let 7 be

q(X)@l — W1

q(X)0, — W,

where 6; = {X;/T;}, X; are the variables in X instantiated by 6;, and T; are
terms.

3) The completed definition for ¢ given by these resultants can be written as
follows:

VX(Q(X) A 3YVI((*XI = Tl) A Wl) V...V Hl/r((Xr = Tr) A Wr)) (1)

where Y; are the free variables in (X; = T;) A W; other than those in X, and
X; = T; is a loose notation for (z1; = t1;) A ... A (zp; = tn;) (Supposing X; to
be the sequence x1; . . . Tpn;).

4) The disjuncts in the above formula

HK((Xl = Tl) A Wl)

W, (X, = T,) AW,

can be regarded as intensional answers. Furthermore the set formed by these
intensional answers is complete and procedurally complete, as the following the-
orems show.

Theorem 5 The formulas at step 4 of the process above form a complete set
of intensional answers for the query W in the program P.

Sketch of the proof By Theorem 3 it can be shown that (1) is a logical
consequence of comp’(IDB?). Then, considering the axiom VX (¢(X) < W)
in comp’(IDB?), the formula resulting from (1) replacing ¢(X) with W can be
proved to be a logical consequence of comp’(IDB), hence the thesis follows.

O

Theorem 6 The set of intensional answers obtained by the process above is
procedurally complete.

Sketch of the proof Let /DBY be the PE of IDB? wrt {¢(X)}. By Theo-
rem 4, for every possible EDB of KB, IDBY UEDBU {« ¢(X)} is procedu-
rally equivalent to IDB?U EDB U {« ¢(X)}, which, in turn, is procedurally
equivalent to IDBU EDB U {« W}. On the other hand, IDBUEDB U {«—
Vi_, IY1((X1 = T1) A Wh)}, once transformed into normal form, and assum-
ing for the predicate symbol “=" the standard procedural meaning “unifiable”,
can be shown to be procedurally equivalent to JDBY U EDB U {«— ¢(X)},
regardless of EDB. Hence the thesis follows. O

Example Consider the following fragment of the intensional program I DB of
a knowledge base.

publication_bonus(z, 50) —

con ference_publication(x,y)
publication_bonus(x,100) «—

con ference_publication(x,y) A major_con ference(y)
publication_bonus(z, 150) «—

journal _publication(z,y)

magjor_con ference(zx) < sponsor(x, ACM)

magjor_con ference(x) <« sponsor(z, [EEE)
magjor_conference(x) < accepted_rate(z,y) A (y < 0.2)

Suppose we want the answer to the query

— Jy(publication_bonus(xz,y) A (y > 100)),

i.e., “Which are the papers that get a publication-bonus greater or equal
to 1007”.

1) We define a new predicate symbol ¢ as
q(z) — publication_bonus(z,y) A (y > 100),

Let IDB? be IDB U {q(z) < publication_bonus(z,y) A (y > 100)}.

2) We choose a PE 7 of ¢(z) in IDB? obtained from an Ljppe-compatible
SLDNF-tree. Let such a tree be the one in Figure 1, and 7 the PE associated

—q(z)

«— pb(z,y) A (y > 100)

{y/150}

{y/100}

 ep(@, 2) A (50 2 100) — jp(z,2) A (150 > 100)
— cp(x,z) Ame(z) A (100 > 100) —_—

fail — cp(x, z) Ame(z)

—Jjp(z,2)

—cp(z,2) Ns(z, ACM) —cp(z,z) Nar(z,2') A (2 <0.2)

— cp(x,2) Ns(z,IEEE)

Figure 1: The SLDNF-tree used for the partial evaluation.

with the non-failing leaves of such a tree, i.e.

q(z) — conference_publication(z, z) A sponsor(z, ACM)

q(z) — conference_publication(z,z) A\ sponsor(z, [EEFE)

q(x) — conference_publication(x, z) A accepted_rate(x,z) A (z < 0.2)
q(x) «— journal_publication(z, z).

3) The completed definition of ¢ in ITDBY is

Vz(q(z) < 3Jz(conference_publication(x,z) A sponsor(z, ACM)) V
3z(con ference_publication(x, z) A sponsor(z, IEEE)) V
Jz(con ference_publication(x, z) A\ accepted_rate(z,z) A (z < 0.2)) V
(

3z(journal publication(z, z))).

4) The disjuncts in the right-hand part of such a formula form a complete and
procedurally complete set of intensional answers, that can be read as “Papers
published in an ACM conference, papers published in an IEEE conference,
papers published in a conference whose accepted rate is less than or equal to
0.2, and papers published in a journal.” O

The process above is not completely specified since we are free to choose any
PE 7 of ¢ in IDBY at step 2.

The quality of the intensional answers returned strongly depends on such a
choice of 7, which in turn substantially depends on the selection rule for the
related SLDNF-tree. While we do not directly address such an issue in this
paper, the problem of finding a “good” selection rule is one of the most crucial
to effectively do intensional query answering by means of partial evaluation.

The termination of the above process depends again on the selection rule to
be used in the generation of the PE 7. Such a selection rule should build finite
(incomplete) SLDNF-trees. Conditions on the selection rules, dealing with the
termination of the partial evaluation, can be found in the related literature
(e.g. [vanHarmelen89)]).

4 Dealing with recursion

The basic method presented in the previous section allows one, in principle, to
return intensional answers for every query in every logic program. In particular,
it does not rule out recursion. Obviously, such intensional answers should be
expressed in a language that is known by the user.” If recursive predicate
symbols (i.e., predicate symbols which appear in a loop in the dependency graph
of a program) are allowed to appear in the intensional program of a knowledge
base, then it could be impossible to obtain a complete set of intensional answers
in which no occurrences of recursive predicate symbols, that are not known by
the user, appear. In this case, no satisfying set of intensional answers could be
returned.

The next example shows the problem arising when recursion cannot be
eliminated, and hints on how it can be tackled.

Example Consider the following fragment of the intensional program of a
knowledge base:

"We assume that the user knows a set of predicate symbols which includes those defined
in the extensional program of the knowledge base, and all constants and function symbols.

collateral_line_relative(x,y) « ancestor(z, z) A ancestor(y, z)

ancestor(x,y) <« parent(z,y)
ancestor(x,y) «— parent(z,z) A ancestor(z,y)

and suppose we want intensional answers for the query:
— collateral line_relative(x,y)

Possible complete sets of intensional answers are
{3z(ancestor(z, z) A ancestor(y, z))}

or

{3z(parent(x, z) A\ ancestor(y, z)),
3232 (parent(x, 2) A ancestor(z’, z) A ancestor(y, z))}

or, also

{3z(parent(x, z) A parent(y, z)),

3232 (parent(z, 2') A ancestor(z', z) A parent(y, z)),

3232 (parent(z, z) A parent(y, z') A ancestor(Z, z)),

3232'32" (parent(z, 2') A ancestor(Z’, z) A parent(y, 2”) A ancestor(z", 2))}

etc.

As we can see, we cannot eliminate the predicate symbol ancestor in the set
of intensional answers returned. Now, if the meaning of ancestor is known by
the user, then the most intuitive set of answers is probably the first one, being
the simplest. But, if the meaning of ancestor is not known (e.g., the user may
not be clear on whether or not his wife’s grandfather is his ancestor), none of
the above sets is satisfying, because ancestor appears in each of them. We need
some kind of definition giving the meaning of ancestor in the context of the set
of intensional answers returned.

For instance we may return:

{3z(ancestor(x, z) A ancestor(y, z))}

ancestor(x,y) «— parent(z,y)
ancestor(x,y) <« parent(z,z) A ancestor(z,y).

In this way, asking “which are the collateral-line relatives?” we get an an-
swer such as “ the individuals that have a common ancestor, where an ancestor
is a parent or a parent of an ancestor”. O

In view of the observations in the above example, we propose to answer a
query by a set Sy of intensional answers and a set RD of definitions for the

recursive predicate symbols which are somehow marked unknown®, occuring in

the answer. Notice that, if other predicate symbols marked unknown appear in
such definitions, then their definitions are included in RD as well.” To formalize
the set RD we now introduce the notion of a set of auxiliary definitions.

Let IDB be the intensional program of a knowledge base KB, L;pp the
set of predicate symbols defined in IDB, Q(X) a query whose free variables
are X, Sra a set of intensional answers A;(X) (i = 1,...,n) for Q(X), L a
subset of L;pp, and AD a set of definitions for the predicate symbols in L.

Then, let Az be a set of atoms, one for each predicate symbol in L'°, such
that Sr4 is Ap-closed, and let comp’'(AD);nst be the instance of comp’(AD)
such that the atoms on the left-hand sides of the completed definitions therein
coincide (modulo variants) with the corresponding atoms in A .

Definition We say AD is a set of auziliary definitions'! for Sya4 wrt L if:
1. comp’(IDB) | comp’(AD);nst, and
2. comp’(AD);nst is Ap-closed.

a

Notice that a set AD of auxiliary definitions always exists. In fact, the IDB
definitions of the predicate symbols in L form such a set. But the definitions
in AD are not necessarily those in IDB. Intuitively, they can be a “special-
ized” version of those which are general enough to cover the meaning of each
atom occurring in the answer returned (i.e., wrt the atoms in the answer, the
definitions in AD retain the same meaning as those in the intensional program).

We could also require the auxiliary definitions in AD to be used, instead of
the corresponding definitions in I D B, to evaluate the intensional answers in Sy 4
without losing correct answers, or at least computed answers. Such a property
is quite “severe”, since, to enforce it, we should return auxiliary definitions
that are not only general enough to cover the meaning of the predicate symbols
in L, in the context of S;4 and AD, but also to cover their meaning through

8We may consider a predicate symbol to be marked unknown either generally (e.g., because
its meaning is not known by the user) or more specifically, wrt the formulas in which it
appears.

9In very unfortunate cases, the set of definitions RD may almost coincide with the whole
intensional program.

10We assume that for each predicate symbol p in L there corresponds just one atom, and
hence we have one logical equivalence involving p in comp’(AD);nst which may be thought
of as the logical definition of p in the context of S;4 and AD. We could also assume that an
independent set of atoms corresponds to p. This would entail that in comp’(AD);nst there
would be a distinct logical equivalence involving p for each such atom, therefore the idea of
a single logical definition of p in the context of S;4 and AD should be replaced by the idea
of a logical definition of p in the context of a single intensional answer of S74 or statement
of AD in which it appears. In this paper we stick to the first assumption; nevertheless the
results shown here are straightforward extended to the case where the second assumption is
adopted.

I Single auxiliary definitions are defined just as elements of AD.

the whole evaluation of each intensional answer in S74. Indeed, if a predicate
symbol p € L, which depends on predicate symbol p’ € L, appears in some
atoms of S;r4 U AD, then in chosing the generality of the auxiliary definition
for p’ we should consider the occurrences of p’ arising from the evaluation of
these atoms as well.

On the other hand, the formalization of the notion of set of auxiliary defini-
tions above is sufficient to give a nice characterization of the pair < Sy4, AD >,
as shown below.

The intensional answers in S74 have the same status as queries, while the
set AD of auxiliary definitions is an (open) program. How does the pair <
Sra, AD > relate to the original notion of intensional answers?

The pair < Sra, AD > can be interpreted as the implicit representation of
the infinite set of all the intensional answers for Q(X) which can be inferred
from the intensional answers in Sra using the azioms of comp’(AD)inst -

Indeed, the pair < S;4, AD > may be thought of as representing the infinite
set of all the formulas x;;(X) (¢=1,...,n; j=1,2,...) such that

comp' (AD)inst = V(xij(X) — Ai(X)). (2)

Note that x;;(X) (j = 1,2...) are intensional answers to A;(X) wrt the
intensional program AD.
By definition of a set of auxiliary definitions, the following holds

comp’ (IDB) = comp'(AD)inst- (3)
From (2) and (3) we get

comp (IDB) = ¥(xi5(X) — As(X)). (1)
Now, for A;(X) we have

comp(IDB) |= Y(A(X) — Q(X)). (5)
Hence, from (4) and (5)

comp'(IDB) = V(xi;(X) — Q(X)), (6)
that is, x;;(X) (¢ =1,...,n; j=1,2,...) are intensional answers to Q(X)

wrt KB.

Turning to the problem of how to compute a set of auxiliary definitions,
assuming I DB to be normal, it can be shown that a PE II of Ay in IDB,
obtained from an Ljpp-compatible SLDNF-tree, and such that Sys UII is
A -closed, is a set of auxiliary definitions for S;4 wrt L.

When AD is computed by PE, unfolding the intensional answers in Sja
using program clauses in AD leads to new sets of intensional answers S7 , which
preserve the completeness and the procedural completeness, as the following
theorem shows.

Theorem 7 Let Sy be a complete and procedurally complete set of intensional
answers, and AD a set of auziliary definitions for Sra wrt L obtained as a PE
of Ar. Then every set St 4 of intensional answers derived by SLDNF-resolution
from Sra using program clauses in AD, is complete and procedurally complete.

Sketch of the proof By the sub-derivation lemma in [LS91], and lemma
4.12 in [LS91], it follows that an SLDNF-tree built using resultants in AD can
be expanded into an SLDNF-tree built using only program clauses in IDB.
Now, consider the query given by the disjunction of the intensional answers in
Sra, and let ans(X) be the query introduced by its transformation into normal
form. It can be shown that every S74 can be computed as a PE of ans(X) in
the transformed intensional program. Hence, by Theorem 5 and Theorem 6,
the thesis follows. O

Now that we have characterized the notion of a set of auxiliary definitions,
we can employ it to clarify the idea presented at the beginning of the section.

We answer a query with a set S;4 of intensional answers and a set RD
of auxiliary definitions for the recursive predicate symbols marked unknown
appearing in S;4 or in RD itself.

Notice that, by Theorem 7, if an auxiliary definition D € RD of some
predicate symbol p is not recursive in reality, then (assuming, for now, that p
does not occur in a negative literal) we may unfold the corresponding positive
literals in S;4 and RD, and drop D from RD.

An algorithm to compute S;4 and RD, based on partial evaluation, can
be adapted from the one in [BL90]. The underlying idea is to build the set of
atoms that is partially evaluated “run-time” while computing S;4 and RD.

5 More about negation

The notion of PE is directly derived from the notion of SLDNF-tree. Therefore,
negation during the PE process is treated in a somewhat limited way. In fact

1. A negative literal can be selected only if it is ground.

2. If a ground negative literal is selected, then it is either completely evalu-
ated (if possible), or not evaluated at all.

Similarly to what proposed in the literature on partial evaluation (e.g.
[BLI0]), we can generate an answer to a query W, constituted by a set Sra
of intensional answers, and a set of auxiliary definitions for predicate symbols
marked unknown occurring in the answer, partitioned into two subsets RD
and ND. RD concerns recursive predicate symbols occuring in either positive
or negative literals of the answer, whereas N D concerns those non-recursive
occurring in negative literals. Supposing IDB and W to be normal, partial
evaluation can be used to generate such an answer. Actually the algorithm,

mentioned in the previous section, can easily be modified to compute S;4, RD
and ND.

The problem with such an approach is that, in the formulas of S;4, RD
and ND, the “interactions” (i.e., possible simplifications) between the part of
information in the positive literals and the one in the negative literals is lost,
because the latter is embedded in separate definitions. We need to recover such
interactions if the answer is to be effective.

Now, for each predicate symbol p in a negative literal there is an auxiliary
definition in ND to which corresponds a logical equivalence in comp’ (N D)yt
of the form:

VX (p(T(X)) < IV (F(X,Y))), (7)

where T'(X) denotes a tuple of terms, X the variables therein, and Y the
variables, other than those in X, which are free in F'. We may negate both
sides of such an equivalence getting:

VX (~ p(T(X)) =~ IY(F(X,Y))). (8)

The literals of S;4 URDUN D in which p occurs, must be instances of p(T'(X)),
so we may replace them with the proper instances of the right-hand side of (7)
or (8). Obviously, when such an expansion of a negative literal is applied, the
formulas obtained are logically equivalent to the original ones, but they may not
be procedurally equivalent, hence while no correct answers are lost or gained,
the same is not true for the computed answers, in general.

The idea of negating both sides of the completed definitions and replaceing
the negative literals by the right-hand side of the equivalences obtained is re-
lated to constructive negation ([Chan88], [Chan89], [Przymusinski89]), and has
been used to treat negation during the partial evaluation process in [CW89).
Here we want to apply such a treatment of negation off-line wrt the partial
evaluation process, so as to retain the notions and the results in [L.S91]. More-
over, our aim is to expand the negative literals in such a way as not to lose
computed answers. We now present a method for such an expansion.

For every formula in S;4 and RD we recursively apply expansion steps,
defined by the following sequence of transformations, until no more expansion
steps are possible.

1. We substitute atoms in the positive and negative literals of the formula,
with the right-hand sides of the corresponding instances of the completed
definitions in comp’ (N D);pnst.

2. Equalities in the formula are treated as follows.

(a) We substitute equalities whose terms unify by the equality corre-
sponding to their mgu (if the mgu is the empty substitution then
the equality is eliminated), and we eliminate the conjunctions in
which there is an equality whose terms do not unify.

The result of such a transformation is logically equivalent to the
original formula, by Clark’s Lemma (cf. [Clark78], also Lemma 15.2
in [Lloyd87]).

(b) We eliminate the equalities in which one of the terms is an existen-

tially quantified variable, by means of the following logical equiva-
lence: Jy((x =y) A B) « B{y/x}.

3. We push the (existential) quantifiers to the right as much as possible,
eliminating the redundant ones.

4. We move negation all the way inward, stopping in front of the existential
quantifiers, by means of the usual logical equivalences.

A few things must be pointed out. First, a formula resulting from the
above process is logically equivalent to the original one. Second, such a process
always terminates, since the definitions in N D are non-recursive. Third, at
the end of such a process, ND is not needed any more and can be eliminated.
Furthermore, although we do not yet have the complete proof, it seems that a
kind of procedural containment holds, that is, if G is a goal, and G’ the goal
resulting from processing G as above, then for every extensional program EDB

1. If IDBU EDB U {G} has an SLDNF-refutation with computed answer
6, then so does IDBU EDB U {G'}.

2. If IDBU EDB U {G} has a finitely failed SLDNF-tree, then so does
IDBUEDBU{G'}.

Notice that, if the intensional program of the knowledge base is not a normal
program, then by normalizing it using Lloyd & Topor’s transformations to apply
partial evaluation, we introduce new predicate symbols'? that are obviously
unknown (i.e., they are meaningless to the user). By the method sketched here,
such predicate symbols can always be replaced by a meaningful formula.

Example Consider the following intensional program I D B:

should_visit(x,y) «— serves(y, z) A likes(x, z)
happy(x) «— frequents(z,y) A should_visit(x,y)
very_-happy(z) — Yy(frequents(x,y) — should_visit(x,y))

unhappy(x) — Vy(frequents(x,y) —~ should_visit(z,y)),
the following extensional program EDB (schema):

frequents(DRINKER, PUB)
serves(PUB, BEER)
likes DRINK ER, BEER),

12New predicate symbols are introduced to eliminate the negated existentially quantified
(universally quantified) formulas.

and the query “Who are the drinkers that neither are unhappy nor very happy 77,
that is:

—n~ unhappy(x)A\ ~ very_happy(z).

First notice that the last two statements must be transformed into normal form.
very-happy(z) <~ npl(z)

npl(x) « frequents(z,y)A ~ should_visit(z,y)

unhappy(z) —~ np2(x)

np2(x) « frequents(z,y) A should_visit(x,y).

The only possible set of intensional answers computed by the basic method is
the one constituted by the query itself. To it we may add the following set N.D
of auxiliary definitions.

very_happy(z) «—~ npl(x)

npl(x) « frequents(z,y)A ~ should_visit(z,y)
unhappy(x) —~ np2(x)

np2(x) « frequents(z,y) A serves(y, z) A likes(z, z).

Now we proceed to the expansions. We expand (in parallel, for sake of brevity)
both ~ unhappy(x) and ~ very_happy(z):

~ unhappy(x)A ~ very_happy(z) (original goal)
np2(x) Anpl(z) (first expansion step)

Jy(frequents(x,y) A should_visit(z,y))A
Jy(frequents(x,y)A ~ Iz(serves(y, z) Alikes(x, z))) (second expansion step)

Jy(frequents(x,y) A Fz(serves(y, z) Alikes(z, z)))A
Jy(frequents(x,y)A ~ Jz(serves(y, z) Alikes(x, z))) (third expansion step)

The last formula is a nice intensional answer, i.e., “The drinkers who visit at
least both a pub where a beer they like is served, and a pub where no beer they
like is served.” a

6 Conclusions

In this paper we have presented a set of tools, based on PE, to generate inten-
sional answers in the SLDNF-resolution framework, allowing function symbols,
recursion, and negation.

The results stated on the application of PE techniques to the generation
of intensional answers and auxiliary definitions do not refer to any particular

PE. It is engaging to investigate ways to choose PE, specific to intensional an-
swering, such as heuristics that make the resulting intensional answers more
“intuitive”, or selection rules that use integrity constraints to prune away in-
consistent goals.

Regardless to the PE chosen, the PE process tends to destroy the structure
of the program to which it is applied. Now there are no reasons to preserve the
structure of the original program. In fact, such a structure is normally hidden
from the user, and is too general, in the sense that it does not reflect the
particular query asked. Nevertheless, if the structure of the user’s knowledge
is at hand, it could be used to re-express the intensional answers in a language
that is more familiar to the user. Hence, another issue to explore is the use of
additional components, usually considered for modelling structural aspects of
a knowledge base (e.g., taxonomies and integrity constraints), to improve the
quality of the intensional answers.

Finally, our work may be considered a first step toward a program transfor-
mation approach to intensional answering, and it could be naturally extended
using other program transformation techniques. Moreover such an approach
can be applied to other kinds of non-conventional query answering. For in-
stance, PE can be used for both “Knowledge query answering” [MY90] and,
adding folding techniques, “Intelligent query answering” [Imielinski87].

Acknowledgements

I am grateful to J. W. Lloyd who supervised me during the early stages of this
research, and to M. Lenzerini who gave me precious advice and supported me
throughout the work.

References

[BL9IO] K. Benkerimi and J. W. Lloyd. A Partial Evaluation Procedure
for Logic Programs. In Proc. of North American Conf. on Logic
Programming, S. K. Derbray and M. Hermenegildo eds., pp.343-
358, Austin, MIT Press, 1990.

[Clark78] K. L. Clark. Negation as Failure. In Logic and Data Bases, H. Gal-
laire and J. Minker eds., pp.293-322, Plenum Press, 1978.

[CD86] L. Cholvy. and R. Demolombe. Querying a Rule Base. In Proc. 1st
Int Conf. on Ezpert Database Systems, pp.365-371, Charlesoton,
South Carolina, April 1986.

[CD8Y] F. Cuppens and R. Demolombe. Cooperative Answering: A
Methodology to Provide Intelligent Access to Databases. In Proc.
2nd Int. Conf. on Ezxpert Database Systems, pp.333-353, Tysons
Corner, Virginia, April 1988.

[Chan88]

[Chang9]

[Corella84]

[CWS9]

D. Chan. Constructive Negation Based on the Completed Database.
In Proc.of 5th International Conference and Symposium on Logic
Programming, R. A. Kowalski and K. A. Bowen eds., pp.111-125,
MIT Press, 1988.

D. Chan. An Extension of Constructive Negation and its Applica-
tion in Coroutining. In Proc. of North American Conf. on Logic Pro-
gramming, E. Lusk and R. Overback eds., pp.477-493, MIT Press,
1989.

F. Corella. Semantic Retrieval and Levels of Abstraction. In Proc.
1st Int. Workshop on Expert Database Systems, pp.397-420, Kiawah
Island, South Carolina, October 1984.

D. Chan and M. Wallance. A Treatment of Negation During Partial
Evaluation. In Meta-Programming in Logic Programming, H. D.
Abramson and M. H. Rogers eds., pp.299-317, MIT Press, 1989.
(Proc. Meta88).

[Demolombe92] R. Demolombe. A Strategy for the Computation of Conditional

[DFI91]

Answers. In Proc. ECAI’92, to appear.

R. Demolombe, L. Farinas del Cerro, T. Imielinski (eds.). Proc.
Workshop on Nonstandard Queries and Answers, Toulouse, France,
July, 1991.

[DeGiacomo92] G. De Giacomo. Intensional Query Answering by Partial Evalu-

ation. Technical Report, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”. In preparation.

[Imielinski87] T. Imielinski. Intelligent Query Answering in Rule Based Sys-

[Lloyds7]

[LS91]

[LT84]

[Motro89]

[Motro91]

tems. In The Journal of Logic Programming, 4(3):229-257, Septem-
ber 1987.

J. W. Lloyd. Foundations of Logic Programming (2nd edition).
Springer-Verlag, 1987.

J. W. Lloyd and J. C. Shepherdson. Partial Evaluation in Logic
Programming. In The Journal of Logic Programming, 11(3&4):217-
242, October/November 1991.

J. W. Lloyd and R. W. Topor. Making Prolog More Expressive. The
Journal of Logic Programming, 1(3):225-240, 1984.

A. Motro. Using Integrity Constraints to Provide Intensional An-
swers to Relational Queries. In Proc. 15th Int. Conf on Very Large
Data Bases, pp.237-246, Amsterdam, August 1989.

A. Motro. Intensional Answers to Database Queries. Technical Re-
port, Department of Information and Software Systems Engineer-
ing, George Mason University, Fairfax, Virginia, 1991.

[MY90]

[PR8Y]

[PRZ91]

A. Motro and Q. Yuan. Querying Database Knowledge. In Proc. of
ACM SIGMOD-90, pp.173-183, 1990.

A. Pirotte and D. Roelantes. Constraints for Improving the Gener-
ation of Intensional Answers in a Deductive Database. In Proc. 5th
Int. Conf. on Data Engineering, pp.652-659, Los Angeles, Califor-
nia, February 1989.

A. Pirotte, D. Roelantes, E Zimanyi. Controlled Generation of In-
tensional Answers. In IEEE Trans. on Knowledge and Data Engi-
neering, Vol 3, No.2, pp.221-236, June 1991.

[Przymusinski89] T. C. Przymusinski. On Constructive Negation in Logic Pro-

[SMsS]

gramming. In Proc. of North American Conf. on Logic Program-
ming, E. Lusk and R. Overback eds., pp.1-19 (addendum), MIT
Press, 1989.

C. Shum and R. Muntz. Implicit Representation for Extensional An-
swers. In Proc. 2nd Int. Conf. on Expert Database Systems, pp.257-
273, Tysons Corner, Virginia, April 1988.

[vanHarmelen89] F. van Harmelen. The Limitations of Partial Evaluation. In

Logic-Based Knowledge Representation, P. Jackson, H. Reichgelt,
F. van Harmelen eds., pp.87-111, MIT Press, 1989.

