
Increasing the Power of Structured Objects

Diego Calvanese and Giuseppe De Giacomo and Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica

Universit�a di Roma �La Sapienza�

Via Salaria ���� I�		�
� Roma� Italy

fcalvanese�degiacomo�lenzerinig�dis�uniroma��it

� Introduction

We have recently proposed a new object�oriented
data model� called CVL �for Classes� Views� and
Links�� that extends the expressive power of known
formalisms in several directions by o�ering the fol�
lowing possibilities�
� To specify both necessary and su�cient conditions
for an object to belong to a class	 necessary con�
ditions are generally used when de
ning the classes
that constitute the schema� whereas the speci
cation
of views requires to state conditions that are both
necessary and su�cient ��
� With this feature� sup�
ported in CVL through class and view de
nitions�
views are part of the schema and can be reasoned
upon exactly like any class�
� To specify complex relations that exist between
classes� such as disjointness of their instances or the
fact that one class equals the union of other classes�
� To refer to navigations of the schema while de
ning
classes and views	 in particular� both forward and
backward navigations along relations and attributes
are allowed� with the additional possibility of impos�
ing complex conditions on the objects encountered
in the navigations�
� To specify relations that exist between the objects
reached following di�erent links	 in particular� to
specify that the set of objects reached through an
attribute A is included in the set of objects reached
through another attribute B� thus imposing that A
is a subset of B�
� To use �n�ary� relations with complex properties
and to declare keys on them�
� To impose cardinality ratio constraints on at�
tributes�
� Tomodel complex� recursive structures� simultane�
ously imposing several kinds of constraints on them�
This feature allows the designer to de
ne inductive
structures such as lists� sequences� trees� DAGs� etc��
One of the most important aspects of the model

we propose is that it supports several forms of rea�
soning at the schema level� Indeed� the question
of enhancing the expressive power of object�oriented
schemas is not addressed in CVL by simply adding
more and more constructs to a basic object�oriented
model� but by equipping the model with reasoning
procedures which are able to make inference on the
new constructs� Notably� we have shown that the
main reasoning task in CVL� namely checking if a
schema is consistent� is decidable� by providing a

sound and complete algorithm that works in worst�
case deterministic exponential time in the size of the
schema� Such worst�case complexity is inherent to
the problem� proving that consistency checking in
CVL is EXPTIME�complete�

� The CVL data model

In this section we formally de
ne the object�oriented
model CVL� by specifying its syntax and its seman�
tics�

��� Syntax

A CVL schema is a collection of class and view def�
initions over an alphabet B� where B is partitioned
into a set C of class symbols� a set A of attribute
symbols� a set U of role symbols� and a set M of
method symbols� We assume that C contains the
distinguished elements Any and Empty�� In the fol�
lowing C� A� U and M range over elements of C� A�
U and M respectively�
As we mentioned before� for de
ning classes and

views we refer to complex links which are built start�
ing from attributes and roles� An atomic link� for
which we use the symbol l� is either an attribute� a
role� or the special symbol � �used in the context
of set structures�� A basic link b is constructed ac�
cording to the following syntax rule� starting from
atomic links�

b ��� l j b� � b� j b� � b� j b� n b��

Two objects are connected by b��b� if they are linked
through b� or b�� whereas two objects are connected
by b� � b� �b� n b�� if they are linked through b� and
�but not� by b�� Finally� a generic complex link L is
obtained from basic links according to�

L ��� b j L� � L� j L� � L� j L
� j L� j identity�C��

Here� L��L� means the concatenation of linkL� with
link L�� L

� the concatenation of link L an arbitrary

nite number of times� and L� corresponds to link
L taken in reverse direction� The use of identity�C�
is to verify if along a certain path we have reached
an object that is an instance of class C�

�We may also assume that C contains some additional
symbols such as Integer� String� etc�� that are inter�
preted as usual� with the constraint that no de�nition of
such symbols appears in the schema�



Usually� in object�oriented models to every class
there is an associated type which speci
es the struc�
ture of the value associated to each instance of the
class� In CVL� objects are not required to be of only
one speci
ed type� Instead� we allow for polymor�
phic entities� which can be viewed as having di�er�
ent structures corresponding to the di�erent roles
they can play in the modeled reality� Therefore we
admit rather rich expressions for de
ning structural
properties� A structure expression� denoted with the
symbol T � is constructed as follows� starting from
class symbols�

T ��� C j �T j T� � T� j T� 	 T� j
�A��T�� � � � � An�Tn
 j fTg�

The structure �A��T�� � � � � An�Tn
 represents all tu�
ples which have at least components A�� � � � � An hav�
ing structure T�� � � � � Tn� respectively� while fTg rep�
resents sets of elements having structure T � Addi�
tionally� by means of �� 	� and �� we are allowed not
only to include intersection and union in structure
expressions �as in ��
�� but also to refer to all enti�
ties that do not have a certain structure� Note that�
since we allow for entities having multiple structure�
intersection cannot be eliminated from the de
nition
of structure expressions �contrast this property with
the model presented in ��
��
Class and view de
nitions are built out of struc�

ture expressions by asserting constraints on the al�
lowed links and by specifying the methods that can
be invoked on the instances of the class� A class
de
nition expresses necessary conditions for an en�
tity to be an instance of the de
ned class� whereas a
view de
nition characterizes exactly �through neces�
sary and su�cient conditions� the entities belonging
to the de
ned view� Our concept of view bears sim�
ilarity to the concept of query class of ���
�

Class and view de�nitions have the following
forms �C is the name of the class or of the view��

class C view C
structure�declaration structure�declaration
link�declarations link�declarations
method�declarations method�declarations

endclass endview

We now explain the di�erent parts of a class �view�
de
nition�

�i� A structure�declaration has the form

is a kind of T

and can actually be regarded as both a type decla�
ration in the usual sense� and an extended ISA dec�
laration introducing �possibly multiple� inheritance�

�ii� link�declarations stands for a possibly empty
set of link�declarations� which can further be distin�
guished as follows�
� Universal� and existential�link�declarations have
the form

all L in T and exists L in T�

The 
rst declaration states that each entity reached
through link L from an instance of C has structure T
and the second one states that for each instance of C
there is at least one entity of structure T reachable

through linkL� Therefore such link�declarations rep�
resent a generalization of existence and typing dec�
larations for attributes �and roles��
� A well�foundedness�declaration has the form�

well founded L�

It states that by repeatedly following link L starting
from any instance of C� after a 
nite number of steps
one always reaches an entity from which L cannot
be followed anymore� Such a condition allows for
example to avoid such pathological cases as a set
that has itself as a member� This aspect will be
discussed in more detail in section ��
� A cardinality�declaration has the form�

exists �u� v� b in T or exists �u� v� b� in T�

where u is a nonnegative integer and v is a nonneg�
ative integer or the special value
� Such a declara�
tion states for each instance of C the existence of at
least u and most v di�erent entities of structure T
reachable through the basic link b �b���� Existence
and functional dependencies can be seen as special
cases of this type of constraint�
� A meeting�declaration has the form�

each b� is b� or each b�� is b�� �

It states that each entity reachable through a link b�
�b�� � from an instance o of C is also reachable from o

through a di�erent link b� �b�� �� Such a declaration
allows for representing inclusions between attributes�
and is a restricted form of role�value map� a type of
constraint commonly used in knowledge representa�
tion formalisms ���
��

� A key�declaration has the form�

key A�� � � � � Am� A
��
� � � � � � A��

m� �

U�� � � � � Un� U
��
� � � � � � U ��

n� �

It is allowed only in class de
nitions and states that
each entity o in C is linked to at least one other
entity through each link that appears in the decla�
ration� and moreover the entities reached through
these links uniquely determine o� in the sense that
C contains no other entity o� linked to exactly the
same entities as o �for all links in the declaration��

�iii� method�declarations stands for a possibly
empty set of method�declarations� each having the
form�

method M �C�� � � � � Cm� returns �C
�
�� � � � � C

�
n��

It states that for each instance of C� method M can
be invoked� where the type of the input parameters
�besides the invoking object� that are passed to� out�
put parameters that are returned from the method
are as speci
ed in the declaration�

�Note that requiring the link to be basic �and not
generic� is essential for preserving the decidability of in�
ference on the schema�

�Note that the restricted form of role�value map
adopted here does not lead to undecidability of infer�
ence� which results if this construct is used in its most
general form�



��� Semantics

We specify the formal semantics of a CVL schema
through the notion of interpretation I � �OI � �I��
where OI is a nonempty set constituting the uni�
verse of the interpretation and �I is the interpreta�
tion function over the universe� Note that an in�
terpretation corresponds to the usual notion of da�
tabase state� Di�erently from traditional object�
oriented models� we do not distinguish between ob�
jects �characterized through their object identi
er�
and values associated to objects� Instead� we re�
gard OI as being a set of polymorphic entities� which
means that every element of OI can be seen as hav�
ing one or both of the following structures �entities
having none of these structures are called pure ob�
jects��

��� The structure of tuple� when an entity o has
this structure� it can be considered as a property
aggregation� which is formally de
ned as a partial
function from A to OI with the proviso that o
is uniquely determined by the set of attributes on
which it is de
ned and by their values� In the se�
quel the term tuple is used to denote an element of
OI that has the structure of tuple� and we write
�A�� o�� � � � � An� on
 to denote any tuple t such that�
for each i � f�� � � � � ng� t�Ai� is de
ned and equal
to oi �which is called the Ai�component of t�� Note
that the tuple t may have other components as well�
besides the Ai�components�

��� The structure of set� when an entity o has this
structure� it can be considered as an instance aggre�
gation� which is formally de
ned as a 
nite collection
of entities in OI � with the following provisos� �i� the
view of o as a set is unique �except for the empty
set fg�� in the sense that there is at most one 
nite
collection of entities of which o can be considered
an aggregation� and �ii� no other entity o� is the ag�
gregation of the same collection� In the sequel the
term set is used to denote an element of OI that
has the structure of set� and we write fjo�� � � � � onjg
to denote the collection whose members are exactly
o�� � � � � on�

The interpretation function �I is de
ned over
classes� structure expressions and links� and assigns
them an extension as follows�
� It assigns to � a subset of OI 
 OI such
that for each fj � � � � o� � � � jg � OI � we have that
�fj � � � � o� � � � jg� o� ��I�
� It assigns to every role U a subset of OI 
 OI �
� It assigns to every attribute A a subset of OI 

OI such that� for each tuple �� � � � A� o� � � �
 � OI �
��� � � � A� o� � � �
� o� � AI � and there is no o� � OI

di�erent from o such that ��� � � � A� o� � � �
� o�� � AI �
Note that this implies that every attribute in a tuple
is functional for the tuple�
� It assigns to every link a subset of OI 
 OI such
that the following conditions are satis
ed�

�b� � b��I � bI� � bI�
�b� n b��

I � bI� n b
I
�

�L� � L��
I � LI� � LI�

�L� � L��I � LI� � L
I
�

�L��I � �LI��

�L��I � f�o� o�� j �o�� o� � LIg
�identity�C��I � f�o� o� � OI 
OI j o � CIg�

� It assigns to every class and to every structure
expression a subset of OI such that the following
conditions are satis
ed�

AnyI � OI

EmptyI � �
CI � OI

��T �I � OI n T I

�T� � T��I � T I
� � T I

�

�T� 	 T��I � T I
� � T I

�

�A��T�� � � � � An�Tn
I � f�A�� o�� � � � � An� on
 � OI j
o� � T I

� � � � � � on � T I
n g

fTgI � ffjo�� � � � � onjg � OI j
o�� � � � � on � T Ig�

The elements of CI are called instances of C�
In order to characterize which interpretations are

legal according to a speci
ed schema we 
rst de
ne
what it means if in an interpretation I an entity
o � OI satis�es a declaration which is part of a
class or view de
nition�
� o satis
es a type�declaration �is a kind of T� if
o � T I 	
� o satis
es a universal�link�declaration �all L in T�
if for all o� � OI � �o� o�� � LI implies o� � T I 	
� o satis
es an existential�link�declaration
�exists L in T� if there is o� � OI such that
�o� o�� � LI and o� � T I	
� o satis
es a well�foundedness�declaration
�well founded L� if there is no in
nite chain
�o�� o�� � � �� of entities o�� o�� � � � � OI such that
o � o� and �oi� oi��� � LI � for i � f�� �� � � �g�
� o satis
es a cardinality�declaration
�exists �u� v� b in T� if there are at least u and at
most v entities o� � OI such that �o� o�� � bI and
o� � T I 	 a similar de
nition holds for a cardinality�
declaration involving b�	
� o satis
es a meeting�declaration �each b� is b�� if

fo� j �o� o�� � bI�g � fo� j �o� o�� � bI�g	

a similar de
nition holds for a meeting�declaration
involving b�� and b�� �
Finally� a class C satis
es a key�declaration

�key L�� � � � � Lm�� if for every instance o of C in

I there are entities o�� � � � � om � OI such that
�o� oi� � LIi � for i � f�� � � � �mg� and there is no other
entity o� �� o in CI for which these conditions hold�
Note that the method�declarations do not partic�

ipate in the set�theoretic semantics of classes and
views� For an example on the use of method dec�
larations in the de
nition of a schema we refer to
Section ��
An interpretation I satis�es a class de�nition ��

say for class C� if every instance of C in I satis�

es all declarations in �� and if C satis
es all key�
declarations in �� I satis�es a view de�nition �� say
for view C� if the set of entities that satisfy all dec�
larations in � is exactly the set of instances of C� In
other words� there are no other entities in OI besides
those in CI that satisfy all declarations in ��
If I satis
es all class and view de
nitions in a

schema S it is called a model of S� A schema is



said to be consistent if it admits a model� A class
�view� C is said to be consistent in S� if there is a
model I of S such that CI is nonempty� The notion
of consistency is then extended in a natural way to
structure expressions�

� Reasoning in CVL

One of the main features of CVL is that it sup�
ports several forms of reasoning at the schema level�
The basic reasoning task we consider is consistency
checking� given a schema S and a structure expres�
sion T � verify if T is consistent in S� This reason�
ing task is indeed the basis for the typical kinds
of schema level deductions supported by object�
oriented systems� such as checking schema consis�
tency and class subsumption� and computing the
class lattice of the schema� All these inferences can
be pro
tably exploited in both schema design and
analysis �for example in schema integration� and also
provide the basis for type checking and type infer�
ence�
In general� schema level reasoning in object�

oriented data models can be performed by means of
relatively simple algorithms �see for example ���
��
The richness of CVL makes reasoning much more
di�cult with respect to usual data models� Indeed
the question arises if consistency checking in CVL is
decidable at all� One of our main results is a sound�
complete� and terminating reasoning procedure to
perform consistency checking� The reasoning proce�
dure works in worst�case deterministic exponential
time in the size of the schema� Notably� we have
shown that such worst�case complexity is inherent
to the problem� proving that consistency checking
in CVL is EXPTIME�complete�
Space limitations prevent us from exposing our in�

ference method� which is based on previous work re�
lating formalisms used in knowledge representation
and databases to modal logics developed for mod�
eling properties of programs ��� �� ��
� For more
details we refer to ��
�

� Expressivity of CVL

In this section we discuss by means of examples the
main distinguished features of CVL with the goal of
illustrating its expressivity�

��� Object polymorphism

In CVL� entities can be seen as having di�erent struc�
tures simultaneously� In this way we make a step
further with respect to traditional object models�
where the usual distinction between objects �without
structure� and their unique value may constitute a
limitation in modeling complex application domains�
As an example� Condominium in the schema of Fig�
ure � is regarded as a set of apartments� as a record
structure collecting all its relevant attributes and as
an object that can be referred to by other objects
through roles �in our example manages��

��� Well founded structures

In CVL� the designer can de
ne a large variety of 
�
nite recursive structures� such as lists� binary trees�

class Condominium
is a kind of fApartmentg�

�loc� Address� budget� Integer�
key loc

exists ����	 manages� in Manager
endclass

class CondominiumManager
is a kind of �ssn� String� loc� Address�
key ssn

exists manages in Condominium
endclass

Figure �� Schema of a condominium

trees� directed acyclic graphs� arrays� depending on
the application need� The schema in Figure � shows
an example of de
nitions of several variants of lists�
Observe the importance of the well�foundedness�
declaration in the de
nition of List�
Notably� recursively de
ned classes are taken into

account like any other class de
nition when reason�
ing about the schema� We argue that the ability
to de
ne 
nite recursive structures in our model is
an important enhancement with respect to tradi�
tional object�oriented models� where such structures�
if present at all� are ad hoc additions requiring a spe�
cial treatment by the reasoning procedures ��� �
�
Well�foundedness�declarations also allow us to

represent well�founded binary relations� An inter�
esting example of such possibility is the de
nition
of the part�of relation� which has a special impor�
tance in modeling complex applications ��
� This re�
lation is characterized by being 
nite� antisymmet�
ric� irre�exive� and transitive� The 
rst three prop�
erties are captured by imposing well�foundedness�
while transitivity is handled by a careful use of
the � operator� More precisely� in order to model
the part�of relation in CVL� we can introduce a
basic part of role� assert its well�foundedness for
the class Any� and then use the link basic part of�
basic part of� as part�of� Notice that by the virtue
of meeting�declarations� we can also distinguish be�
tween di�erent specializations of the part�of relation�

��� Classi�cation

We show an example of computation of the class
lattice in which the reasoning procedure needs to
exploit its ability to deal with recursive de
nitions�
Figure � shows the de
nitions of classes and views
concerning various kinds of �directed� graphs� Our
reasoning method can be used to compute the cor�
responding class lattice shown in Figure �� Observe

view List
is a kind of Nil �
�
rst� Any� rest� List�

exists ����	 rest� in Any
well founded 
rst � rest

endview

class ListOfPersons
is a kind of List
all rest� � 
rst in Person

endclass

class Nil
is a kind of Any
all 
rst � rest in Empty
endclass

class ListOfThreePersons
is a kind of ListOfPersons
exists rest � rest in Any
all rest � rest � rest in Empty
endclass

Figure �� Schema de
ning lists



class Graph
is a kind of �label� String�
all edge in Graph
endclass

view FiniteDAG
is a kind of Graph
well founded edge
endview

view FiniteTree
is a kind of Graph
all edge in FiniteTree
well founded edge
exists ����	 edge� in Any
endview

view BinGraph
is a kind of Graph
all edge in BinGraph
exists ����	 edge in Any
endview

view FiniteBinTree
is a kind of Graph
all edge in FiniteBinTree
well founded edge
exists ����	 edge� in Any
exists ����	 left in Any
exists ����	 right in Any
each left � right is edge
each edge is left � right
each left is edge n right
endview

Figure �� Schema de
ning graphs

that several deductions involved in the computation
of the lattice are not trivial at all� For example�
in computing subsumption between FiniteBinTree

and BinGraph� a sophisticated reasoning must be
carried out in order to infer that every instance of
FiniteBinTree satis
es exists ����� edge in Any�

��� Methods

Consider a schema S in which the de
nition
of a class C contains the method declaration
�method M �D�� D�� returns �D���� Suppose now
that in specifying manipulations of the correspond�
ing database we use three objects x in class C� y�
in class D�

� and y� in class D�
�� respectively� Let us

analyze the behavior of the type checker in process�
ing the expression x�M �y�� y��� If the type checker
follows a strong type checking policy� then the ex�
pression would be considered well typed if and only
if D�

� is subsumed by D� and D
�
� is subsumed by D�

in S� On the other hand� if a weaker type checking
policy is adopted� in order to guarantee well typed�
ness� it is su�cient that both D� �D�

� and D� �D�
�

are consistent in S� Moreover� in both cases it can
be easily inferred that the type of the expression is
in D�� All these inferences can be carried out by re�
lying on the basic reasoning task introduced in the
previous section�

� Concluding remarks

The combination of constructs of the CVL data
model makes it powerful enough to capture most
common object�oriented and semantic data models
presented in the literature ���� ��
� such as O� ��
�
ODMG ��
� and the entity�relationship model ��
� In
fact� by adding suitable de
nitions to a schema we
can impose conditions that re�ect the assumptions

FiniteTree

FiniteBinTree

FiniteDAG

Graph

BinGraph

Figure �� A lattice of graphs

made in the various models� forcing such a schema
to be interpreted exactly in the way required by each
model�

References

�	
 S� Abiteboul and A� Bonner� Objects and views�
In J� Cli�ord and R� King� editors� Proc� of ACM
SIGMOD� pages �
������ New York �NY� USA��
	��	�

��
 S� Abiteboul and P� Kanellakis� Object identity as
a query language primitive� In Proc� of ACM SIG�
MOD� pages 	���	�
� 	����

�

 F� Bancilhon� C� Delobel� and P� Kanellakis� Build�
ing an Object�OrientedDatabase System � The story
of O�� Morgan Kaufmann� Los Altos� 	����

��
 D� Calvanese� G� De Giacomo� and M� Lenzerini�
Structured objects� Modeling and reasoning� 	����
To appear in Proc� of DOOD����

��
 D� Calvanese� M� Lenzerini� and D� Nardi� A uni�
�ed framework for class based representation for�
malisms� In J� Doyle� E� Sandewall� and P� Torasso�
editors� Proc� of KR���� pages 	���	��� Bonn� 	����
Morgan Kaufmann� Los Altos�

��
 R� G� G� Cattell� editor� The Object Database Stan�
dard� ODMG���� Morgan Kaufmann� Los Altos�
	���� Release 	�	�

��
 P� P� Chen� The Entity�Relationship model� Toward
a uni�ed view of data� ACM Trans� on Database

Systems� 	�	����
�� Mar� 	����

��
 V� Christophides� S� Abiteboul� S� Cluet� and
M� Scholl� From structured documents to novel
query facilities� In R� T� Snodgrass and M�Winslett�
editors� Proc� of ACM SIGMOD� pages 
	
�
���
Minneapolis �Minnesota� USA�� 	����

��
 G� De Giacomo and M� Lenzerini� Boosting the cor�
respondence between description logics and propo�
sitional dynamic logics� In Proc� of AAAI���� pages
�����	�� AAAI Press�The MIT Press� 	����

�	�
 G� De Giacomo and M� Lenzerini� What�s in an
aggregate� Foundations for description logics with
tuples and sets� In Proc� of IJCAI��	� 	���� To
appear�

�		
 R� Hull� A survey of theoretical research on typed
complex database objects� In J� Paredaens� editor�
Databases� pages 	�
����� Academic Press� 	����

�	�
 R� B� Hull and R� King� Semantic database
modelling� Survey� applications and research is�
sues� ACM Computing Surveys� 	��
����	�����
Sept� 	����

�	

 C� Lecluse and P� Richard� Modeling complex struc�
tures in object�oriented databases� In Proc� of
PODS�
�� pages 
���
��� 	����

�	�
 M� Staudt� M� Nissen� and M� Jeusfeld� Query by
class� rule and concept� J� of Applied Intelligence�
�����	

�	��� 	����

�	�
 W� A� Woods and J� G� Schmolze� The KL�
ONE family� In F� W� Lehmann� editor� Semantic
Networks in Arti�cial Intelligence� pages 	

�	���
Pergamon Press� 	���� Published as a special is�
sue of Computers � Mathematics with Applications�
Volume �
� Number ����


