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Preface

This document is the English version of my doctoral thesis ��
�� It presents the
research work I have done� mostly at the Dipartimento di Informatica e Sistemistica�
Universit�a di Roma �La Sapienza�� from ���� to the beginning of ���
� under the
supervision of Maurizio Lenzerini�

The thesis is concerned with logic�based knowledge representation formalisms in
the tradition of kl�one� called Description Logics� The description logics investi�
gated are distinguished by being much more expressive than the usual ones� but still
decidable� High expressivity makes it possible to represent all relevant knowledge
of complex domains� as those managed by Medical Terminology Servers studied in
Medical Informatics� Decidability makes it possible to implement sound and complete
reasoning algorithms for such description logics� A great variety of expressive descrip�
tion logics is considered� and for each of them� reasoning procedures are developed
and EXPTIME�decidability is proved� This complexity bound is the best one can
achieve since the simplest logics considered are already EXPTIME�hard�

The key idea in establishing these results it that� rather then trying to construct
a new algorithm for each extended logic� the decision problems for the extended
logics are polynomially reduced to decision problems of already known logics in an
incremental fashion� Several of these reductions are quite sophisticated� and the proof
of correctness is� in many cases� rather involved� Certain reductions are somewhat
surprising since the extended logics have logical properties that are quite di�erent
from those from which they derive� For instance the basic logics have the �nite model
property while some of the extended ones don�t� Overall this �reduction�based� way
of proceeding has proved to be very e�ective�

The thesis heavily exploits the correspondence that exists between description log�
ics and certain modal logics of programs� called Propositional Dynamic Logics� This
correspondence has already allowed other researchers to obtain decidability and com�
plexity characterization for various description logics from well�known results about
propositional dynamic logics� However� a signi�cant step further is made in this thesis�
instead of just using results for known propositional dynamic logics� new propositional
dynamic logics� corresponding to description logics of interest� are introduced� and
their decidability and complexity characterization is established�

For the sake of brevity and homogeneity� the work concerning applications to
Medical Terminology Servers� which was documented in the original thesis� has been
largely sacri�ced in the present version� I brie�y discuss the main issues in the �rst
chapter�






I have preferred to concentrate on the theoretical results� which are reported in ev�
ery detail� including full��edged proofs� in the following chapters� I have also included
an appendix concerning a further reduction that I devised just after the original thesis
was completed�
Many of the results presented in this thesis were obtained in collaboration with

Maurizio Lenzerini� and some of them have already appeared in ��	� �
� 	�� ��� ���
	�� ��� 	�� 	
��
It is a pleasure to acknowledge the people that have helped me most during this

work� I wish to thank the thesis committee� particularly Paolo Atzeni� Carlo Batini�
Paolo Ercoli� and the external reviewers Franz Baader� Piero Torasso� and Angelo
Rossi Mori� I am specially indebted to Franz Baader for the numerous suggestions
that allowed me to reformulate more rigorously some of the results� and to improve
the overall quality of the thesis� I wish to thank all the people of the Dipartimento di
Informatica e Sistemistica� in particular the people working in Arti�cial Intelligence
that have always been ready to talk about issues related to the thesis� Luigia Carlucci
Aiello� Marco Cadoli� Diego Calvanese� Amedeo Cesta� Francesco Donini� Daniele
Nardi� Eugenio Omodeo� Fiora Pirri� Marco Schaerf� Andrea Schaerf� I am especially
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Chapter �

Introduction

��� Background

The research in Arti�cial Intelligence and Computer Science has always paid special
attention to formalisms for the structured representation of information� In Arti�cial
Intelligence� the investigation of such formalisms began with semantic networks and
frames� which have been in�uential for many formalisms proposed in the areas of
knowledge representation� databases� and programming languages� and developed to�
wards formal logic�based languages� that will be called here description logics�� Basi�
cally� description logics represent knowledge in terms of objects �individuals� grouped
into classes �concepts� and pairs of objects grouped into relations �roles�� Classes are
denoted by using appropriate constructs� Interdependencies between classes �such as
inclusion� disjointness� etc�� are established by means of assertions�

Two main advantages in using structured formalisms for knowledge representation
have been advocated� namely� epistemological adequacy� and computational e�ective�
ness� In the last decade� many e�orts have been devoted to an analysis of these two
aspects� In particular� starting with ��	�� the research on the computational complex�
ity of the reasoning tasks associated with description logics has shown that in order
to ensure decidability and�or e�ciency of reasoning in all cases� one must renounce
some of the expressive power ��
� ��� ��� ��� 	�� 	�� 	��� These results have led to
a debate on the trade�o� between expressive power of representation formalisms and
worst�case e�ciency of the associated reasoning tasks� Recently� this issue has been
one of the main themes in the area of description logics� and has led to at least four
di�erent approaches to the design of knowledge representation systems�

� In the �rst approach� the main goal of a description logic is to o�er powerful
mechanisms for structuring knowledge� as well as sound and complete �but
possibly non terminating� reasoning procedures� Little attention is paid to
both decidability and computational complexity of the reasoning procedures�
Systems like OMEGA ��� can be considered as following this approach�

�Terminological logics� and concept languages are other possible names�

�



CHAPTER �

� The second approach advocates a careful design of the description logics so as
to o�er as much expressive power as possible while retaining the possibility of
sound� complete� and e�cient �often polynomial in the worst case� inference
procedures� Much of the research on CLASSIC ��
� follows this approach�

� The third approach� similarly to the �rst one� advocates very expressive lan�
guages� but� in order to achieve e�ciency� accepts incomplete reasoning pro�
cedures� LOOM ���� and KL�ONE ��
� are representatives of this approach�
No general consensus exists on what kind of incompleteness is acceptable� Per�
haps� the most interesting attempts are those which resort to a non�standard
semantics for characterizing the form of incompleteness ���� ��� 	���

� Finally� the fourth approach is based on what we can call �the expressiveness
and decidability thesis�� and aims at de�ning description logics that are both
very expressive and decidable� i�e� designed in such a way that sound� complete�
and terminating procedures exist for the associated reasoning tasks� Great
attention is given in this approach to the complexity analysis for the various
sublogics� so as to devise suitable optimization techniques and to single out
tractable subcases� This approach is the one followed in the design of KRIS �	��

The work presented in this thesis adheres to the fourth approach� It aims at both iden�
tifying very expressive description logics with decidable associated decision problems�
and characterizing the computational complexity of reasoning in such description log�
ics�

��� Medical Terminology Servers

In investigating description logics of this type� we have in mind a particular application
of Medical Informatics� namely Medical Terminology Servers� It is a common opinion
in Medical Informatics that the quality and the e�ectiveness of automatic information
and record keeping in health�care depends� to a large extent� on the e�cient processing
and interpreting of medical terminologies and concepts ���� ��
� ��� ����� This has led
to the proposal of isolating a special subsystem of health�care information systems to
which are delegated services involving the representation and reasoning about medical
concepts ����� 
�� ��� ����� We call such a subsystem Medical Terminology Server�
borrowing this name from GALEN� one of the main research projects in the area�
A Medical Terminology Server is a knowledge representation system in which

knowledge about a given medical domain �ranging from very speci�c to very general�
is represented in terms of concepts �classes� and links between concepts� Only part
of such knowledge is represented explicitly� and reasoning services are provided to
extract implicit knowledge from the explicit one�
Typical reasoning services of a Medical Terminology Server are� subsumption

checking� i�e� checking� taking in account the knowledge possessed by the server� if
a concept is a specialization of another one� or if two concepts are equivalent� and
consistency checking� i�e� checking if a piece of information �e�g� a concept� or an as�
sertion of inclusion or equivalence between concepts� is consistent with the knowledge
in the server�

�



Medical Terminology Servers

By exploiting the basic reasoning services above� additional services may be pro�
vided� For example a Medical Terminology Server may generate �canonical forms� of
concepts wrt certain parameters� or it may translate the inner representation of con�
cepts in various target languages understandable by humans or by other information
systems�
Applications of Medical Terminology Servers span a broad spectrum of Medi�

cal Informatics� They include decision support tools� literature retrieval systems�
outcome research �extracting information from medical records�� structured data en�
try� predictive data entry� intelligent medical records� patient record systems� patient
record retrieval� interlingua� expert systems� hospital departmental information sys�
tems ����� �
� 
�� 
�� �
� ���� �	� ��� 
� ��� ��
�� Below we show some examples
which clarify the role Medical Terminology Servers may have in di�erent application
domains� The examples are taken from �
�� �
��

Example �� A hospital has installed decision�support tools� The hospital information
system will check the new orders entered into the system for con�icts� One of such
target alert may be warning to the ordering clinician whenever a nonsteroidal anti�
in�ammatory agent is ordered for a patient diagnosed as having peptic ulcer disease�
The designers must ensure that the system will recognize every existing nonsteroidal
anti�in�ammatory drug by name� as well as every possible reference to acid peptic
disease�
We can delegate to the Medical Terminology Server the task of recognizing if a

given kind of drug is a nonsteroidal anti�in�ammatory one or not� and recognizing if
the disease diagnosed in a patient is an acid�peptic disease or if it induces an acid�
peptic condition� Note that the reasoning service involved is subsumption wrt the
knowledge in the server�

Example �� A literature�retrieval system is built that will attempt to recognize con�
cepts that are synonymous� A query is entered about calcium�channel blockers and
their use in stroke� The system must deal with the fact that writers of articles use
many synonymous terms for calcium�channel blockers� such as �calcium blockers��
�calcium antagonist�� and the individual name of di�erent agents� Likewise� stroke
has many synonyms� such as �cerebrovascular accident� or �CVA�� and may be re�
ferred to generally as �cerebrovascular disease��
We can delegate to the Medical Terminology Server �possibly assisted by a natural

language recognition system� the task of recognizing whether di�erent terms denote
the same entity �calcium�channel blockers� stroke�� and recognizing entities that are
specializations of those requested� Note that again the reasoning service involved is
subsumption wrt the knowledge in the server�

Example �� A group is responsible for outcomes research� It is desirable to track
all patient data� including symptoms� yet not have to process charts manually� A
computer program is designed to extract information from patient records� but the
e�ectiveness of the program depends on the its ability to deal with variations in the
descriptions of patients� symptoms� For example� what is written as �post�prandial
stomach pain� in one chart is described as �abdominal pain after meals� in another�
We can delegate to the Medical Terminology Server the task of recognizing that

the concept denoted by �post�prandial stomach pain� is actually the same one denoted
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CHAPTER �

by �abdominal pain after meals�� In general� the Medical Terminology Server can be
used to recognize if two symptoms reported on di�erent patient records are the same
or one a specialization of the other� in order to aggregate data correctly for statistics�
Note that again we make use of subsumption wrt the knowledge in the server�

Example �� A renal dialysis center wants to develop a medical record that will support
observation and controlled trials as part of routine patient care� Much of the patient
information will be collected by nurses and physicians through structure data entry
to ensure that study parameters are rigorously assessed� The designers require a
standard source of possible concepts� symptoms� and corresponding values in order
to integrate di�erent trials with overlapping data elements and share their data with
other participating centers�
We can use the Medical Terminology Server as the standard source of concepts

required above� The server will have to use its reasoning services for accomplishing
this task�

Example �� A clinician is visiting a patient using a predictive data entry device�
He discovers that the patient has a fracture� and enters �fracture� into the system�
The system automatically displays �has location� among others modi�ers� possibly
suggesting some of the most common alternatives as �humerus�� �ulna�� �radius�� etc�
The clinician answers �humerus�� the system accordingly displays other modi�ers�
Meanwhile the system on�line checks for the consistency of the data entered� For
example it does not allow one to specify that the patient has a fracture of the eyebrow
because eyebrow is not a bone and fractures may only be located in bones�

We can designate the Medical Terminology Server as the provider of a canonical
description of the concept given in input ��fracture�� so to exploit its structure to
ask for more data �the quali�cation of the modi�er �has location��� In producing the
canonical description of a concept� the server must reason on the knowledge about
the domain it has� In addition the server can be used to check for the consistency of
the data entered wrt its knowledge �refuting �fracture that has location in eyebrow���

From what has been said so far it should be apparent that there are strong con�
nections between the notion of Medical Terminology Server and many knowledge
representation systems proposed in Arti�cial Intelligence and in Computer Science
�indeed� the formalisms adopted by the various Medical Terminology Server propos�
als come from these �elds�� However it must be stressed that the notion of Medical
Terminology Server has deep roots� speci�c to Medicine� in the so called medical con�
cept classi�cation systems� and systematized medical nomenclatures ����� ��	� �����
Roughly� we may divide these systems into three categories according to their repre�
senting and reasoning capabilities�

The �rst category is that of the so called coding systems� Coding systems �e�g�
ICD��CM ���	�� CMIT �
��� SNOMED�III ����� MeSH ����� are based on the enu�
merative classi�cation of medical concepts in a given domain� They are composed
by experts systematically enumerating all possible concepts in the domain� Concepts
are organized in hierarchies �sometimes a single hierarchy� sometimes multiple hi�
erarchies�� which are also represented by explicit enumeration� To each concept is
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Medical Terminology Servers

assigned a standard code �usually� an alphanumeric string� according to such hierar�
chies� For example in ICD��CM under �chronic obstructive pulmonary disease and
allied conditions �	���	�
�� we �nd �asthma� coded as 	��� �extrinsic asthma� as
	����� �intrinsic asthma� as 	����� �asthma� unspeci�ed� as 	����� Originally coding
systems were developed for a paper�based support �indeed� usually they are contained
in books� and their primary purpose is to discipline the use of medical terms by pro�
viding a controlled vocabulary in which each concept has a precise connotation� its
code� Given their nature� coding systems do not provide for reasoning procedures�

Coding systems have recently evolved in concept systems that allow for a struc�
tured representation of medical concepts� though they do not provide reasoning proce�
dures� An example is the semantic network developed within UMLS ����� UMLS �Uni�
�ed Medical Language System� is a project of the National Library of Medicine that
aims at providing an integration of existing controlled medical vocabularies to facili�
tate access and transformation between computer�based information sources� UMLS
organizes the more general concepts ��concept types�� by means of a semantic net�
work� while more speci�c concepts are supplied by the so called source vocabularies
which are again hierarchical� Another example is MED �Medical Entity Dictionary�
����� MED is a structured knowledge representation language developed by the Center
for Medical Informatics of ColumbiaUniversity at the Columbia�Presbyterian Medical
Center� Concepts� in MED� are represented by means of a frame�based language sim�
ilar to those developed in Arti�cial Intelligence� No reasoning services are provided�
There have also been proposals of systems for describing medical concepts based on
semantical data models for databases� as the Entity�Relationship Model� The most
attractive aspects of such semantical data models are their high descriptive power�
and the ease with which they interface actual databases ���
� 
�� ����

The third category of concept systems is the one that directly led to the notion
of Medical Terminological Server� It includes systems that allow for a structured
representation of knowledge and provide reasoning procedures to extract implicit
knowledge from the knowledge explicitly represented� Several proposals have been
made� Such proposals are based on di�erent formalisms� and aim at somewhat dif�
ferent goals� but they all share the notion of Medical Terminology Server� One of the
major proposals is the one developed within the GALEN project ���� ���� ��� �����
GALEN �Generalized Architecture for Language Encyclopedias and Nomenclature in
Medicine� is a project funded by the European Community� having the purpose of de�
veloping language�independent concept representation systems as the foundations for
the next generation of multilingual coding systems� A speci�c concept representation
formalism� GRAIL �GALEN Representation and Integration Language�� has been
developed within GALEN� Such a formalism is a logic�based language resembling a
description logic� Similar proposals have been formulated within the CANON Group
��
� ��� 
�� 
�� ��� 
��� The CANON Group was founded in United States by Medical
Informatics researchers having the goal of establishing a basis for the �canonical� rep�
resentation of medical concepts� They are analyzing di�erent formalisms to approach
the problem� based on frame�based languages� semantic networks� and conceptual
graphs� Conceptual graphs have been proposed as a formalism for concept�based rep�
resentation systems by others researchers as well� e�g� in ��� ���� Another research
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direction is that of the project group Medicine�Informatics at the German Hearth
Center in Berlin ����� ���� ����� This group is exploring the possible application of
the system BACK ���� �a general�purpose knowledge representation system based on
a description logic� for modeling medical and patient�related information� in order to
exploit its representing and reasoning capabilities as the core of a Medical Terminology
Server�

Observe that though di�erent formalisms have been proposed as basic represent�
ing and reasoning paradigms for Medical Terminology Servers � i�e� semantic net�
works� frame�based languages� conceptual graphs� semantic data models� logic�based
languages � all these formalisms belong to the same family� that of class�based repre�
sentation formalisms�

��� Goals and main results of the thesis

Description logics o�er a clean� formal and e�ective framework for analyzing several
important issues related to class�based representation formalisms� such as expres�
sive power� deduction algorithms� and computational complexity of reasoning� Note�
however� that in order to address these issues� description logics should be su�ciently
general� but� at the same time� su�ciently simple so as to not fall into undecidability
of reasoning�
Currently those description logics that have been studied from a formal point of

view su�er from several limitations that prevent them form being able to capture a
su�ciently broad family of class�based representation formalisms� In particular they
are too weak to meet the requirements imposed by modeling complex domains as
those often involved in Medical Terminology Servers� Several papers �e�g� ����� ����

�� ��� ��
� 
�� 
��� have pointed out that in real applications� the following features
are often called for�

�� The availability of assertions for imposing mutual dependencies between classes�
The basic mechanism for this feature is the so�called inclusion assertion� stating
that every instance of a class is also an instance of another class� Much of the
work done in description logics assumes that all the knowledge on classes is
expressed through the use of class descriptions� and rules out the possibility of
using this kind of assertion �note that the power of assertions vanishes with the
usual assumption of acyclicity of class de�nitions��

�� The availability of a full range of constructs in order to form concept and role
descriptions� Besides the constructs corresponding to the usual boolean connec�
tives �union� intersection� complement�� and existential and universal quali�ca�
tions� two important types of constructs must be mentioned� those for building
complex role descriptions� in particular inverse roles �e�g� �has�direct�part� is
the inverse of �direct�part�of�� and re�exive transitive closure �e�g� �part�of�
is the re�exive transitive closure of �direct�part�of��� and those for expressing
cardinality constraints ranging from functional restrictions �i�e� that a role is
functional for the instances of a given class� to quali�ed number restrictions �a
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generalization of functional restrictions� stating the minimumand the maximum
number of links an instance of a class has with instances of another class��

�� The availability of boolean constructs on roles� and the possibility to state as�
sertions on roles� expressing inclusion� disjointness� etc�

	� The possibility of aggregating individuals in tuples� and then of grouping tuples
into n�ary relations as opposed to binary relations only �roles��


� The possibility of asserting properties of individuals� Usually this is done in
terms of the so�called membership assertions� Two kinds of membership asser�
tions are taken into account� one for stating that an object is an instance of a
given class� and another one for stating that two objects are related to by means
of a given role�


� The possibility of de�ning classes recursively� In this way it is possible to model�
for example� terminating sequences� non�terminating sequences� as well as many
other data structures of Computer Science�

The main goal of this thesis is to introduce description logics with the above fea�
tures� studying their properties� and to devise reasoning procedures for them� investi�
gating decidability and characterizing their computational complexity	
To this end� we resort to the work by Schild ������ which singled out a tight cor�

respondence between description logics and propositional dynamic logics� which are
modal logics speci�cally designed for reasoning about program schemes� The cor�
respondence is based on the similarity between the interpretation structures of the
two kinds of logics� at the extensional level� objects in description logics correspond
to states in propositional dynamic logics� whereas connections between two objects
correspond to state transitions� At the intensional level� classes correspond to propo�
sitions� and roles corresponds to programs� This correspondence is extremely useful
for two reasons� On the one hand� it makes it clear that reasoning about assertions on
classes is equivalent to reasoning about single dynamic logic formula� On the other
hand� the large body of research on decision procedures in propositional dynamic
logics �see� for example� ��	�� can be exploited in the context of description logics�
and� inversely� the various works on tractability�intractability of description logics
�see for example �	��� can be used in the context of propositional dynamic logics� We
sustain that the work on propositional dynamic logics is a good starting point for our
investigation� because it provides a general method for reasoning with�

� assertion on classes�

� inverses of roles �indeed� several propositional dynamic logics proposed in the
literature include a construct that exactly corresponds to the inverse of roles��

The reasoning tasks we focus on are the usual ones�

� Satis�ability of concepts� i�e� checking if a concept expression C admits a non�
empty interpretation �has some instances��
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� Satis�ability of TBoxes� i�e� checking if a TBox is consistent� where a TBox is
the collection of inclusion assertions that makes up the knowledge the system
is provided with� We assume inclusion assertions to have the form C� v C��
where C� and C� can be any concept expressions �this is the most general form
of assertions on classes��

� Logical implication in TBoxes� i�e� checking if a concept C� is subsumed by a
concept C� wrt the knowledge in the TBox K� written K j� C� v C���

We also consider assertional reasoning� i�e� reasoning taking into account knowl�
edge about single individuals� However such knowledge will be expressed not only
through the usual membership assertions �ABox�� but also through inclusion asser�
tions involving special atomic concepts denoting exactly a single individual� This
allows us not to include assertional reasoning among the basic reasoning tasks�

The basic reasoning tasks above are not independent� In particular we can easily
reformulate both satis�ability of single concepts and satis�ability of TBoxes in terms
of logical implications� Indeed logical implication seems to be the most general rea�
soning task� However we will see that for most of the logics we will introduce� logical
implication can be reformulated as satis�ability of a single concept �it is essentially
the ability of expressing re�exive transitive closure of roles that allows us to capture
the knowledge in the TBox within a single concept��

Next to each description logic we will introduce a corresponding propositional
dynamic logic�� Most of these propositional dynamic logics have not been studied
yet� and decidability and computational characterization �of both satis�ability and
logical implication� are established within this thesis�

Figure ��� depicts the description logics studied in the thesis� The weaker logics
are at the bottom of the �gure while the stronger ones are at the top�

A line �either thin or thick� between two logics denotes that the logic above is an
extension �in the sense that it has more constructs� of the logic below� If the line is
a thick line then it means that� a �non trivial� reduction� from �the reasoning tasks
of� the logic above to �the reasoning tasks of� the logic below� is exhibited in the
thesis� The dashed thick line between CI and C denotes a reduction from CI to C
which was not contained in the original version of the thesis and it is included here
as an appendix�

The logics in the closed area have already been studied� and the decidability and
computational complexity characterization of the basic reasoning tasks is already
known�

Figure ��� is the analogue of Figure ��� for the corresponding propositional dy�
namic logics� The meaning of the various lines and of the closed area is the same as
before�

Let us brie�y introduce the logics in the pictures�

�Note that checking if a new piece of information is consistent with the knowledge of the system�
is expressible as checking that the TBox does not logically imply the negation of the new piece of
information�

�We use the term propositional dynamic logic in a slightly more general sense then usual� so as
to include the basic multimodal logic Ki� and modal mu�calculus�

��



Goals and main results of the thesis
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Figure ���� Description logics studied in the thesis

ALC is a very well known description logic ������ It includes boolean constructs
�union� intersection� and complement�� existential quali�cation and universal quali��
cation for building complex concept expressions� while role can only be atomic� ALC
corresponds to the well�known modal logic Ki ������ which is the basic normal mul�
timodal logic �
�� 
�� ��� 

�� Satis�ability of an ALC concept �satis�ability of a Ki

formula� is known to be PSPACE�complete while logical implication for ALC �for Ki�
is EXPTIME�complete�

C is the description logic obtained from ALC by adding the following role con�
structs� union� chaining� re�exive transitive closure� and identity role over a concept
�see ����� ���� C corresponds to the propositional dynamic logic D� which is the origi�
nal propositional dynamic logic introduced in �

�� All the basic reasoning tasks in C
�D� are known to be EXPTIME�complete�

�ALC is obtained from ALC by adding two concept constructs denoting the least
�xpoint and the greatest �xpoint of concept expressions �see Chapter � for details��
Notabily� the �xpoint constructs allow for recursive concept de�nitions within the
usual descriptive semantics� Observe that even if no role constructs are present� �ALC
is actually an extension of C� since all concept denotable in C are also denotable in
�ALC� Indeed using �xpoints we can emulate all role expressions occurring in a C
concept� The correspondent propositional dynamic logic �Ki is the modalmu�calculus
����� which is known to be decidable and EXPTIME�complete� The correspondence
was derived independently by both Schild and the author in ����� and ���� respectively�

The description logics �propositional dynamic logics� introduced in this thesis are
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Figure ���� Propositional dynamic logics studied in the thesis

obtained from C and �ALC �D and �Ki� by adding constructs either on concepts
�formulae� or roles �programs�� The presence of such constructs is re�ected in the
name of the logics�

I in the name of a logic indicated the presence of inverse roles �converse programs
in propositional dynamic logic�� In all description logics introduced that include
inverse roles� there is a perfect symmetry between atomic roles and inverse of atomic
roles� in the sense that all constructs dealing with atomic roles� deal with inverse of
atomic roles as well� similarly for the corresponding propositional dynamic logics�

F in the name of a logic indicates the presence of functional restrictions� In de�
scription logics� a functional restriction forces a speci�ed atomic role or its inverse
to be functional wrt the individuals that satisfy it� Similarly for the corresponding
propositional dynamic logics� Observe the di�erence between functional restrictions
on atomic programs and the assumption that atomic programs are deterministic� char�
acterizing the so called deterministic propositional dynamic logics� The �rst impose
the functionality of a given program locally �i�e� wrt states that are forced to satisfy
the restriction�� while the other assumes the functionality of each atomic program
once and for all �i�e� for all possible states��

N in the name of a logic indicates the presence of quali
ed number restrictions�
Quali�ed number restrictions have a correspondent notion in modal logic� the graded
modalities� Though� to our knowledge we are the �rst to study full��edged proposi�
tional dynamic logics that include graded modalities�

B in the name of a logic indicates the presence of boolean constructs for atomic roles
�programs�� together with the ability of stating assertions on boolean combinations
of atomic roles �programs�� Although negation of a role is allowed� it is de�ned so as
not to introduce� as a side e�ect� the ability to denote the universal role� by means of
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a boolean expression of atomic roles �see the discussion in Chapter 
��
R in the name of a description logic indicates the presence of n�ary relations in

place of atomic roles� with suitable constructs to build complex relations� roles� and
concepts� similarly for the corresponding propositional dynamic logics�
Finally� O in the name of a logic indicates the presence of special atomic concepts

�formulae� called names denoting exactly a single individual� Note that by means
of names� ABoxes �collections of membership assertions�� and constructs involving
single individuals as ONE�OF or FILLS can be represented� Names corresponds to
the notion of nominals in modal logics� Propositional dynamic logics with nominals
are often called combinatory propositional dynamic logics� The results on names in
this thesis close some open problems related to combinatory propositional dynamic
logics� by characterizing the computational complexity of deterministic combinatory
propositional dynamic logic �which is easily reduced to DFO�� and establishing the
decidability and characterizing the computational complexity of converse combinatory
propositional dynamic logic �which is easily reduced to DIO��

The main results of the thesis can be summarized as follows�

� We have de
ned and studied the new logics shown in Figure �	� and Figure �	�	

� We have established the decidability of their reasoning tasks	

� We have characterized the computational complexity of their reasoning tasks as
EXPTIME�complete� by reducing them to reasoning tasks of known propositional
dynamic logics �either D� DI� or �Ki
	

Research on description logics has systematically investigated concept satis�abil�
ity and concept subsumption for a wide range of constructs �e�g� �	���� The work
reported in this thesis can be seen as the analogue of that study� when TBoxes of
the most general form �no restrictions on cycles� are taken into account� Indeed� we
systematically investigate satis�ability and concept subsumption wrt to TBoxes �both
expressible in terms of logical implication in TBoxes� for a wide variety of constructs�
Note� however� that emphasis is put on extending the set of constructs� instead of
cutting it down� This is because� as mentioned above� even for the simple description
logic ALC� reasoning tasks that take into account TBoxes are EXPTIME�complete�

��� Structure of the thesis

The thesis is organized in nine chapters plus an appendix� The contents of each
chapter is reported below�
Chapter � is the present introduction�
Chapter � introduces the relevant background on both description logics and

propositional dynamic logics� the correspondence between description logics and
propositional dynamic logics ������ and some convenient notions used later�
Chapter � introduces the description logic CIF �C plus inverse roles and functional

restrictions� and the corresponding propositional dynamic logic DIF � The decidabil�
ity and the computational characterization as EXPTIME�complete of the reasoning
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tasks in CIF and DIF � is established by exhibiting a polynomial reduction from sat�
is�ability in DIF to satis�ability in DI �i�e� converse propositional dynamic logic��
The reduction is based on adding special �constraints� so as to represent functional
restrictions within DI� A discussion on the results ends the chapter�

Chapter 	 introduces the description logic CIN �C plus inverse roles and quali�ed
number restrictions� and the corresponding propositional dynamic logic DIN � The
decidability and computational characterization as EXPTIME�complete of the rea�
soning tasks in CIN and DIN is established by showing a polynomial reduction from
satis�ability in DIN to satis�ability in DIF � The reduction is de�ned in two steps�
�rst every atomic role is rei
ed� then quali�ed number restrictions are reduced to
expressions involving only functional restrictions as cardinality constraints� A much
simpler technique to reduce CN and DN to deterministic propositional dynamic logic
is also presented� A discussion on the results ends the chapter�

Chapter 
 introduces the description logic CINB �CIN plus boolean expressions
of roles and inclusion assertions on atomic roles� and the corresponding propositional
dynamic logic DINB� The decidability and the computational characterization as
EXPTIME�complete of the reasoning tasks� is established by exhibiting a polynomial
reduction from logical implication in DINB to logical implication in DIN � Such
reduction makes use of the rei�cation technique introduced in Chapter 	� Note that
for such logics� logical implication cannot be readily reduced to satis�ability as in the
previous cases� because of the presence of inclusion assertions on atomic roles �axioms
on atomic programs�� A discussion on the results ends the chapter�

Chapter 
 introduces the description logic CINBR �CINB plus boolean expres�
sion on atomic n�ary relations and inclusion assertions on atomic n�ary relations��
The corresponding propositional dynamic logic DINBR is not explicitly presented
in this case� The decidability and the computational characterization as EXPTIME�
complete of the reasoning tasks� is established by exhibiting a polynomial reduction
from logical implication in CINBR to logical implication in DIN � Such a reduction
is in line with the one shown in Chapter 
�

Chapter � deals with individuals� It shows how to reduce reasoning with both
ABox and TBox to reasoning with only a TBox for the description logics CN and
CI� This is done by showing a polynomial reduction from satis�ability of CN �CI�
ABoxes and TBoxes to satis�ability of a single DN �DI� formula� A discussion on the
results ends the chapter� showing that the reductions presented are general enough
to allow for polynomially reducing reasoning tasks in CNO and CIO to reasoning
tasks in CN and CI� respectively� Thus decidability and computational characteriza�
tion as EXPTIME�complete is established for CNO and CIO and the corresponding
propositional dynamic logics�

Chapter � starts with a discussion on the various semantics for recursive de�nitions
of concepts� arguing for an unifying approach that allows for the various semantics
to coexist in the same formalism� To this end� �xpoints of concept expressions are
introduced� and a correspondence is devised with modal mu�calculus� Speci�cally
the reasoning tasks in the description logics �ALC are shown to be reducible to
satis�ability of modal mu�calculus� thus establishing their decidability and computa�
tional characterization as EXPTIME�complete� Next� quali�ed number restrictions
are taken into account� getting the description logic �ALCN and the corresponding
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extended modal mu�calculus �KiN � Decidability and computational characterization
as EXPTIME�complete are established for these logics as well� by showing a reduc�
tion from satis�ability in �ALCN to satis�ability in modal mu�calculus interpreted
over deterministic structures� Other interesting properties of description logics with
�xpoints are discussed in the chapter�
Finally the appendix contains the details of a polynomial reduction from DI �CI�

to D �C�� which was not included in the original version of the thesis�
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Preliminaries

In this chapter we present the basic notions regarding both description logics and
propositional dynamic logics� We refer the reader to ���� and ��	� for an introduction
to the subjects� We also prove some propositions to be used in the following chapters�

��� Description logics

Description logics allow one to represent a domain of interest in terms of concepts and
roles� Concepts model classes of individuals� while roles model relationships between
classes� Starting with atomic concepts and atomic roles� which are concepts and roles
described simply by a name� complex concepts and roles can be built by means of
suitable constructs�

In the following� we focus on the description logic CI which has been studied in
������� The formation rules of CI are speci�ed by the following abstract syntax�

C ��� � j � j A j C� uC� j C� tC� j C� � C� j �C j �R�C j �R�C

R ��� P j R� tR� j R� 	R� j R
� j R� j id�C�

where A denotes an atomic concept� C �possibly with a subscript� denotes a concept�
P denotes an atomic role� and R �possibly with a subscript� denotes a role�

Note that CI is a very expressive language� comprising all usual concept constructs�
and a rich set of role constructs� namely� union of roles R� t R�� chaining of roles
R� 	R�� re�exive�transitive closure of roles R�� inverse roles R�� and the identity role
id�C� projected on C�

Concepts are interpreted as subsets of a domain� while roles are interpreted as
binary relations over such a domain� Formally� an interpretation I � � I� 
I� consists
of a domain of interpretation  I� and an interpretation function 
I mapping every

�The description logics C and ALC are obtained from CI by dropping inverse roles and all role
constructs respectively�
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concepts to a subset of  I and every role to a subset of  I � I as follows��

AI �  I

�I �  I

�I � 

��C�I �  I � CI

�C� uC��
I � CI� �CI�

�C� tC��
I � CI� �CI�

�C� � C��I � ��C��I �CI�
��R�C�I � fd �  I j �d���d� d�� � RI and d� � CIg
��R�C�I � fd �  I j �d���d� d�� � RI implies d� � CIg

P I �  I � I

�R� tR��I � RI� �R
I
�

�R� 	R��I � RI� 	R
I
�

�R��I � �RI�� �
S
i���R

I�i

�R��I � f�d�� d�� �  
I � I j �d�� d�� � RIg

id�C�I � f�d� d� �  I � I j d � CIg�

A concept is satis�able if there exists an interpretation I such that CI �� 
�
otherwise the concept is unsatis�able� An interpretation I is a model of a concept C
if I satis�es C�
A TBox K �i�e� intensional knowledge base� is a �nite set on inclusion assertions

of the form C� v C�� where C� and C� are general concepts� An interpretation I
is a model of an inclusion assertion C� v C� if C

I
� � CI� � An interpretation I is

a model of a TBox K if I is a model of each inclusion assertion in K� A TBox K
is satis�able if it has a model� A TBox K logically implies an assertion C� v C��
written K j� C� v C�� if C� v C� is satis�ed by every model of K� Observe that
K j� C� v C� expresses that the concept C� is subsumed by C� wrt the TBox K�

�

Note that each basic reasoning task can be �linearly� reformulated as logical im�
plication in a TBox� Namely satis�ability of a concept C can be reformulated as

 �j� C v �� satis�ability of a TBox K as K �j� � v ��

��� Propositional dynamic logics

We focus on the propositional dynamic logic DI �Converse PDL �

�� which as it
turns out corresponds to CI�� The abstract syntax of DI is as follows�

� ��� � j � j A j �� � �� j �� � �� j �� � �� j �� j � r � � j �r��

r ��� P j r� � r� j r�� r� j r� j r� j �!

�The notation �RI�i stands for i repetitions of RI � i�e�� �RI�� � RI� and �RI�i � RI ��RI�i���
�Accordingly� a concept C� is subsumed by a concept C�� if � j� C� v C�� i�e� if for every

interpretation I� CI

� � CI

� �
�The propositionaldynamic logicD �PDL 	
��� is obtained fromD by dropping converse programs

r�� while Ki is obtained by allowing only atomic programs�
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where A denotes a propositional letter� � �possibly with a subscript� denotes a for�
mula� P denotes an atomic program� and r �possibly with a subscript� denotes a
program�
The semantics of propositional dynamic logics �see ��	�� is based on the notion of

�Kripke� structure� which is de�ned as a triple M � �S� fRP g�"�� where S denotes
a non�empty set of states� fRPg is a family of binary relations over S such that each
atomic program P is given a meaning through RP � and " is a mapping from S to
propositional letters such that "�s� determines the letters that are true in the state
s� The basic semantical relation is �a formula � holds at a state s of a structure M��
which is written M� s j� � and is de�ned by induction on the formation of ��

M� s j� A i� A � "�s�
M� s j� � always
M� s j� � never
M� s j� �� � �� i� M� s j� �� and M� s j� ��
M� s j� �� � �� i� M� s j� �� or M� s j� ��
M� s j� �� � �� i� M� s j� �� impliesM� s j� ��
M� s j� �� i� M� s �j� �
M� s j�� r � � i� �s���s� s�� � Rr and M� s� j� �
M� s j� �r�� i� �s���s� s�� � Rr impliesM� s� j� �

where the family fRP g is systematically extended so as to include� for every program
r� the corresponding relation Rr de�ned by induction on the formation of r�

RP � S � S
Rr��r� � Rr� �Rr�

RR� �R� � Rr� 	 Rr� �seq� comp� of Rr� and Rr� �
Rr� � �Rr�

� �re�� trans� closure of Rr�
Rr� � f�s�� s�� � S � S j �s�� s�� � Rrg
R�� � f�s� s� � S � S jM� s j� �g�

We often denote a structure M � �S� fRP g�"� by �S� fRrg�"�� where fRrg includes
a binary relation for every program �atomic or non�atomic��
A structure M � �S� fRPg�"� is called a model of a formula � if there exists a

state s � S such that M� s j� �� A formula � is satis�able if there exists a model of ��
otherwise the formula is unsatis�able� A formula � is valid in structure M � if for all
s � S� M� s j� �� We call axioms� formulae that are assumed to be valid� Formally� a
structure M is a model of an axiom �� if � is valid in M � An axiom is satis�able� if
it has a model� A structure M is a model of a �nite set of axioms #� ifM is a model
of all axioms in #� A �nite set of axioms is satis�able if it has a model� We say that
a �nite set # of axioms logically implies a formula �� written # j� �� if � is valid in
every model of #�
Observe that satis�ability of a formula � as well as satis�ability of a �nite set of

axioms # can be reformulated by means of logical implication� as 
 �j� �� and # �j� �
respectively� In turn logical implication can be reformulated in terms of satis�ability�
by making use of the following theorem �see ��	���
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Theorem � Let # be a 
nite set of DI axioms� and � a DI formula	 Then # j� �
if and only if the DI formula

��P� � � � �� Pm � P�� � � � �� P�m�
��#� � ��

is unsatis
able� where P�� � � � � Pm are all atomic programs occurring in # � f�g and
#� is the conjunction of all axioms in #	

An analogous result holds for most propositional dynamic logics�� Observe that such
a result exploits the power of program constructs �union� re�exive transitive closure�
and the �connected model property�	 of propositional dynamic logics in order to
represent axioms �valid formulae��
Theorem � �and its analogues� is one of the main reasons to exploit the correspon�

dence between description logics and propositional dynamic logics�

��� The correspondence between DLs and PDLs

The correspondence between CI and DI� �rst pointed out by Schild ������ is based
on the similarity between the interpretation structures of the two logics� at the ex�
tensional level� individuals �members of  I� in description logics correspond to states
in propositional dynamic logics� whereas connections between two individuals corre�
spond to state transitions� At the intensional level� classes correspond to propositions�
and roles corresponds to programs� The correspondence is realized through a �one�
to�one and onto� mapping � from CI concepts to DI formulae� and from CI roles to
DI programs� The mapping � is de�ned inductively as follows �we assume t�� to
be expressed by means of u����

��A� � A ��P � � P
��C� uC�� � ��C�� � ��C�� ���C� � ���C�
���R�C� �� ��R� � ��C� ���R�C� � ���R����C�
��R� tR�� � ��R�� � ��R�� ��R� 	R�� � ��R��� ��R��
��R�� � ��R�� ��id�C�� � ��C�!
��R�� � ��R���

The mapping � can be extended to a mapping �
 from CI TBoxes to DI formulae�
Namely� if K � fk�� 
 
 
 � kng is a TBox in CI� and P�� � � � � Pm are all atomic roles
appearing in K� then

�
�K� � ��P� � 
 
 
 � Pm �P�� 
 
 
 � P�m �
�� �
�fk�g� � 
 
 
 � �
�fkng��

�
�fC� v C�g� � ���C��� ��C����

Making use of Theorem �� we can state the following� if K is a TBox� then K j� C� v
C� �where atomic concepts and roles in C�� C� are also in K� if and only if the DI
formula

�
�K� � ��C�� � ���C��

�In the analogue of Theorem 
 for D the formula to check for unsatis�ability is 	�P� � � � � �
Pm����� � ���

�That is� if a formula has a model� it has a model which is connected�
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is unsatis�able� Note that the size of the above formula is polynomial with respect to
the size of K� C� and C��

By virtue of � and �
� respectively� both satis�ability of CI concepts� and logi�
cal implication for CI TBoxes� can be �polynomially� reduced to satis�ability of DI
formulae� Since satis�ability for DI an EXPTIME�complete problem� so are satis��
ability of CI concepts and logical implication for CI TBoxes� It is straightforward to
extend the correspondence� and hence both � and �
� to other description logics and
propositional dynamic logics�

��� Other preliminary notions

In this section� we introduce several notions� propositions� and notations that will be
used in the chapters which follow� We assume� without loss of generality� ���� �
�
to be expressed by means of ���� � 
 �� and the converse operator to be applied to
atomic programs only��

Fisher�Ladner closure

The Fisher�Ladner closure ��

�� of a DI formula $� denoted CL�$�� is the least set
F such that $ � F and such that�

�� � �� � F � ��� �� � F
�� � F � � � F
� � F � �� � F �if � is not of the form ����
� r � � � F � � � F
� r�� r� � � � F � � r� �� r� � � � F
� r� � r� � � � F � � r� � ��� r� � � � F
� r� � � � F � � r �� r� � � � F
� ��! � � � F � �� � F�

The notion of Fisher�Ladner closure of a formula is closely related to the notion of set
of subformulae in simpler modal logics� intuitively� given a formula $� CL�$� includes
all the formulae that play some role in establishing the truth�value of $� Both the
number and the size of the formulae in CL�$� are linearly bounded by the size of $
�see �

��� Note that� by de�nition� if � � CL�$�� then CL��� � CL�$�� We remark
that the notion of Fisher�Ladner closure can be easily extended to formulae of other
propositional dynamic logics�

Let us denote the empty sequence of programs by the program �� and de�ne
� � � �

�
� � and ����

�
� �� We call Post�r� the set of programs de�ned by induction

�We recall that the following equations hold� �r�� r��� � r
�

� � r�� � �r� � r��
� � r

�

�
� r�� � �r

�

��
� �

�r�� ��� ����� � ���

�	
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on the structure of r as follows �a � P j P���

Post�a� � f�� ag
Post�r�� r�� � fr��� r� j r

�
� � Post�r��g � Post�r��

Post�r� � r�� � Post�r�� � Post�r��
Post�r��� � fr��� r

�
� j r

�
� � Post�r��g

Post��!� � f�� �!g�

Similarly� we call Pre�r� the set of programs de�ned by induction on the structure of
r as follows�

Pre�a� � f�� ag
Pre�r�� r�� � fr�� r�� j r

�
� � Pre�r��g � Pre�r��

Pre�r� � r�� � Pre�r�� � Pre�r��
Pre�r��� � fr��� r

�
� j r

�
� � Pre�r��g

Pre��!� � f�� �!g�

Roughly� Post�r� is the set formed by those programs that are �post�x� of the pro�
gram r� while Pre�r� is the set formed by those programs that are �pre�x� of r� The
size of both Post�r� and Pre�r� is polynomial in the size of r� Moreover the programs
in Post�r� have the following two properties�

Proposition � Let � r � � be a formula	 For all r� � Post�r�� � r� � � � CL��
r � ��	

Proof By induction on r�

� r � a or r � ��!� Then Post�r� � f�� rg� By de�nition� both � � CL�� r � ��
and � r � � � CL�� r � ���

� r � r�� r�� Then Post�r�� r�� � fr��� r� j r
�
� � Post�r��g � Post�r���

Since r� is a subprogram of r�� r�� by induction hypothesis� for all r�� � Post�r���

� r�� � �� r� � �� � CL�� r� �� r� � �� � CL�� r�� r� � ���

On the other hand� since r� is subprogram of r�� r�� by induction hypothesis�
for all r�� � Post�r���

� r�� � � � CL�� r� � �� � CL�� r�� r� � ���

� r � r��r�� Then Post�r��r�� � Post�r���Post�r��� By induction hypothesis�
for i � �� �� for all r�i � Post�ri��

� r�i � � � CL�� ri � �� � CL�� r� � r� � ���

� r � r��� Then Post�r
�
�� � fr

�
�� r

�
� j r

�
� � Post�r��g� By induction hypothesis� for

all r�� � Post�r���

� r�� � �� r�� � �� � CL�� r� �� r�� � �� � CL�� r�� � ���

��
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�

Proposition � Let � r� � � � � � rl � � be a formula	 For all r� � Post�r�� � � � � rl��
there is a formula 	 � CL�� r� � � � � � rl � �� such that 	 is equivalent to � r� � �
�i	e	 	 �� r� � � is valid
	

Proof By induction on l� If l � �� the thesis holds trivially� by Proposition �� If
l � � then Post�r�� r�� � � � � rl� � fr��� r�� � � � � rl j r

�
� � Post�r��g � Post�r�� � � � � rl�� By

Proposition �� for all r�� � Post�r��� � r�� � �� r� � � � � � rl ��� � CL�� r� ��
r� � � � � � rl � ��� While� by induction hypothesis� for all r� � Post�r�� � � � � rl��
� r� � � is equivalent to 	� for some 	 � CL�� r� � � � � � rl � �� � CL�� r� ��
r� � � � � � rl � ��� �

Paths

Next we introduce the notion of path� which is similar to the notion of trajectory used
in ���� and to that of execution sequence in ������

A path in a structure M is a sequence �s�� � � � � sq� of states ofM �q � ��� such that
for each i � �� � � � � q� �si��� si� � Ra for some a � P j P�� The length of �s�� � � � � sq�
is q� Intuitively a path describes the sequence of states a given run of a program goes
through�
We inductively de�ne the set of paths PathsM �r� of a program r in a structure

M � as follows��

PathsM �a� � Ra �a � P j P��
PathsM �r� � r�� � PathsM �r�� � PathsM�r��
PathsM �r�� r�� � f�s�� � � � � su� � � � � sq� j �s�� � � � � su� � PathsM �r��

and �su� � � � � sq� � PathsM �r��g
PathsM �r�� � f�s� j s � Sg � �

S
i��PathsM�r

i��
PathsM ��

�!� � f�s� jM� s j� ��g�

We say that a path �s�� in M satis
es a formula � which is not of the form
� r � �� if M� s� j� �� We say that a path �s�� � � � � sq� in M satis
es a formula
� of the form � r� � 
 
 
 � rl � ��� where �� is not of the form � r� � ���� if
�s�� � � � sq� � PathsM�r�� 
 
 
 � rl� and M� sq j� ���
The following two propositions describe the basic properties of paths� they concern

paths of length � and paths of length greater then � respectively�

Proposition � Let M be a structure and � r � � a formula such that� M� s j�� r �
�� �s� � PathsM �r�� and M� s j� �	 Then there exists a formula � ��!� � � � ��g! � ��
with g � �� such that�

� all tests �i! occur in r�

� M� s j�� ��!� � � � ��g! � ��

�The notation ri stands for i repetitions of r � i�e�� r� � r� and ri � r� ri���

�
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� � ��!� � � � ��g! � ��� r � � is valid	

Proof By induction on r�

�� r � ��!�
The thesis holds trivially�

�� r � r�� r��
M� s j�� r�� r� � � and �s� � PathsM �r� implies that M� s j�� r� �� r� � � and
�s� � PathsM�r�� and �s� � PathsM�r���
By induction hypothesis� we can assume that�

� there is a formula � ����!� � � � ����g�! �� r� � � such that all tests ���j! occur
in r�� M� s j�� ����!� � � � ����g�! �� r� � �� and � ����!� � � � ����g�! �� r� �
��� r� �� r� � � is valid�

� there is a formula � ����!� � � � ����g�! � � such that all tests ���j! occur in r��
M� s j�� ����!� � � � ����g�! � �� and � ����!� � � � ����g�! � ��� r� � � is valid�

Hence� we can conclude that the formula

� ����!� � � � ����g�!�����!� � � � ����g�! � �

is such that� ��� all tests �i�j! occur in r� or r� and therefore in r� ��� M� s j��
����!� � � � ����g�!�����!� � � � ����g�! � �� ��� � ����!� � � � ����g�!�����!� � � � ����g�! �
� �� r�� r� � � is valid� as can be easily veri�ed� considering that �
����!� � � � ����g�! �� r� � � �� r� �� r� � � is valid� and any formula of the
form � 	�!� � � � �	g! � 	 is equivalent to 	� � � � �� 	g � 	�

�� r � r� � r��
M� s j�� r� � r� � � implies that� either for i � � or for i � �� M� s j�� ri � � and
�s� � PathsM �ri�� By induction hypothesis we can assume that there is a formula
� �i��!� � � � ��i�gi! � � such that all tests �i�j! occur in ri�M� s j�� �i��!� � � � ��i�gi! �
�� and � �i��!� � � � ��i�gi! � � �� ri � � is valid� Therefore� considering that
� ri � ��� r� � r� � �� we get the thesis�

	� r � r���
Since �s� � PathsM �r

�
��� � r�� � � is equivalent �� � r� �� r�� � �� and M� s j� ��

the thesis holds trivially �with g � ��� �

Proposition � Let M be a structure� and � r � � a formula such that� M� s j��
r � �� �s � s�� � � � � sq� � PathsM�r� with q � �� M� sq j� �	 Then there exists a
formula � ��!� � � � ��g!� a �� r� � �� with g � �� such that�

� all tests �i! occur in r�

� r� � Post�r� �and hence � r� � � is equivalent to 	 � i	e	 � r� � � � 	 is valid
� for some 	 � CL�� r � ��
�

� �s�� s�� � Ra�

��
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� M� s� j�� r� � ��

� �s�� � � � � sq� � PathsM �r
���

� � ��!� � � � ��g!� a �� r� � ��� r � � is valid	

Proof By induction on r�

�� r � a�
The thesis holds trivially�

�� r � r�� r��
Let �s�� � � � � si� be the segment of �s�� � � � � sq� such that �s�� � � � � si� � PathsM �r��
and �si� � � � � sq� � PathsM �r��� We consider two cases�

� i � �� Consider that� ��� M� s� j�� r� � �� for �� �� r� � �� ��� �s�� � � � � si� �
PathsM �r�� with i � �� ��� M� si j�� r� � �� By induction hypothesis� there
is a formula � ��!� � � � ��g!� a �� r�� �� r� � � such that�

� all tests �i! occur in r�� and hence in r�

� r�� � Post�r��� and hence r
�
�� r� � Post�r�� r���

� �s�� s�� � Ra�

� M� s� j�� r�� �� r� � �� and hence M� s� j�� r��� r� � ��

� �s�� � � � � si� � PathsM �r
�
�� with i � q� and hence �s�� � � � � sq� � PathsM��

r��� r� � ���

� � ��!� � � � ��g!� a �� r�� �� r� � ��� r� �� r� � � is valid� and hence
� ��!� � � � ��g!� a �� r��� r� � ��� r�� r� � � is valid�

� i � �� By Proposition 	� there exists a formula � ����!� � � � ����g�! �� r� � �
such that

� all tests ���j! occur in r��

� M� s� j�� ����!� � � � ����g�! �� r� � ��

� � ����!� � � � ����g�! �� r� � ��� r� �� r� � � is valid�

On the other hand� observe that � r� � � is such that� ��� M� s j�� r� � ��
��� �s � s�� � � � � sq� � PathsM�r�� with q � �� ��� M� sq j� �� Therefore� by
induction hypothesis� there is a formula � ����!� � � � ����g�!� a �� r�� � � such
that

� all tests ���j! occur in r��

� r�� � Post�r�� �� Post�r�� r����

� �s�� s�� � Ra�

� M� s� j�� r�� � ��

� �s�� � � � � sq� � PathsM �r����

� � ����!� � � � ����g�!� a �� r�� � ��� r� � � is valid�

��
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Hence the formula � ����!� � � � ����g�!�����!� � � � ����g�!� a �� r�� � � is such
that

� all tests �i�j! occur in either in r� or in r��

� r�� � Post�r�� r���

� �s�� s�� � Ra�

� M� s� j�� r�� � ��

� �s�� � � � � sq� � PathsM �r����

� � ����!� � � � ����g�! �� ����!� � � � ����g�!� a �� r�� � � �� r� �� r� � �
is valid� and hence � ����!� � � � ����g�!�����!� � � � ����g�!� a �� r�� � � ��
r�� r� � � is valid �recall that any formula of the form � 	�!� � � � �	g! � 	
is equivalent to 	� � � � �� 	g � 	��

�� r � r� � r��
M� s j�� r� � r� � � with �s � s�� � � � � sq� � PathsM �r� � r�� implies that ei�
ther for i � � or i � �� ��� M� s j�� ri � �� ��� �s � s�� � � � � sq� � PathsM �ri�
with q � �� ��� M� sq j� �� Thus� by induction hypothesis� there is a formula
� �i��!� � � � ��i�g�!� ai �� r�i � � such that�

� all tests �i�j! occur in ri� and hence in r� � r��

� r�i � Post�ri� � Post�r� � r���

� �s�� s�� � Ra�

� M� s� j�� r�i � ��

� �s�� � � � � sq� � PathsM �r�i��

� � �i��!� � � � ��i�gi!� ai �� r�i � ��� ri � � is valid� and therefore� considering
that� � ri � � �� r� � r� � � is valid� we get that � �i��!� � � � ��i�gi!� ai ��
r�i � ��� r� � r� � � is valid�

	� r � r���
Since q � �� we have that M� s j�� r�� � � implies M� s j�� r� �� r�� � ��
and furthermore there is a segment �s�� � � � � si� of �s�� � � � � sq� with � � i � q�
such that �s�� � � � � si� � PathsM �r�� and �si� � � � � sq� � PathsM �r���� Thus we have�
��� M� s� j�� r� � �� with �� �� r�� � �� ��� �s�� � � � � si� � PathsM�r�� with
i � �� ��� M� si j�� r�� � �� By induction hypothesis there exists a formula
� ��!� � � � ��g!� a �� r�� �� r�� � � such that

� all tests �i! occur in r�� and hence in r
�
��

� r�� � Post�r��� and hence r
�
�� r

�
� � Post�r����

� �s�� s�� � Ra�

� M� s� j�� r�� �� r�� � �� and hence M� s� j�� r��� r
�
� � ��

��
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� �s�� � � � � si� � PathsM�r���� and hence �s�� � � � � sq� � PathsM �r��� r
�
���

� � ��!� � � � ��g!� a �� r�� �� r�� � � �� r� �� r�� � � is valid� hence �
��!� � � � ��g!� a �� r��� r

�
� � � �� r�� r

�
� � � is valid� Therefore� considering

that � r�� r
�
� � ��� r�� � �� we get that � ��!� � � � ��g!� a �� r��� r

�
� � ���

r�� � � is valid�

�

Finally� if a denotes the atomic program P �resp� the inverse of an atomic program
P��� then we write a� to denote P� �resp� P ��

��
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Functional Restrictions

In this chapter we study the description logic CIF and the propositional dynamic
logic DIF obtained from CI and DI by adding the functional restriction construct
�� � a�� The functional restriction �� � a� imposes that the role a� where a is either
an atomic role �program� or the inverse of an atomic role �program�� is functional wrt
individuals �states� in which �� � a� holds�

��� The logics CIF and DIF

Concepts of CIF are formed according to the following abstract syntax�

C ��� � j � j A j C� uC� j C� tC� j C� � C� j �C j
�R�C j �R�C j �� � a�

a ��� P j P�

R ��� a j R� tR� j R� 	R� j R� j R� j id�C�

where A denotes an atomic concept� C �possibly with a subscript� a generic concept�
P an atomic role� a a simple role� i�e� either an atomic role or the inverse of an atomic
role� R �possibly with a subscript� a generic role�

The semantics of CIF is the same as for CI� except for functional restrictions
�� � a� whose meaning in an interpretation I is the following �recall a � P j P���

�� � a�I � fd �  I j there exists at most one d� such that �d� d�� � aIg�

Note that in CIF there is a complete symmetry between atomic roles and inverse
of atomic roles� This symmetry is often needed in representing complex domains�
Furthermore it makes CIF suitable to explore extensions of the logic based on the
rei�cation of the relations as shown later�

The corresponding propositional dynamic logic is called DIF and its syntax is as

��
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follows�
� ��� � j � j A j �� � �� j �� � �� j �� � �� j �� j

� r � � j �r�� j �� � a�

a ��� P j P�

r ��� a j r� � r� j r�� r� j r
� j r� j �!

where A denotes a propositional letter� � �possibly with a subscript� a formula� P
an atomic program� a a simple program� i�e� an atomic program or the inverse of an
atomic program� and r �possibly with a subscript� a generic program�
Consistently with its interpretation in CIF � the new construct is interpreted as

follows� given a structure M � �S� fRrg�"� and a state s � S�

M� s j� �� � a� i� there exists at most one t such that �s� t� � Ra�

The rest of the constructs are interpreted as in DI�
Observe that the functional restriction �� � a� allows the notion of local determin�

ism for both atomic programs and the converse of atomic programs to be represented
in the logic� With this construct� we can denote states in which the running of an
atomic program� or the converse of an atomic program� is deterministic� i�e� it leads
to at most one state� It is easy to see that this possibility allows one to impose the
so�called global determinism too� i�e� that all runs of a given atomic program or the
converse of an atomic program� are deterministic� Therefore� DIF subsumes the
logic studied in ������ called Converse Deterministic PDL� where atomic programs�
not their converse� are �globally� deterministic�

��� Reasoning in CIF and DIF

The decidability and complexity of both satis�ability of CIF concepts and logical im�
plication in CIF TBoxes can be derived immediately by exploiting the correspondence
between CIF and DIF� This is realized through the mappings � and �
 described
in Chapter �� suitably extended in order to deal with functional restrictions �given
the semantics of these constructs in CIF and DIF � the extension is trivial�� Note
however that the decidability and the complexity of satis�ability in DIF have yet to
be established� We establish them below by exhibiting an encoding of DIF�formulae
in DI� More precisely we show that� for any DIF�formula $� there is a DI�formula�
denoted 
�$�� whose size is polynomial with respect to the size of $� and such that $
is satis�able if and only if 
�$� is satis�able� Since satis�ability in DI is EXPTIME�
complete� this ensures that satis�ability in DIF is EXPTIME�complete too�
In what follows� we assume� without loss of generality� that $ is in negation normal

form �i�e� negations are pushed inside as much as possible�� It is easy to check that
the transformation of any PDL formula in negation normal form can be performed in
linear time in the size of the formula�

De�nition Let $ be a DIF formula in negation normal form� We de�ne the DI�
counterpart 
�$� of $ as the conjunction of two formulae� 
�$� � 
��$� � 
��$��
where�

��
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� 
��$� is obtained from the original formula $ by replacing each �� � a� with a
new propositional letter A
��a�� and each ��� � a� with �� a � H
��a�� � ��
a � �H
��a��� where H
��a� is again a new propositional letter�

� 
��$� � ��P� � � � �� Pm � P�� � � � �� P�m�
��
�� � � � �� 
g� � where P�� � � � � Pm are

all atomic programs appearing in $� and with one conjunct 
i� of the form

�A
��a�� � a � ��� �a��

for every A
��a� occurring in 
��$� and every � � CL�
��$���

�

Lemma 	 Let $ be a DIF formula� and 
�$� its DI�counterpart	 Then 
�$� is a
DI formula� and its size is polynomially related to the size of $	

Proof Straightforward� �

The purpose of 
��$� is to introduce the new propositional letters A
��a� and
H
��a� in place of �� � a�� Positive occurrences of �� � a� are represented by
the letter A
��a�� while negative occurrences of �� � a� are represented by � a �
H
��a�� � a � �H
��a�� Note that every state where � a � H
��a�� � a � �H
��a�

holds� has at least two a�successors�
The purpose of 
��$� is less obvious� Intuitively� it constrains the models M of


�$� so that� for every state s of M � if A
��a� holds in s� and t� and t� are two
a�successors of s� then t� and t� are equivalent wrt the formulae in CL�
��$��� We
show that this allows us to actually �collapse� t� and t� into a single state�
Observe that if� instead of adding 
��$�� we imposed the axiom schema

�A
��a�� � a � ��� �a��

where � is any formula� then the models of 
��$� would be models of the original
formula as well� However� the problem of whether a DI formula 	 is deducible from
an axiom schema is in general undecidable ��	�� So� adding the above axiom schema
to DI is of no use in establishing the decidability of DIF �
Instead� the formula 
��$� can be thought of as a �nite instantiation of the axiom

schema �A
��a�� � a � �� � �a�� �one instance for each formula in CL�
��$�����

Intuitively� imposing the validity of such �nite instantiation guarantees that if 
��$�
has a model then it has a model that is model of the original formula as well�

Next we introduce a function ES that given a state s of a modelM identi�es the
states of M that can be thought of as �replicas� of s� We consider �without loss of
generality� �connected� models only��

De�nitionLetM � �S� fRrg�"� be a model of 
�$�� For any state s � S� we denote
by ES�s� the smallest set E�s� of states in M such that

�Actually� ����� already takes into account the reduction from logical implication to satis�ability�
�A connectedmodel of � is a modelM � �S� fRP g��� such that S � ft j �s� t� � ��P �RP�R

�

P
��g

and M�s j� ��

�	
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� s � E�s�� and

� if s� � E�s� and for some simple program a

� �s�� t�� � Ra�

� M� t� j� A
��a���

� t�� � E�t���

� �t��� s��� � R�a �

then s�� � E�s��

�

Note that� as a consequence of 
��$�� we have M� t� j� A
��a��� since A
��a�� �
CL�
��$�� �all atomic prepositions occurring in 
��$� are in CL�
��$���
An alternative way to see ES�s� is the following�

ES�s� � fs� j �s� s�� � RXg

where X is program� which is not denoted by a regular expression� but by the following
context�free grammar�

X ��� � j �a�A
��a��!�X� a
���X �a any simple program��

By de�nition� ES�s� is obtained starting from s by including recursively the states
s� which are linked by

R
ai �A���a�
i
�
��a�

i
� or

R
ai �A
���a�

i
�
��
aj �A

���a�
j
�
��a�

j
��a�

i
� or

R
ai �A���a�
i
�
��
aj �A���a�

j
�
��
ak�A���a�

k
�
��a�

k
��a�

j
��a�

i
� or

� � �

to states that are already known to be in ES�s�� By 
��$�� the states s� satisfy the
same formulae of CL�
��$�� as the state s� Hence all states in ES�s� satisfy the same
formulae� wrt those in CL�
��$���
Observe� however� that ES�s� does not contain all the states of M satisfying

the same formulae of CL�
��$�� that s satis�es� The discussion above clari�es that
the states in ES�s� are only those in the connected component of the relation RX

containing s�

In the reminder of this section we shall prove that any DIF�formula $ is satis�able
if and only if its DI�counterpart 
�$� is satis�able� We start by showing that if 
�$�
is satis�able then $ is satis�able� We proceed as follows�

�� Given a modelM of 
�$�� we build a tree�like model M t such that M t� root j�

�$� �root is the root of the tree�structure��

��
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�� Then� by suitably modifyingM t� we construct a modelM f � such that all func�
tional restriction requirements are satis�ed � i�e�� every state s in which A
�� a�

holds has at most one a�successor�

�� Finally� by eliminating the interpretation on the atomic propositions A
�� a�

and H
��a�� we get a modelM
F of $�

We construct M t fromM in two steps�
Step �� Let � a� � 	�� � � � � � ah � 	h be all the formulae of the form � a � ���

with a a simple program and �� any formula� included in CL�$��� We consider an
in�nite h�ary tree T whose root is root and such that every node x has h children
childi�x�� one for each formula � ai � 	i� We write father�x� to denote the father
of a node x in T � We de�ne two partial mappings m and l� m maps nodes of T
to states of M � and l is used to label the arcs of T by either atomic programs� or
the converse of atomic programs� For the de�nition of m and l� we proceed level
by level� Let s � S be any state such that M� s j� 
�$�� We put m�root� � s�
and� for all arcs �root� childi�root�� corresponding to a formula � ai � 	i such that
M� s j�� ai � 	i� we put l��root� childi�root��� � ai� Suppose we have de�ned m
and l up to level k� let x be a node at level k % �� and let l��father�x�� x�� � aj
� this implies M�m�father�x�� j�� aj � 	j � We choose a minimal path �i�e� a
path with minimal length� in M satisfying � aj � 	j� say �s�� s�� � � � � sq�� such that
s� � ES�father�x��� we put m�x� � s� and for every � ai � 	i � CL�$� such that
M� t j�� ai � 	i we put l��x� childi�x��� � ai�

Step �� For each P � let R�P � f�x� y� � T j l��x� y�� � P or l��y� x�� � P�g� We
de�ne the structure M t � �St� fRt

Pg�"
t� as follows�

St � fx � T j �root� x� � �
S
P �R

�
P �R

��
P ��

�g
Rt
P � R

�
P � �S

t � St�
"t�x� � "�m�x�� for all x � St��

Observe that the structure M t is a generally in�nite tree� However the set of states
St is countable�

Next we construct the structure M f � satisfying all the functional restrictions re�
quirements�

Step � Let us enumerate level by level the states x � St such that M t� x j� A
�� a�

for some simple program a��

Step � From this enumeration� we de�ne a sequence of structures M t �
M��M��M�� � � �l� where each Mk is obtained fromM 
k��� by considering the k � th
state xk � St such that M t� xk j� A
��a� for some simple program a and proceeding
as follows�

� If xk �� S
k���� then Mk � M 
k����

�Notice that the formulae �i may be of the form � r 	 �� and that �i � CL����
�In this way states at level �depth� i are all enumerated before states at level i� 
�

�
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� If xk � S
k���� then for each simple program a such that M t� xk j� A
�� a��

� if �xk� father�xk�� �� R

k���
a � we de�ne

R
k���
a

�
� R
k���

a � f�x� childi�x�� � R

k���
a except oneg�

� if �xk� father�xk�� � R
k���
a � we de�ne

R
k���
a

�
� R
k���

a � f�x� childi�x�� � R

k���
a g�

We de�ne Mk � �Sk� fRk
Pg�"

k� as follows�

Sk � fx � St j �root� x� � �
S
P �R

k
P
�
� �Rk

P
�
�����g

Rk
P � R

k
P
�
� �Sk � Sk�

"k�x� � "t�x� for all x � Sk�

Observe thatMk satis�es the functional restriction requirements for the �rst k states�
Observe also that root � Sk for all k� and that

St � S� � S� � S� � � � �
Rt
P � R

�
P � R

�
P � R�

P � � � � �

Step � We de�ne M f � �Sf � fRf
Pg�"

f � as follows�

Sf �
T
k�� S

k

Rf
P �

T
k��R

k
P

"f �x� � "t�x� for all x � Sf �

Intuitively� the modelM f is a �generally in�nite� tree� obtained by �visiting� level by
level M t and eliminating� for each state x� all the states in ES�x� except one �which
must be connected to the root�� Observe that� in general� M f contains many states
satisfying the same formulae� wrt those in CL�
��$��� Hence� M

f is not a �ltration�

of M by CL�
��$��� We will come back to this point at the end of the chapter�

Finally� we de�ne MF � �SF � fRFP g�"
F� as follows�

SF � Sf

RFP � R
f
P

"F �x� � "f �x� � fA
��a��H
��a� j A
��a��H
��a� � "
t�x�g for all x � SF �

The following three lemmas state the basic properties of M t� M f � and MF �

Lemma � Let M be a model of 
�$�	 Then� for every formula � � CL�
�$�� and
every x � St� M t� x j� � i� M�m�x� j� ��

�See for example 	��� for the de�nition of �ltration in Modal Logic�

��
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Proof We prove the lemma by induction on the formation of � �called formula in�
duction in the following�� We assume� without loss of generality� �� �
� to be expressed
by means of ���� � 
 �� and that the converse operator is applied only to atomic
programs�

� � � A�

M�m�x� j� A i� A � "�m�x�� i� �by construction ofM t� A � "t�x� i�M t� x j�
A�

� � � �� � ���

M�m�x� j� ����� i�M�m�x� j� �� andM�m�x� j� �� i� �by formula induction
hypothesis� M t� x j� �� and M t� x j� �� i� M t� x j� �� � ���

� � � ����

M�m�x� j� ��� i� M�m�x� �j� �� i� �by formula induction hypothesis� M t� x �j�
�� i� M t� x j� ����

� � �� r� � � � � � rl � �� with �� not of the form � r�� � ����

Let r be r�� � � � � rl� We recall that � r � �� is equivalent to � r� � � � � � rl � ���
and that� by Proposition �� for all r� � Post�r�� � r� � �� is equivalent to some
	 � CL�� r� � � � � � rl � ����

Let M�m�x� j�� r � ��� we prove that M t� x j�� r � ��� We proceed by
induction on the length of the path in M satisfying � r � � �called path
induction in the following�

If �m�x�� � PathsM�r� and M�m�x� j� ��� then� by Proposition 	� there exists
a formula � ��!� � � � ��g! � ��� with g � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M�m�x� j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every 	 � f��� � � ��g� ��g�M�m�x� j� 	 i�
M t� x j� 	� and hence M t� x j�� r � ���

Otherwise� let �m�x� � s�� s�� � � � � sq� be a path in M satisfying � r � ��� By
Proposition 
� there exists a formula � ��!� � � � ��g!� a �� r� � ��� with g � ��
such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r� � Post�r�� and hence by Proposition �� the formula � r� � �� is equiva�
lent to 	 for some 	 � CL�� r� � � � � � rl � ��� � CL�
�$���

� �s�� s�� � Ra�

� �s�� � � � � sq� � PathsM �r
���

��
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� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �i � f��� � � ��gg� M�m�x� j� �i i�
M t� x j� �i�

By construction of M t� there is a minimal path �s��� s
�
�� � � � � s

�
q�� satisfying �

a �� r� � �� such that s�� � ES�m�x�� and s�� � m�childi�x��� which is
shorter or of the same length as �s�� s�� � � � � sq�� Therefore� by path induction
hypothesis� M�m�childi�x�� j�� r� � �� implies M t� childi�x� j�� r� � �� and
so M t� x j�� a �� r� � ��� Hence we can conclude that M t� x j�� r � ���

Let M t� x j�� r � ��� we prove M�m�x� j�� r � ���

If �x� � PathsMt�r� and M t� x j� �� then� by Proposition 	� there exists a
formula � ��!� � � � ��g! � ��� with g � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M t� x j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every 	 � f��� � � ��g� ��g� M t� x j� 	 i�
M�m�x� j� 	� and hence M�m�x� j�� r � ���

Otherwise� let �x � x�� x�� � � � � xq� be a path in M t satisfying � r � ��� By
Proposition 
� there exists a formula � ��!� � � � ��g!� a �� r� � �� � with g � ��
such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r� � Post�r�� and hence by Proposition �� the formula � r� � �� is equiva�
lent to 	 for some 	 � CL�� r� � � � � � rl � ��� � CL�
�$���

� �x�� x�� � Ra�

� �x�� � � � � xq� � PathsMt�r���

� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �i � f��� � � ��gg� M
t� x j� �i i�

M�m�x� j� �i�

By path induction hypothesis M t� x� j�� r� � �� impliesM�m�x�� j�� r� � ���

If x� � childi�x� then� by construction of M
t� there is an s � ES�m�x�� such

that �s�m�childi�x��� � Ra� Hence we have M� s j�� a �� r� � ��� and in
turn M�m�x� j�� a �� r� � ��� since � a �� r� � �� � CL�� r � ��� �
CL�
��$��� and s � ES�m�x���

If x� � father�x� then� by construction ofM t� there is an s � ES�m�x��� such
that �s�m�x�� � R�a and M� s j�� r� � ��� since � r� � �� � CL�� r � ��� �
CL�
��$�� and m�x�� � ES�s�� Hence we have M�m�x� j�� a �� r� � ���

Hence in both cases we can conclude that M�m�x� j�� r � ���

��
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�

Observe that� by inspecting the proof above� it is easy to verify that for all x of
M t and for all � r � �� � CL�
��$��� ifM t� x j�� r � �� then there exists a path of
the form �x� childi��x� � x�� � � � � childiq�� � � childi��x� � � �� � xq� � PathsMt�r� with
q � � such that M t� xq j� ���

Lemma � Let M � �S� fRrg�"� be a model of 
��$�� and M t � �St� fRrg�"� be
the structure de
ned as above	 Let � r � � be a formula such that

� � is not of the form � r� � ���

� � r � � is equivalent to some 	 � CL�
�����	

Then� for all x � St� if there is a path �x � x�� � � � � xq� on M t satisfying � r � �
then there is a path �x � x��� � � � � x

�
q�� in M t satisfying � r � � which is shorter or of

the same length as �x � x�� � � � � xq�� and such that� for all x�i � fx
�
�� � � � � x

�
q�g� for all

simple programs a�

�x�i��� x
�
i��� x

�
i� � PathsMt�a�A
��a��!� a

�� implies x�i�� � x�i�

Proof By induction on the length of the path �x�� � � � � xq��

If such a length is less than �� then the thesis holds vacuously�

Let the length of �x�� � � � � xq� be greater or equal to ��
By applying Proposition 
� we can conclude that� there exists a formula �

���!� � � � ��g!�� a� r
� � �� with g � �� such that�

� all tests �i! occur in r�

� r� � Post�r�� and hence by Proposition �� the formula � r� � � is equivalent to
	� � CL�
��$���

� �x�� x�� � Rt
a�

� �x�� � � � � xq� � PathsMt�r���

� � ���!� � � � ��g!�� a� r� � ��� r � � is valid�

�� If �x�� x�� x�� �� PathsMt�a�A
��a��!� a
�� or x� � x�� then by induction hy�

pothesis there exists a path �x� � x��� � � � � x
�
q�� satisfying � r� � � such that� for

all x�i � fx
�
�� � � � � x

�
q�g� for all simple programs a

�x�i��� x
�
i��� x

�
i� � PathsMt�a�A
��a��!� a

�� implies x�i�� � x�i�

Hence the path �x� � x��� x
�
�� � � � � x

�
q�� satis�es � r � � and is such that� for all

x�i � fx
�
�� � � � � x

�
q�g� for all simple programs a

�x�i��� x
�
i��� x

�
i� � PathsMt�a�A
��a��!� a

�� implies x�i�� � x�i�

��
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�� If �x�� x�� x�� � PathsMt�a�A
��a��!� a
�� and x� �� x�� then by Proposition 
�

there exists a formula � ���!� � � � ��g!�� a�� r�� � �� with g � �� such that�

� all tests �i! occur in r�

� r�� � Post�r��� and hence by Proposition �� the formula � r�� � � is
equivalent to 	� � CL�
��$���

� �x�� x�� � Rt
a� �

� �x�� � � � � xq� � PathsMt�r����

� � ���!� � � � ��g!�� a
�� r�� � ��� r� � � is valid�

Since �x�� x�� � R
t
a�A��� a����a

� and � r�� � � is equivalent to 	� � CL�
��$���

we have that M t� x� j�� r�� � � i� M t� x� j�� r�� � ��

Moreover� by construction of M t� we have that m�x�� � ES�m�x���� and this
implies that there exists a path �x� � x��� � � � � � x

��
q��� satisfying � r�� � � which

is shorter or of the same length as �x�� � � � � xq�� Now consider the path �x� �
x��� � x� � x��� � x� � x��� � � � � � x

��
q���� it satis�es � r � �� it is shorter or of the same

length as �x�� � � � � xq�� �x�� x�� x�� � PathsMt�a�A
��a��!� a
��� and x��� � x��� �

Hence applying the reasoning at item �� we get the thesis�

�

Lemma � For every formula � � CL�
��$�� and every x � S�� M t� x j�
� i� M f � x j� ��

Proof Consider that M f is the limit of the �in�nite� sequence of models M t �
M��M�� � � �� We prove that for each h � �� M t� x j� � i� Mh� x j� �� for all x � Sh

and all � � CL�
��$��� We proceed by induction on h �called state induction in the
following��

� h � �� Since M� �M t� the thesis holds trivially�

� h � k%�� It su�ces to prove that� for all x � Sk
� and all � � CL�
��$���M
k� x j�

� i� Mk
�� x j� �� Indeed� by state induction hypothesis� for all � � CL�
��$��
and all x � Sk�� Sk
��� Mk� x j� � i� M t� x j� ��
We proceed by induction on the formation of � �called formula induction in the

following�� We assume� without loss of generality� �� �
� to be expressed by means of
���� � 
 �� and that the converse operator is applied only to atomic programs�

� � � A�

Mk� x j� A i� �by construction of Mk
�� Mk
�� x j� A�

� � � �� � ���

Mk� x j� �� � �� i� Mk� x j� �� and Mk� x j� �� i� �by formula induction
hypothesis� Mk
�� x j� �� and Mk
�� x j� �� i� Mk
�� x j� �� � ���

��



Reasoning in CIF and DIF

� � � ����

Mk� x j� ��� i� Mk� x �j� �� i� �by formula induction hypothesis� Mk
�� x �j� ��

i� Mk
�� x j� ����

� � �� r � ���

Let Mk
�� x j�� r � ��� we prove that Mk� x j�� r � ���

Mk
�� x j�� r � �� i� for there is a path �x � x�� � � � � xq� � PathsMk���r� such
that Mk
�� xq j� ��� By construction of Mk
�� �x � x�� � � � � xq� � PathsMk�r��
while� by formula induction hypothesis Mk� xq j� ��� Hence� we haveMk� x j��
r � ���

Let Mk� x j�� r � ��� we prove that Mk
�� x j�� r � ���

If �x� � PathsMk�r� and Mk� x j� ��� then� by Proposition 	� there exists a
formula � ��!� � � � ��g! � ��� with g � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� Mk� x j�� ��!� � � � ��g! � ��� and hence M t� x j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � ��� r � �� is valid�

By formula induction hypothesis� for every 	 � f��� � � ��g� ��g� Mk� x j� 	 i�
Mk
�� x j� 	� Therefore Mk
�� x j�� r � ���

Otherwise� there is a path �x � x�� � � � � xq� � PathsMk�r� such that Mk� xq j�
��� By applying Proposition 
 q times and Proposition 	 once� we can conclude
that there exists a formula

� ����!� � � � ���g�!�� a�� � � � �
��
q����!� � � � ��
q���g�q���

!�� aq�

��q�!� � � � ��qgq!� � ��

with gi � �� such that�

� all tests �ij! occur in r� and hence all �ij are subformulae of � r � ���

� �xi��� xi� � R
k
ai
� for i � �� � � � � q�

� The following formula is valid�

� ����!� � � � ���g�!�� a�� � � � �
��
q����!� � � � ��
q���g�q���

!�� aq�

��q�!� � � � ��qgq!� � �� �� r � ���

If� for xi � x�� � � � � xq� xi � S
k
�� then� by construction of Mk
�� �xi��� xi� �

Rk
ai
implies �xi��� xi� � Rk
�

ai
� By formula induction hypothesis� for every 	 �

f��g�� � � ��qgq � �
�g� Mk� xi j� 	 i� Mk
�� xi j� 	� Therefore we can conclude

Mk
�� x j�� r � ���

��
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Otherwise� let xm
�� with �m � ��� be the �rst state in �x�� � � � � xq�
such that xm
� �� Sk
� � i�e�� xm is the state of Mk whose succes�
sors have been modi�ed in order to get Mk
�� By applying Proposi�
tion 
 m times only� we can conclude that� there exists a formula �
����!� � � � ���g�!�� a�� � � � � am� ��
m����!� � � � ��mg�m���

!�� am
�� r� � ��� with gi �
�� such that�

� all tests �ij! occur in r� and hence all �ij are subformulae of � r � ���

� r� � Post�r�� and hence by Proposition �� the formula � r� � �� is equiva�
lent to 	 for some 	 � CL�� r � ��� � CL�
��$���

� �xi��� xi� � Rk
ai
� for i � �� � � �m % ��

� �xm
�� � � � � xq� � PathsMk�r���

� � ����!� � � � ���g�!�� a�� � � � � am� ��
m����!� � � � ��mg�m���
!�� am
�� r

� �
�� �� r � �� is valid�

By de�nition of Mk
�� we have�

� Mk� xm j� A
��a�� with a � am
�

� xm�� � father�xm�

� xm
� � childi�xm��

Therefore� one of the following two cases holds�

� �xm� father�xm�� �� Rk
a � i�e�� am �� a�� Then� Mk
� is obtained from

Mk by removing all �xm� childl�xm�� fromRk
a� except one� say childj�xm��

By 
��$�� for every 	 � CL�
��$�� we have that Mk� childi�xm� j� 	 i�
Mk� childj�xm� j� 	� Furthermore� by Lemma �� we can conclude that
there is a path �childj�xm� � x��� � � � � x

�
q�� � PathsMk�r��� with Mk� x�q� j�

��� such that childj�xm� is the only child of xm occurring in it� Hence� as
shown above� we have that Mk
�� x�� j�� r� � ��� Therefore it is easy to
see that Mk
�� x j�� r � ���

� �xm� father�xm�� � Rk
a � i�e�� am � a�� Then� Mk
� is obtained from

Mk by removing all �xm� childl�xm�� from Rk
a� By 
��$�� for every

	 � CL�
��$��� we have that Mk� father�xm� j� 	 i� Mk� childi�xm� j�
	� Furthermore� by Lemma �� can conclude that there is a path
�father�xm� � x��� � � � � x

�
q�� � PathsMk�r�� with Mk� x�q� j� ��� that

does not include any childl�xm�� Hence� as shown above� we have that
Mk
�� x�� j�� r� � ��� Therefore it is easy to see that Mk
�� x j�� r � ���

We have proved that� for each h � �� Mh� x j� � i� M t� x j� �� for all x � Sh and
all � � CL�
��$��� By considering the de�nition of M f it is now easy to conclude
that M f � x j� � i� M t� x j� �� for all x � Sh and all � � CL�
��$��� �

Note thatM f is a model of 
�$�� since� on the one hand� by Lemma ��M f � root j�

��$�� and on the other hand M f � root j� 
��$�� because whenever M f � x j� A
��a��

there exists at most one x� such that �x� x�� � Rf
a �

��
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Lemma �
 M f � root j� 
��$� implies MF � root j� $	

Proof Observe that� if M f � x j� A
��a� then� by construction of M
f � there exists

at most one x� such that �x� x�� � Rf
a � implying that M

F � x j� �� � a�� On the other
hand� ifM f � x j� �� a � H
��a����� a � �H
��a��� then there are at least two states

x�� x� such that �x� x�� � Rf
a and �x� x�� � Rf

a � implying that M
F � x j� ��� � a��

The proof is easily completed by induction on the structure of $� �

By Lemma �� Lemma �� and Lemma ��� we can state the following result�

Theorem �� A DIF�formula $ is satis
able only if its DI�counterpart 
�$� is
satis
able	

Next we turn to the converse of Theorem ��� We remark that transforming a
model of $ into a model of 
�$� is not always possible� since con�icts may arise in
assigning the extensions of the atomic propositions H
��a�� For example suppose that
M � �S� fRP g�"� is a model of a given DIF�formula $ such that�

fs�� s�� s�� t�� t�� t�g � S
f�s�� t��� �s�� t��� �s�� t��� �s�� t��� �s�� t��� �s�� t��� �s�� t��g � RP �

The states s�� s�� s�� s� satisfy ��� �P �� Nevertheless it is impossible to assign suit�
ably the atomic proposition H
��P � to t�� t�� t��
One way to overcome this problem is to prove the tree model property for DIF �

i�e� that any model can be transformed into a tree�like model� Indeed for tree�like
models the above con�icts cannot arise� We can construct tree�like models� following
the construction of M t shown above as a blueprint�
In fact� in proving the converse of Theorem ��� we exploit a weaker property�

Theorem �� A DIF�formula $ is satis
able if its DI�counterpart 
�$� is satis
�
able	

Proof LetM � �S� fRPg�"� be a model of $� We assume� without loss of generality�
that H
��a� �� "�s� and A
��a� �� "�s�� for all s � S� and for all �� � a� occurring in
$� We also assume the converse operator applied only to atomic programs in $�
Starting fromM � we build a modelM � � �S�� fR�Pg�"

�� of 
�$� in two steps� �rst
we transform M into M ��� and then we transformM �� into M ��

Step �We transformM intoM �� so as to assign the propositions H
��a� to states �or
equivalently states to the propositions H
��a�� in a suitable way� Let �� � a��� � � � � ��
� al� be all the functional restrictions occurring in $� M �� is obtained inductively from
M � by applying the transformation below l times�

l � �� No functional restrictions occur in $� hence M �� �M �

l � �� Suppose that M has been transformed into Mi � �Si� fRiPg�"i� by applying
the transformation i times� so that states are suitably assigned to propositionsH
��a��

�	
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for a � a�� � � � � ai� We show how to get Mi
� from Mi� and we prove that Mi
� is
still a model of $�
Let M�

i � �S
�
i � fR

�
i P g�"

�
i � and M�

i � �S
�
i � fR

�
i P g�"

�
i � be two disjoint copies of

Mi� i�e� S�
i � S

�
i � 
� Given a state s � Si� we denote by s� � S�

i and s� � S�
i the

copies of s in M�
i and M

�
i respectively�

Now� let M���
i be the disjoint union of M�

i and M
�
i � de�ned as�

S���
i � S�

i � S
�
i

Ri
���
P � R�

i P �R
�
i P

"���
i �s� �

�
"�
i �s� if s � S�

i

"�
i �s� if s � S�

i

Observe that M���
i is a model of $� since Mi� s j� $ if and only if M���

i � s� j� $� if
and only if M���

i � s� j� $�
From M���

i we get Mi
� � �Si
�� fRi
�Pg�"i
�� by de�ning Si
� and "i
� as�

Si
� � S
���
i

"i
��s� �

�
"�
i �s� � fH
��ai���g if s � S�

i

"�
i �s� if s � S�

i

and by de�ning Ri
�P as follows�

� if ai
� �� P � then Ri
�P � Ri
���
P �

� if ai
� � P � then Ri
�P is obtained from Ri
���
P as follows� for all s � Si

such that Mi� s j� ��� �P � we choose one of its P �successors� say t� and we
replace �s�� t�� with �s�� t�� and �s�� t�� with �s�� t�� in Ri

���
P � Note that� for

every simple program a� the number of a�successors of all states in Mi
�� and
in particular of s�� s�� t�� t�� remains unchanged wrt M���

i �

� if ai
� � P� then Ri
�P is obtained from R���
i P as follows� for all s � Si

such that Mi� s j� ��� �P
�� we choose one of its P��successors� say t� and we

replace �t�� s�� with �t�� s�� and �t�� s�� with �t�� s�� in Ri
���
P � Note that� for

every simple program a� the number of a�successors of all states in Mi
�� and
in particular of s�� s�� t�� t�� remains unchanged wrt M���

i �

By construction� Mi
�� s j� ��� � aj� implies Mi
�� s j�� aj � H
��aj �� � aj �
�H
��aj � for aj � a� � � �ai
��

Next we verify that Mi
� is a model of $� Speci�cally� we prove that� for any
s � Si� any � � CL�$�� and h � �� �� Mi� s j� � if and only if Mi
�� s

h j� �� We
proceed by induction on the formula � �called formula induction in the following��

� � � A�

Mi� s j� A i� A � "i�s� i� A � "i
��s
h� i� Mi
�� s

h j� A�

� � � �� � ���

Mi� s j� ����� i�Mi� s j� �� andMi� s j� �� i� �by formula induction hypoth�
esis� Mi
�� s

h j� �� and Mi
�� s
h j� �� i� Mi
�� s

h j� �� � ���

��
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� � � ����

Mi� s j� ��� i� Mi� s �j� �� i� �by formula induction hypothesis� Mi
�� s
h �j� ��

i� Mi
�� s
h j� ����

� � � �� � a��

Mi� s j� �� � a� i� Mi
�� s
h j� �� � a� by construction of Mi
��

� � �� r � ���

Let Mi� s j�� r � ��� then there exists a path �s � s�� � � � � sq� � PathsMi
�r��

with q � �� such that Mi� sq j� ��� We prove Mi
�� s
h j�� r � �� by induction

on the length q of the path �called path induction��

If q � �� then �s� � PathsMi
�r�� and� by Proposition 	� there exists a formula

� ��!� � � � ��g! � ��� with g � �� such that�

� all tests �j! occur in r� and hence all �j are subformulae of � r � ���

� Mi� s j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every 	 � f��� � � ��g� ��g� Mi� s j� 	 i�
Mi
�� s

h j� 	� and hence Mi
�� s
h j�� r � ���

If� q � �� then� by Proposition 
� there exists a formula � ��!� � � � ��g!� a ��
r� � ��� with g � �� such that�

� all tests �j! occur in r� and hence all �j are subformulae of � r � ���

� r� � Post�r�� and hence by Proposition �� the formula � r� � �� is equiva�
lent to 	 for some 	 � CL�� r � ��� � CL�$��

� �s�� s�� � Ria�

� �s�� � � � � sq� � PathsMi
�r���

� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � ��gg� Mi� s j� �x i�
Mi
�� s

h j� �x�

By path induction hypothesis� Mi� s� j�� r� � �� implies Mi
�� s
�
� j�� r� � ��

and Mi
�� s
�
� j�� r� � ��� since �s�� � � � � sq� � PathsMi

�r�� is shorter than
�s�� � � � � sq��

While� by de�nition� �s�� s�� � Ria implies that�

� if a �� ai
�� then �sh� � s
h
� � � Ri
�a�

� if a � ai
�� then �s
h
� � s

k
�� � Ri
�a� with k � � if h � � and k � � if h � ��

�
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Hence we can conclude that Mi
�� s
h j�� r � ���

Let Mi
�� s
h j�� r � ��� then there exists a path �sh � sh�� � � � � � s

hq
q � �

PathsMi���r� such that Mi
�� s
hq
q j� ��� We prove Mi� s j�� r � �� by in�

duction on the length q of the path�

If q � �� then �sh� � PathsMi���r�� and� by Proposition 	� there exists a formula
� ��!� � � � ��g! � ��� with g � �� such that�

� all tests �j! occur in r� and hence all �j are subformulae of � r � ���

� Mi
�� s
h j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every 	 � f��� � � ��g� ��g� Mi
�� s
h j� 	

i� Mi� s j� 	� and hence Mi� s j�� r � ���

If� q � �� then� by Proposition 
� there exists a formula � ��!� � � � ��g!� a ��
r� � ��� with g � �� such that�

� all tests �j! occur in r� and hence all �j are subformulae of � r � ���

� r� � Post�r�� and hence by Proposition �� the formula � r� � �� is equiva�
lent to 	 for some 	 � CL�� r � ��� � CL�$��

� �sh�� � sh�� � � Ri
�a�

� �sh�� � � � � � s
hq
q � � PathsMi���r

���

� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � ��gg� Mi
�� s
h j� �x i�

Mi� s j� �x�

By path induction hypothesis� Mi
�� s
h�
� j�� r� � �� impliesMi� s� j�� r� � ���

since �sh�� � � � � � s
hq
q � � PathsMi���r

�� is shorter than �sh�� � � � � � s
hq
q ��

While� by de�nition� �sh�� � sh�� � � Ri
�a implies that �s�� s�� � Ria� either in
the case h� � h� or h� �� h� �h� � h��

Hence we can conclude that Mi� s j�� r � ���

Finally� as M �� � Ml� we have that all states of M �� are suitably assigned to the
propositions H
��a�� for a � a� � � � al� and M

�� is a model of $�

Step � We transform the model M �� � �S��� fR��Pg�"
��� of $ into a model M � �

�S�� fR�Pg�"
�� of 
�$�� Considering a state s � S�� such that M ��� s j� $� we de�ne

M � as follows�

S� � ft j �s� t� � �
S
P �R

��
P �R

��
P� ��

�g
R�P � R

��
P � S

� � S�

"��t� �

�
"���t� � fA
��a�g if M ��� t j� �� � a�
"���t� otherwise�

��
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It is easy to verify that M �� s j� 
��$�� and �trivially�M �� s j� 
��$�� Therefore� M �

is a model of 
�$�� �

We can now formulate the main result of this chapter�

Theorem �� Satis
ability in DIF is an EXPTIME�complete problem	

Proof The satis�ability problem for DI is EXPTIME�complete� and by Lemma 

the size of the DI�counterpart 
�$� of a DIF�formula $ is polynomially related to
the size of $� �

As an immediate consequence we can characterize the computational complexity of
reasoning in CIF �

Theorem �� Satis
ability of CIF concepts� satis
ability of CIF TBoxes� and logical
implication in CIF TBoxes� are EXPTIME�complete problems	

��� Discussion

We did not use a standard �ltration argument to prove our result� In fact� the standard
�ltration argument does not work in proving Theorem ��� Here is an example� Let
the DIF formula $ be A � �P ����� � P��� � P � �A�� where A is an atomic
proposition and P an atomic program �$ is already in negation normal form��
The DI formula 
��$� is A � �P ���A
��P��� � P � �A� and its Fisher�Ladner

Closure� CL�
��$��� is formed by

A � �P ���A
��P��� � P � �A�
A
�P ���A
��P��� � P � �A�
�P ��P ���A
��P��� � P � �A�
A
��P��� � P � �A
A
��P��

� P� � �A

and their negations�
The DI counterpart of $ is 
�$� � 
��$� � 
��$� where 
��$� assures that in

every model of 
�$� if a state satis�es A
��P�� then all its P �successors satisfy the
same formulae� wrt those that are members of CL�
��$���
Now consider the structure M � �S�RP �"��

S � fd�� d�� d�g
RP � f�d�� d���d�� d��� �d�� d��g
"�A� � fd�g� "�A
��P��� � fd�� d�� d�g

It is easy to verify that M is a model of 
�$�� but not of $ since d�� has two �P
���

successors� and therefore does not satisfy �� � P���

��
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The states d� and d� satisfy the same formulae� wrt those that are members of
CL�
��$��� Hence a �ltration technique would allow us to merge them into a single
state d��� getting the new structure M

�� In M �� the state d�� has two �P
���successors

so it does not satisfy �� � P�� and� as a consequence� again M � is not a model of
$� Moreover M � is not even a model of 
�$�� since d�� has one �P

���successor� d��
satisfying A � CL�
��$�� and one� d�� satisfying �A � CL�
��$��� therefore 
��$� is
not satis�ed anymore�
In general� the ability to get a �ltration of a model by a �nite set of formulae

�as CL�
��$��� leads to a �nite model property� But DIF does not have the �nite
model property� Indeed� the above $ is an example of a formula having only in�nite
models	� So we can conclude that �ltration techniques are not suitable to prove the
decidability of DIF �
The construction we have described in this chapter� builds� from a given model of


�$�� a model of $ that can be an in�nite tree� In the example above� our construction
gives as a result a new structure MF which is an in�nite chain of P such that all
the states along the chain satisfy �� � P�� while only the �rst state satis�es A� It
is easy to verify that MF is indeed a model of $� We �nd it quite surprising and
interesting that satis�ability in DIF � which is a logic that does not have the �nite
model property� can be reduced� in a natural way� to satis�ability in DI� a logic that
does have it�
We have already mentioned that the formula 
��$� can be thought of as a �nite

instantiation of the axiom schema �A
��a�� � a � �� � �a��� which is su�cient to
guaranty that the DI formula 
�$� is satis�able if and only if DIF formula $ is
satis�able� The methodology of reducing satis�ability in a given logic to satis�abil�
ity in a target logic by constraining structures of the target logic� through a �nite
�polynomial� number of instances of an axiom schema� can be exploited to establish
decidability �and complexity� in many situations� In fact� it is the central element
behind many of the results in this thesis�
It is worth noting that� since DIF subsumes Converse Deterministic PDL� also

formulae of that logic can be encoded in DI� This fact gives us an optimal procedure�

to decide the satis�ability of Converse Deterministic PDL formulae that does not rely
on techniques based on automata on in�nite structures as those in ����� �����
Observe also that the mapping 
 can be easily restricted to encode Deterministic

PDL formulae in PDL� Though� in this simpler case there is no need of a sophisticated
technique� as the one above� to build a model of a Deterministic PDL formula from its
PDL counterpart� a standard �ltration argument being su�cient� Indeed� the method
adopted in ��� to study satis�ability of Deterministic PDL� can be rephrased making
use of a mapping similar to 
�

�Such a formula is a variant of the Converse Deterministic PDL formula A� 	�P���� � P� 	 �A
�see for example 	
�
���

�Note that satis�ability of Converse Deterministic PDL is an EXPTIME�complete problem�

	�
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Quali�ed Number

Restrictions

In this chapter we study the description logic CIN and the propositional dynamic
logic DIN obtained from CI and DI by adding the quali�ed number restriction
constructs �� na�C� and �� na�C� with n � �� In the setting of description logics�
quali�ed number restrictions where �rst considered �without inverse and re�exive�
transitive closure of roles� in �

�� The quali�ed number restriction �� na�C� denotes
the set of objects that have links with at most n objects in C� and �� na�C� the set
of objects that have links with at least n objects in C� where a is either an atomic
role or the inverse of an atomic role�

��� The logics CIN and DIN

Concepts of CIN are formed according to the following abstract syntax�

C ��� � j � j A j C� uC� j C� tC� j C� � C� j �C j
�R�C j �R�C j �� na�C� j �� na�C�

a ��� P j P�

R ��� a j R� tR� j R� 	R� j R
� j R� j id�C�

where A denotes an atomic concept� C �possibly with a subscript� a generic concept�
P an atomic role� a a simple role� i�e� either an atomic role or the inverse of an atomic
role� R �possibly with a subscript� a generic role�
The semantics of CIN is the same as for CI� except for quali�ed number restric�

tions �� na�C� and �� na�C� with n � �� whose meaning in an interpretation I is
the following �recall a � P j P���

�� na�C�I � fd �  I j there exists at most n d� such that

�d� d�� � aI and d� � CIg

�� na�C�I � fd �  I j there exists at least n d� such that
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�d� d�� � aI and d� � CIg

Observe that the two kinds of quali�ed number restrictions are interde�nable
since �� � a�C� is equivalent to �a�C and �� na�C� with n � � is equivalent to
��� n � � a�C�� A functional restriction �� � a� is expressible by �� � a���� hence
CIN is a generalization of CIF � Similarly the well�known constructs called number
restrictions �� na� and �� na� are expressed in CIN by �� na��� and �� na���
respectively� Indeed quali�ed number restrictions are the most general kind of cardi�
nality constraints� while functional restrictions can be considered the simplest ones�
Note that in CIN � as in CIF� there is complete symmetry between atomic roles and
inverse of atomic roles�
The corresponding propositional dynamic logic is called DIN and its syntax is as

follows�
� ��� � j � j A j �� � �� j �� � �� j �� � �� j �� j

� r � � j �r�� j �� na��� j �� na���

a ��� P j P�

r ��� a j r� � r� j r�� r� j r
� j r� j �!

where A denotes a propositional letter� � �possibly with a subscript� a formula� P an
atomic program� a a simple program� i�e� an atomic program or the converse of an
atomic program� and r �possibly with a subscript� a generic program�
Consistently with its interpretation in CIN the new construct is interpreted as

follows� given a structure M � �S� fRrg�"� and a state s � S�

M� s j� �� n a��� i� there are at most n states t such that

�s� t� � Ra and M� t j� �

M� s j� �� n a��� i� there are at least n states t such that

�s� t� � Ra and M� t j� ��

The rest of the constructs are interpreted as in DI�
Intuitively� if s is a state satisfying �� n a��� �respectively �� n a����� then

there are at most �at least� n a�successors of s satisfying �� By means of quali�ed
number restrictions we can control the nondeterminism of simple programs in a quite
sophisticated way� Local determinism of a simple program a can be imposed by
�� � a����
Quali�ed number restrictions are sometimes called graded nondeterminism con�

structs� Indeed� as such a name suggests� they are strongly related to graded modalities
in modal logic �see the �nal section of this chapter��

��� Reasoning in CN and DN

Before discussing reasoning in CIN and DIN � we discuss some of the issues involved
in the simpler logics CN and DN obtained by dropping the constructs for inverse
roles and converse programs respectively� This will allow us to gain some intuition
about results for CIN and DIN �
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The decidability and complexity of both satis�ability of CN concepts and logical
implication in CN TBoxes can be derived by exploiting the correspondence between
CN and DN �� Hence it su�ces to establish decidability and complexity of satis�a�
bility for DN � We do so by translating DN formulae in Deterministic Propositional
Dynamic Logic formulae whose satis�ability is known to be decidable and EXPTIME�
complete ����

Let us ignore for a moment the quali�ed number restriction constructs� Formulae
of DN without quali�ed number restrictions are� in fact� formulae of the basic PDL�
It is well�known �see ����� that such formulae can be reduced to Deterministic PDL
formulae� we replace each atomic program P in a formula $ by FP � �F

�
P �
� where FP

and F �P are new atomic programs that are �globally� deterministic� Let us call the
resulting formula $�� we have that $ is satis�able if and only if $� is so��

We brie�y sketch the reasoning behind the proof of this statement� The if direction
is straightforward� The only if direction is as follows� We recall that both PDL and
Deterministic PDL have the tree model property� if a formula has a model it has a tree
model� i�e� a model having the form of a tree�� So we can restrict our attention to tree
models only without loss of generality� Now there is a one�to�one transformation from
tree modelsMT of $ to �tree� modelsMB of $�� Indeed� we put SB � ST � "B � "T �
and given a state x of MT having as P �successors z�� � � � � zl�� we put �x� z�� � RB

FP
�

and �zi� zi
�� � RB
F �
P
� for i � �� � � � � l � �� In this way we have �x� zi� � RT

P if and

only if �x� zi� � R
B
FP �
F �

P
�� �

�

We remark that MT is required to be a tree because once we get MB we need to
recover the �original� P �predecessor x of a state zi� namely we need �FP � �F

�
P �
��� to

be deterministic� otherwise� given a state zi� we would not know which of the various
�FP � �F

�
P �
����successors is its original P �predecessor x� and therefore we would not

be able to reconstruct MT from MB �

Representing atomic programsP as FP � �F �P �
�� where FP and F �P are deterministic�

makes it easy to express quali�ed number restrictions as constraints on the chain of
FP � �F �P �

��successors of a state� For example� let us denote the transitive closure of r
as r
 � i�e� r


�
� r� r��

�� � P��� can be expressed by

�FP � �F
�
P �
���!� �F �P �


��!� �F �P �

��!� �F �P�


���

�The correspondence is realized by modifying straightforwardly the mappings 
 and 
	 described
in Chapter � so to consider the absence of inverse roles and the presence of quali�ed number
restrictions�

�Note that while it is necessary to introduce one FP for each P � we could introduce just one FU �
instead of all F �

Pi
� Here we have preferred to be slightly redundant� for the sake of clarity�

�Given a model of � we get a tree model simply by �unfolding� the original one�
�We implicitly assume that MT is a �nite branching tree model� This can be done without loss

of generality since PDL has the �nite model property� and hence unfolding a �nite model we get
a �nite branching tree model� Note however that it would su�ce to assume MT to be a countable
branching tree model�

�Note that this construction is similar to the one often used in programming to reduce n�ary trees
to binary trees by coding children of a node as the combination of one child and its siblings�
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that is equivalent to

�FP � �F
�
P �
����� ��F �P �


���� ��F �P �

���� ��F �P �


������

and can be read as �everywhere along the chain FP � �F �P �
� there are at most three

states in which � holds�� that corresponds exactly to the intended meaning�

�� � P��� can be expressed by

� FP � �F
�
P �
���!� �F �P�


��!� �F �P �

 � �

that is equivalent to

� FP � �F
�
P �
� � ��� � �F �P �


 � ��� � �F �P �

 � ���

and can be read as �somewhere along the chain FP � �F �P �
� there are at least three

states in which � holds�� that again corresponds exactly to the intended meaning�
The above discussion leads to the following results� Let $ be a DN formula� We

call the Deterministic PDL counterpart v�$� of $ the formula obtained as follows�

�� We replace every atomic program P by FP � �F
�
P �
�� where FP and F

�
P are new

deterministic atomic programs�

�� We replace every quali�ed number restriction

�� n �FP � �F �P �
����� by ��FP � �F �P �

�� ��!� �F �P �

�n����

�� n �FP � �F �P �
����� by � FP � �F �P �

�� ��!� �F �P �

�n�� � ��

where the notation rn stands for n repetitions of r�	

Theorem �� A DN formula $ is satis
able if and only if the Deterministic PDL
formula v�$� is satis
able	

Theorem �	 Satis
ability in DN is a EXPTIME�complete problem	

Observe that we are translating DN to Deterministic PDL� As a special case we
can translate DF to Deterministic PDL by expressing �� � P � as �FP ��F �P ���

��� Reasoning in CIN and DIN

Let us go back to CIN and DIN � The decidability and computational complexity
of both satis�ability of CIN concepts and logical implication in CIN TBoxes can be
derived by exploiting the correspondence between CIN and DIN �� Hence it su�ces
to establish decidability and computational complexity of satis�ability in DIN �

�Note that� in accordance with �	 n P��� � ��
 n� 
 P���� we have

�	FP � �F
�

P �
�� ���� �F �

P �
	�n����� �� FP � �F

�

P �
�� ���� �F �

P �
	�n�� 	 ��

�The correspondence is realized by extending straightforwardly the mappings 
 and 
	 described
in Chapter � in order to deal with quali�ed number restrictions�
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Let us ignore once again quali�ed number restrictions for the moment� i�e� we cut
DIN down to DI� The presence of converse programs in DI makes its structures
no longer reducible to tree structures as above�� making the technique shown in the
previous section inapplicable� Nonetheless we are able to obtain essentially the same
results� by developing a more involved reduction�
Indeed� we are going to prove that for any DIN formula $ there exists a DIF

formula $�� whose size is polynomial wrt the size of $� that is satis�able if and only if
$� is so� Since we have proved in Chapter � that satis�ability in DIF is EXPTIME�
complete� this guarantees that satis�ability in DIN is EXPTIME�complete too� In
order to carry out this reduction we �rst need to reify the relations associated with
atomic programs� then we can exploit a technique similar to the one used in the
previous section�

����� Rei�cation of binary relations

Atomic programs are interpreted as binary relations� Reifying a binary relation means
creating an object for each tuple in the relation� The set of such objects represents the
set of tuples forming the relation� However the following problem arises� in general�
there may be two or more objects referring to the same tuple� Obviously in order to
have a faithful representation of a relation such a situation must be avoided�
Given an atomic program P � we call its rei
ed form the following program

f�� �AP!� f�

where AP is a new proposition denoting objects representing the tuples of the relation
associated with P � and f� and f� denote two functions that� given an object in AP �
return the �rst and the second component respectively of the tuple represented by
the object� In other words� given a running of an atomic program starting in s and
ending in t� we replace it by adding an intermediate state z and two deterministic
atomic programs f� and f� starting from z and ending in s and t respectively� We
call states such as z pseudo states since they denote the materialization of tuples such
as �s� t� and not real states�
Note that there is a clear symmetry between the program f�� �AP!� f� and its

converse f�� �AP!� f��
After the rei�cation of P � formulae of the form �
 n P�����
 n P���� assume the

form �
 n f�� �AP!� f������
 n f�� �AP!� f����� thus denoting quali�ed number restric�
tions of complex programs� Yet� since the programs f� and f� denote partial functions�
the following equivalences hold�

�� n �f�� �AP !� f����� � �� n f�� ��� AP !� f� � ����
�� n �f�� �AP !� f����� � �� n f�� ��� AP !� f� � ����
�� n �f�� �AP !� f��

���� � �� n f�� ��� AP !� f� � ����
�� n �f�� �AP !� f��

���� � �� n f�� ��� AP !� f� � ����

De�nition Let $ be a DIN formula� We de�ne the rei
ed�counterpart 
��$� of $
as the conjunction of two formulae� 
��$� � 
��$� �&�� where�

�Indeed the presence of converse programs makes the structures reducible to �two�way� tree
structures� as opposed to the �one�way� tree structures needed here�
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� 
��$� is obtained from the original formula $ by replacing

� every atomic programPi� i � � � � �m� by the complex program f�� �APi!� f��
where f�� f� are new atomic programs �the only ones present after the
transformation� and APi is a new atomic proposition�

� and then every quali�ed number restriction

�� n �f�� �AP!� f����� by �� n f�� ��� AP!� f� � ����
�� n �f�� �AP!� f����� by �� n f�� ��� AP!� f� � ����
�� n �f�� �AP!� f������ by �� n f�� ��� AP!� f� � ����
�� n �f�� �AP!� f��

���� by �� n f�� ��� AP!� f� � ����

� &� � ��f� � f� � f�� � f�� �
����� � f�� � �� � f�����

�

Lemma �� Let $ be a DIN formula� and 
��$� its rei
ed�counterpart	 Then 
��$�
is a DIN formula� and its size is polynomially related to the size of $	

Proof Straightforward� �

Observe that &� imposes the global determinism of both f� and f�� that is� in
every model M � �S� fRf� �Rf�g�"� of 
��$�� the relations Rf� and Rf� are partial
functions�
The next lemma guarantees us that� without loss of generality� we can restrict

our attention to models of 
��$� that faithfully represent relations associated with
atomic programs� i�e� models in which each tuple of such relations is represented by a
single �pseudo� state� This is an essential property and guarantees the soundness of
our rei�ed representation of relations associated with atomic programs�

Lemma �� If the formula 
��$� has a model M � �S� fRf� �Rf�g�"� then it has
a model M � � �S�� fR�f� �R

�
f�
g�"�� such that for each �x� y� � R�

f�� �APi
��f�

there

is exactly one zxy such that �zxy� x� � R�f� and �zxy� y� � R�f� 	 That is� for all
z�� z�� x� y � S� such that z� �� z� and x �� y� the following condition holds�

�APi � "
��z�� �APi � "

��z����

���z�� x� � R
�
f� � �z�� x� � R

�
f� � �z�� y� � R

�
f� � �z�� y� � R

�
f���

Proof Suppose that the condition is not already satis�ed by the modelM � we show
how to build a modelM � in which the condition is satis�ed�
Let us introduce some notation� Given a pseudo state z denoting a tuple �x� y� �

Rf�� �AP ��f�
we denote x by f��z� and y by f��z�� this is in agreement with Rf� and

Rf� being functional� We call con�ict the presence of more pseudo states referring
to the same tuple� Let �x� y� � Rf�� �AP ��f�

� if there is more that one pseudo state z

referring to �x� y� � that is� if there is more that one �pseudo� state z inM such that


Observe that f�� f� are the only atomic programs occurring in ������
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AP � "�z� and �z� x� � Rf� and �z� y� � Rf� � then we randomly choose one such
pseudo state to represent �x� y� and we say that the others induce a con�ict� We call
Conf the set of all pseudo states inducing a con�ict���

We start our construction� by de�ning a structure M�Conf as the disjoint union of
j�Conf j copies of M � one copy� denoted by ME � for every set E � �Conf � We denote
by sE the copy in ME of the state s in M � The structure M�Conf is trivially a model
of 
��$� as M is�
Let ME and ME� be two copies of M in M�Conf � we call �exchanging f��t

E � with
f��tE

�

�� the operation on M�Conf consisting of removing the tuple �t
E � f��tE �� from

REf� replacing it with �t
E � f��tE

�

�� and� at the same time� removing �tE
�

� f��tE
�

�� from

RE
�

f�
replacing it with �tE

�

� f��tE�� ��� By exchanging f��tE � with f��tE
�

�� we resolve t

for both ME and ME� � in the sense that tE and tE
�

no longer induce con�icts�
Note that given a t � Conf � we can univocally associate to a set E � �Conf such

that t � E � the set E � ftg� The set of all E and E � ftg such that E � �Conf and
t � E for some t � Conf � is equal to �Conf �
Now we can complete our construction� We get a model M � with the desired

property by modifyingM�Conf as follows� For each state t � Conf � for each E � �Conf

such that t � E � we exchange f��tE � with f��tE�ftg����

Indeed proceeding in this way� on the one hand all con�icts present in the original
model M are eliminated from all its copies in M�Conf � On the other hand no new
con�icts are created as shown in the following� New con�icts could be created only by
resolving two t� t� � Conf in the same E � �Conf � since otherwise we are guaranteed
by de�nition of M�Conf that f��t

E� �� f��tE
�

� if E �� E �� However� given two pseudo
states t� t� � Conf and a set E � �Conf � following the construction proposed we have
that�

� if t� t� � E � we exchange f��tE� with f��tE�ftg� to resolve t and f���t��E � with
f���t��E�ft

�g� to resolve t��

� if t� t� �� E � we exchange f��tE� with f��tE�ftg� to resolve t and f���t��E � with
f���t��E�ft

�g� to resolve t��

� if t � E and t� �� E � we exchange f��t
E� with f��t

E�ftg� to resolve t and f���t
��E�

with f���t
��E�ft

�g� to resolve t��

Observe that in all cases we resolve t� t� by acting on di�erent copies on the original
model M � so no con�icts can be introduced�
Finally� M � is indeed a model of 
��$�� since by construction &� is satis�ed ev�

erywhere in M �� and it is straightforward to check by induction on 
��$�� that� for
all E � �Conf � M� s j� 
��$� if and only if M �� sE j� 
��$�� �

By using Lemma �� we can prove the result below� which constitutes the prelim�
inary step of our reduction form DIN to DIF �

��Note that Conf can be uncountable�
��Obviously the same thing can be done acting on f��tE� and f��tE

�
��

��Note that the transformation leading fromM�Conf to M � does not change the number of tuples
in which a state occurs�
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Lemma �� A DIN formula $ is satis
able if and only if its rei
ed�counterpart

��$� is satis
able	

Proof � Let M � fS� fRPg�"g be a model of $� We de�ne a model of M � �
fS�� fR�f� �R

�
f�
g�"�g of 
��$� as follows�

� S� � S � fzxy j �x� y� � RPi for some Pig�

� R�f� � f�zxy� x� j �x� y� � RPig� R
�
f�
� f�zxy� y� j �x� y� � RPig�

� "��t� �

�
"�t� for t � S
fAPi j �x� y� � RPig for t � zxy�

The construction above implies �x� y� � RPi i� �x� y� � R
�
f�� �APi

��f�
�

Since R�f� �R
�
f�
are partial functions� it follows that &� is satis�ed all overM �� and

by induction on $� it is easy to verify that M� s j� $ if and only if M �� s j� 
��$��
� Let M � � fS�� fR�f� �R

�
f�
g�"�g be a model of 
��$�� By Lemma �� we can

assume that for each �x� y� � R�
f�� �APi

��f�
there is exactly one zxy such that �zxy� x� �

R�f� and �zxy� y� � R
�
f�
� This guarantees that quali�ed number restrictions holding

in the states x and y� restrict correctly the number of �f�� �APi!� f���successors and
�f�� �APi!� f���successors� respectively�

��

We de�ne a model M � fS� fRPg�"g of $ as follows� First we de�ne RPi �
R�
f�� �APi

��f�
Then� let s � S� be a state such that M �� s j� 
��$�� we de�ne

S � ft j �s� t� � �
S
i�RPi �R

�

Pi
���g�

RPi � RPi � �S � S��
"�t� � "��t� � fAPi for any Pig� for all t � S�

Finally it is easy to verify by induction of 
��$� that M
�� s j� 
��$� if and only if

M� s j� $� �

����� Reducing DIN to DIF

By Lemma ��� we can concentrate on the rei�ed�counterparts of DIN formulae� Note
that these are DIN formulae themselves� but their special form allows us to convert
them into DIF formulae� We adopt a technique resembling the one exploited for
reducing DN to Deterministic PDL� in the previous section� Intuitively the tech�
nique works as follows� We represent a rei�ed program f�� �AP!� f� by the program
F��AP !� �F

�
��AP !�

�� �F��AP !� �F
�
��AP!�

���� where Fj� F
�
j �with j � �� �� are new de�

terministic atomic programs� In this way the program f�j �AP! �j � �� �� which is
not deterministic in general� is expressed by chain Fj�AP!� �F

�
j�AP!�

� of determinis�
tic programs� and quali�ed number restrictions can be encoded as constraints on such
a chain� The only cardinality constraints that are present in the resulting formulae

��Otherwise we could get something like� �zxy � x�� �z�xy� x� � R
�

f�
� �zxy � y�� �z�xy� y� � R

�

f�
� AP �

���zxy� and AP � ���z�xy�� In this case �	 � �f�� �APi ��f����� holds in x� but actually there is only

one tuple �x� y� � R�

f
�
�
�APi


�f�
�

	�
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are functional restrictions� Hence by �rst transforming a DIN formulae into their
rei�ed�counterpart and then applying the technique sketched above we reduced DIN
to DIF which has been studied in Chapter ��
Formally we de�ne the DIF�counterpart of a DIN formula as follows�

De�nition Let $ be a DIN formula and 
��$� � 
��$��&� its rei�ed�counterpart�
We de�ne the DIF�counterpart 
��$� of $ as the conjunction of two formulae�

��$� � 
���$� �&�� where�

� 
���$� is obtained from 
��$� by replacing

� every occurrence of program f�� �APi!� f� by

F��APi!� �F
�
��APi!�

�� �F��APi!� �F
�
��APi!�

����

where Fj� F �j �j � �� �� are new atomic programs�

� every �� n f�� � � APi!� f� � �� by

�F��APi!� �F
�
��APi!�

�� ���!� �F ���APi!�

�n�����

and every �� n f�� � � APi!� f� � �� by

� F��APi!� �F
�
��APi!�

�� ���!� �F ���APi!�

�n�� � ���

where �� �� �F��APi!� �F
�
��APi!�

��� � ����

� every �� n f�� � � APi!� f� � �� by

�F��APi!� �F
�
��APi!�

�� ����!� �F ���APi!�

�n������

and every �� n f�� � � APi!� f� � �� by

� F��APi!� �F
�
��APi!�

�� ����!� �F ���APi!�

�n�� � ����

where ��� �� �F��APi!� �F
�
��APi!�

��� � ��

� &� � ��
S
j�����Fj �F

�
j �F

�
j �F

��
j ��

����� ��� with each conjunct �j of the form�

�� � Fj� � �� � F
�
j� � �� � F

�
j � � �� � F

��
j ��

��� F�j � �� � �F �j�
� � ���

�

Lemma �
 Let $ be a DIN formula� and 
��$� its DIF�counterpart	 Then 
��$�
is a DIF formula� and its size is polynomially related to the size of $	

��As before the notation r	 stands for r� r
� and the notation rn stands for n repetitions of r�

	�
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Proof Straightforward� �

Observe that &� constrains the models M � �S� fRFg�"� of 
��$� so that the
relations RFj �RF�

j
�RF �

j
�R

F
��
j

are partial functions� and each state cannot be

linked to other states by both RF�
j

and R
F �
j
�� � As a consequence we get that

R
Fj �APi
��
F �

j
�APi

����� is a partial function� This condition is required to prove the

lemma below�

Lemma �� Let $ be a DIN formula and 
��$� its rei
ed�counterpart	 
��$� is
satis
able if and only if 
��$� is satis
able	

Proof � Let M � fS� fRf� �Rf�g�"g be a model of 
��$�� Then we build a

model M � � fS�� fR�Fg�"
�g of 
��$� as follows� First� we de�ne fR

�

F g� For each
state x � S such that M�x j�� f�� �APi!� f� � �� let z�� z� � � � be the states such

that �x� zk� � Rf��
and M� zk j�� APi!� f� � ���� We put �x� z�� � R

�

F� � and

for all k � �� �� � � � we put �zk� zk
�� � R
�

F ��
� Similarly� for each x � S such that

M�x j�� f�� �APi!� f� � �� let z�� z�� � � � be the states such that �x� zk� � Rf��
and

M� zk j�� APi!� f� � �� We put �x� z�� � R
�

F�
� and for all k � �� �� � � � we put

�zk� zk
�� � R
�

F ��
� Then� let s � S be such that M� s j� 
��$�� we de�ne

S� � ft j �s� t� � �
S
j�����R

�
Fj �R

�
F �
j
�R

��
Fj �R

��
F �
j
���g�

RF � R
�

F � �S
� � S���

"��t� � "�t� for all t � S��

Note that since Rfj is a partial function� R
�

Fj �APi

��
F �
j
�APi

����� is a partial function

as well� By this construction we have that

�x� y� � Rf�� �APi
��f�

i� �x� y� � R�F��APi
��
F ���APi

����
F� �APi
��
F ���APi

����� �

Moreover� &� is satis�ed all over M
��

Considering that R�
Fj �APi
��
F �

j
�APi

����� is a partial function� and that

�Fj�APi!� �F
�
j�APi!�

�� ��!� �F �j�APi!�

�n���

� Fj�APi!� �F
�
j�APi!�

�� ��!� �F �j�APi!�

�n�� � �

specify that there are at most� at least respectively� n states satisfying �� along the
chain Fj�APi!� �F

�
j�APi!�

�� it is easy to verify by induction on 
��$� that M� s j�

��$� if and only if M

�� s j� 
���$��
� Let M � � fS�� fR�Fg�"

�g be a model of 
��$�� We can de�ne a model M �
fS� fRf� �Rf�g�"g of 
��$� as follows� First we de�ne Rfj � R�
Fj �APi

��
F �
j
�APi

�����

��Without loss of generality� we implicitly assume that each state x � S has a countable number
of f�

i
�successors� i � 
���

��
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�j � �� ��� Then let s � S� be such that M �� s j� 
��$�� we de�ne

S � ft j �s� t� � �Rf� �Rf� �R
�

f� �R
�

f� �
�g�

Rfj � Rfj � �S � S��
"�t� � "��t� for all t � S�

Note that� by &�� R
�

Fj �APi

��
F �
j
�APi

����� is a partial function� and hence Rfj is a

partial function as well� thus &� is satis�ed all over M �
Considering again the meaning of

�Fj�APi!� �F
�
j�APi!�

�� ��!� �F �j�APi!�

�n���

� Fj�APi!� �F
�
j�APi!�

�� ��!� �F �j�APi!�

�n�� � �

it is easy to verify by induction on 
���$� that M
�� s j� 
���$� if and only if M� s j�


��$�� �

Now we are ready to state the main results of this section�

Theorem �� A formula $ of DIN is satis
able if and only if the formula 
��$� of
DIF is satis
able	

Proof By Lemma �� and Lemma ��� �

Theorem �� Satis
ability in DIN is an EXPTIME�complete problem	

Proof The satis�ability problem for DIF is EXPTIME�complete as shown in Chap�
ter �� and� by Lemma �� the size of the DIF�counterpart 
��$� of a DIN formula
$ is polynomially related to the size of $� �

As an immediate consequence we can characterize the computational complexity of
reasoning in CIN �

Theorem �� Satis
ability of CIN concepts� satis
ability of CIN TBoxes� and log�
ical implication in CIN TBoxes� are EXPTIME�complete problems	

��� Discussion

Let us illustrate with an example the basic relationships between models of DIN
formulae and those of their rei�ed�counterparts and DIF�counterparts�
Consider the following DIN formula�

$ �� P � �� � P���� � P����

where the notation �� n a��� stands for �� na���� �� na����
Figure 	�� shows a model M of $ such that M�a j� $�
In Figure 	�� the model M of $ is transformed in a model M � of its rei�ed�

counterpart 
��$� as done in the proof of Lemma ���

��
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�P
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edc

RR ��

Figure 	��� A model of a DIF formula $
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Figure 	��� A model of the rei�ed�counterpart 
��$� of $
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Figure 	��� A model of the DIF�counterpart 
��$� of $
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Finally� in Figure 	�� the model M � of 
��$� is transformed into a model M �� of
the DIF�counterpart 
��$� of $ as in the proof of Lemma ��� Notice that from M ��

we can easily reconstruct M �� and from it the model M of the original formula�
The other direction� transforming models of 
��$� �rst into models of 
��$� and

then into models of $ is slightly more involved in general� for two reasons� First we
are not imposing any explicit distinction between states and pseudo states in both
models of 
��$� and 
��$�� Indeed nothing prevents a state� which is not intended
to represent a relation� from satisfying � fj � � in models of 
��$� and similarly
� �Fj�AP !� �F �j�AP!���� � � in models of 
��$�� However starting from a state sat�
isfying 
��$� �respectively 
��$�� we can isolate the component� connected by means
of programs f�� �AP!� f� �respectively F��AP!� �F ���AP!��� �F��AP!� �F ���AP!����� or
their converse� In such a connected component� formulae � fj � � �respectively
� Fj�AP!� �F �j�AP!�� � �� are satis�ed only by states that are intended to represent
a relation� The second di�culty is that in general models of 
��$� may contain more
pseudo states referring to the same tuple of a relation� however by Lemma �� we can
restrict our attention to models in which this di�culty does not arise� without loss of
generality�
We remark that the only condition required by the proof of Lemma �� is that�

given a model of a formula� the disjoint union of copies of this model is still a model�
This condition is very general� and most modal logics satisfy it� Note� however� that
in the following we will introduce a family of propositional dynamic logics in which it
is possible to denote a property satis�ed by exactly one state� Because of this� such
logics violate the condition above�
We end the chapter with a few words about the tight relation between quali�

�ed number restriction and graded modalities in modal logic ����� ���� 
	� 

�� The
graded modal operator � a �n � �with n � �� is equivalent to the quali�ed number
restriction� �� n%� a���� and its dual �a�n� � � � a �n �� is equivalent to �� na���
for n � � and to �a�� for n � �� The decidability and computational complexity of a
propositional dynamic logic comprising graded modal operators on atomic programs
and converse of atomic programs� were not known� Since such logic is straightfor�
wardly polynomially reducible to DIN � as an immediate consequence of the results
on DIN � we can state its decidability and characterize its computational complexity
as EXPTIME�complete��	

��Note that even for the much simpler basic PDL augmented with graded modalities on atomic
actions� decidability and computational complexity were not known� Such logic is essentially DN �
whose decidability and computational complexity has been discussed in the section on reasoning in
CN and DN �

��
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Boolean Properties and

Assertions on Atomic Roles

In this chapter we add to CIN the possibility of expressing boolean combinations of
atomic roles� in particular the intersection of atomic roles P�uP�� and the negation of
atomic roles �P interpreted as �any role but P�� We also allow for stating inclusion
assertions on atomic roles� thus expressing hierarchies of roles� disjointness of roles�
etc� The corresponding propositional dynamic logic is introduced and studied at the
same time�

��� The logics CINB and DINB

The abstract syntax of the description logic CINB is as follows�

C ��� � j � j A j C� uC� j C� tC� j C� � C� j �C j
�R�C j �R�C j �� na�C� j �� na�C�

� ��� any j P j �� u �� j �� t �� j �� � �� j ��
a ��� � j ��

R ��� a j R� tR� j R� 	R� j R
� j R� j id�C�

where A denotes an atomic concept� C �possibly with a subscript� a generic concept�
any �the most general� atomic role� P an atomic role� � a basic role� i�e� a boolean
combination of atomic roles� a a simple role� i�e� either a basic role or the inverse of a
basic role� R �possibly with a subscript� a generic role� Note that wrt CIN quali�ed
number restrictions are extended from atomic roles and their inverse to basic roles
and their inverse�

The semantics of CINB is similar to that of CIN except for the basic roles which
are not present in CIN � To such roles an interpretation I � � I � 
I� assigns meaning
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as follows�
anyI �  I � I

P I � anyI

��� u ���I � �I� � �I�
��� t ���I � �I� � �I�
��� � ���I � ��I� � �I�
��I � anyI � �I �

Observe that anyI ��  I �  I � in general� As a consequence �P is to be in�
terpreted as �the set of pairs of individuals that are linked �by any
 but not by P�
��P I � anyI �P I� as opposed to �the set of pairs of individuals that are not linked
by P� ��P I �  I �  I � P I�� The following example should further clarify the
di�erence between the two interpretations� The concept ��P �C� wrt the �rst inter�
pretation� means� � the class of individuals such that all their successors� that are
not P �successors� are in C�� wrt the second interpretation� it means� �the class of
individuals such that all individuals� that are not their P �successors� are in C�� We
shall return to this point at the end of the chapter�
The basic role P� u P� denotes the intersection of P� and P�� i�e� the pairs of

individuals that are both in P� and in P�� So� for example� �P� u P��C denotes
individuals which have a P��successor in C that is also a P� successor� Similarly
�� nP� u P��C� denotes individuals which have at most n P��successors in C that
are also P� successors� While �P� u P��C denotes individuals of whose P��successors
that are also P��successors are in C�
Di�erently from what is usually assumed� we allow for directly specifying inter�

dependencies between basic roles� In other words� besides of inclusion assertions on
concepts� CINB TBoxes allow for inclusion assertions on basic roles� Analogously
we are also interested in checking for subsumption between basic roles wrt a TBox�
Simple examples of inclusion assertions on basic roles are�

father v parent
mother v parent
parent v mother t father
father v �mother

specifying that both the roles father andmother are specializations of the role parent�
that parent is in turn a specialization ofmothertfather� and that father andmother
are disjoint� i�e� their intersection is empty�� Obviously inclusion assertions on roles
must be taken into account in logical inference� for example� from father v parent
and human v �parent�human we infer human v �father�human�
Formally we de�ne a CINB TBox to be a set of inclusion assertions both on con�

cepts �C� v C�� and on basic roles ��� v ���� As usual we say that an interpretation
I is a model of an inclusion assertion on concepts C� v C�� if CI� � CI� � Similarly
we say that an interpretation I is a model of an inclusion assertion on basic roles
�� v ��� if �I� v �I� � We say that an interpretation I is a model of a TBox� if it is
a model of all inclusion assertions in it �both on concepts and basic roles�� We say

�Note that these inclusion assertions a�rm that the role parent is partitioned into the roles
father and mother�

��
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that a TBox K logically implies an inclusion assertion on concepts or on basic roles�
written as K j� C� v C�� K j� �� v �� respectively� if all models of K are models of
the inclusion assertion�
We also introduce the notion of satis�ability for basic roles� besides the usual

satis�ability of concepts� A basic role � is satis�able� if there exists an interpretation
I such that �I �� 
�

The corresponding propositional dynamic logic is called DINB� Formulae of
DINB are of two sorts� program formulae and state formulae�

Program formulae are boolean combinations of atomic programs and their syntax is
as follows�

� ��� any j P j �� � �� j �� � �� j �� � �� j ��

where any is �the most general� atomic program� P an atomic program� and � a
generic program formula also called basic program�

State formulae �the usual sort of propositional dynamic logic formulae�� describing
property of states� have the following abstract syntax�

� ��� � j � j A j �� � �� j �� � �� j �� � �� j �� j
� r � � j �r�� j �� na��� j �� na���

a ��� � j ��

r ��� a j r� � r� j r�� r� j r� j r� j �!

where A denotes a propositional letter� � �possibly with a subscript� a state formula� �
a basic program� i�e� a boolean combination of atomic programs� a a simple program�
i�e� a basic program or the converse of an basic program� and r �possibly with a
subscript� a generic program�

Consistently with the interpretation of basic roles in CINB� basic programs are
interpreted as follows� for all structures M � �S� fRrg�"��

Rany � S � S
RP � Rany
R����� � R�� �R��

R����� � R�� �R��

R��	�� � R
�� �R��

R
� � Rany �R��

The rest of the constructs are interpreted as in DIN �
Intuitively a program P��P� denotes the concurrent execution of P� and P�� while

�P denotes the non�execution of P � In general program formulae �basic programs�
denote a set of atomic programs executed concurrently and a set of atomic programs
not executed at all� Note that nothing is said about atomic programs that are not
contained in one of these sets� they could be executed or not� i�e� we are adopting an
open semantics for program formulae�
By forcing validity of program formulae �which correspond to state inclusion asser�

tions on roles in CINB� we can represent hierarchies of basic programs� for example by

�
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forcing validity of resize icon� resize picture we can represent that resize icon is a
specialization of resize picture� In the same way we can represent mutual exclusion�
for example by forcing the validity of ��open window � close window� we represent
that the program open window and close window cannot be executed together�

Formally� we say that a program formula � is valid in a structureM � �S� fRrg�"��
if R� � Rany� while a state formula � is valid in M � if for all s � S� M� s j� �� We
call axioms formulae �either program or a state formulae� that are assumed to be
valid� Formally� we say that a structure M is a model of an axiom 	� if 	 is valid in
M � We say that an axiom is satis�able� if it has a model� We say that a structure
M is a model of a �nite set of axioms #� if M is a model of all axioms in #� We say
that a �nite set of axioms is satis�able� if it has a model� We say that a �nite set
# of axioms logically implies a formula 	 �either program or state formula�� written
# j� 	 �if 	 is valid in every model of #�

Note that CINB inclusion assertions are analogue to DINB valid formulae� and
CINB TBoxes are analogue to sets of DINB axioms� Hence satis�ability of CINB
TBoxes correspond to satis�ability of �nite sets of DINB axioms�and logical impli�
cation in CINB corresponds to logical implication in DINB�

We also introduce the notion of satis�ability for program formula �the analogue
of the notion of satis�ability for a basic role�� A program formula � is satis�able� if
there exists a structure M � �S� fRrg�"� such that R� �� 
�

��� Reasoning in CINB and DINB

The CINB reasoning services we are interested in are satis�ability of concepts� sat�
is�ability of basic roles� satis�ability of TBoxes� and logical implication in TBoxes�

It is easy to check that satis�ability of basic roles is reducible to satis�ability in
propositional logic� hence it is computational characterized as NP�complete�� The
other reasoning services are EXPTIME�hard since CINB contains CIN � and their
decidability and computational complexity is to be established yet�

We can derive such results for CINB by exploiting the correspondence between
CINB and DINB� The correspondence is realized by suitably extending the mapping
� in Chapter � to deal with basic roles and quali�ed number restrictions� Note that
the mapping �
� reducing logical implication in the description logic to satis�ability
in the correspondent propositional dynamic logic� cannot be extended because of the
presence of inclusion assertions on basic roles� Hence logical implication in CINB
is directly mapped� by the extension of �� to logical implication in DINB and vice
versa�

In the following we concentrate on logical implication in DINB �� proving that
it can be polynomially reduced to logical implication in DIN �which in turn can be
reduced to satis�ability of a single formula as usual�� As corollaries of this result we
establish decidability of both CINB and DINB and characterize the computational

�Similarly� satis�ability of DINB program formulae is NP�complete�
�Observe that satis�ability of a state formula � as well as satis�ability of a �nite set of axioms �

can be reformulated by means of logical implication as � �j� �� and � �j� �� respectively�

��
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complexity of satis�ability and logical implication in both the logics as EXPTIME�
complete�

The reduction from logical implication in DINB to logical implication in DIN
is based on reifying relations associated with basic programs� similarly to what was
done in Chapter 	� Intuitively� the key idea underlying the reduction is to represent
each pair of states �x� y� associated with the program any by a �pseudo� state zxy�
introducing two deterministic programs f� and f� linking each pseudo state zxy to
the �rst component x and the second component y of the corresponding pair �x� y��
In this way� we can translate program formulae that hold for a pair �x� y� into state
formulae that hold in the corresponding pseudo state zxy�

We start presenting the reduction� by de�ning two mappings� �p from DINB
program formulae to DIN �state� formulae� and �s from DINB state formulae to
DIN formulae�

De�nitionWe de�ne a mapping �p fromDINB program formulae � to DIN �state�
formulae �p��� as follows�

�p�any� � �any
�p�P � � �any �AP

�p��� � ��� � �p���� � �p����
�p��� � ��� � �p���� � �p����
�p��� � ��� � �p����� �p����
�p���� � �any � ��p���

where �any and AP are new propositional letters� �

Note that �p�P � � �p�any� is equivalent to ��any � AP � � �any which is an
instance of a propositional tautology�

De�nitionWe de�ne a mapping �s from DINB state formulae � to DIN formulae
�s��� as follows�

�s��� � �s

�s��� � ��s

�s�A� � A
�s��� � ��� � �s���� � �s����
�s��� � ��� � �s���� � �s����
�s���� � ��s���
�s��r��� � �� �s�r���s���
�s�� r � �� �� � �s�r� � �s���
�s��
 n ����� � �
 n f�� � � �p��!�� f� � �s����
�s��
 n ������ � �
 n f�� � � �p��!�� f� � �s����

where f� and f� are two new atomic programs� and � �s is a mapping from DINB

��
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programs r to DIN programs � �s�r� de�ned as follows�

� �s��� � f�� � �p���� f�
� �s��

�� � f�� � �p���� f�
� �s�r�� r�� � � �s�r��� �

�
s�r��

� �s�r� � r�� � � �s�r�� � � �s�r��
� �s�r

�� � � �s�r�
�

� �s��!� � � �s���!
� �s�r

�� � � �s�r�
��

�

Note that f� and f� are the only atomic programs occurring in �s���� Note also
that DINB basic programs are transformed into their rei
ed form� similarly to what
was shown in Chapter 	�
Making use of the above mappings� we de�ne a mapping � from DINB formulae

to DIN formulae� and a mapping T from �nite sets of DINB axioms to �nite sets
of DIN axioms�

De�nitionLet 	 be a DINB formula� We de�ne � �	� as the followingDIN formula�

� if 	 is a state formula� then � �	� � �s � �s�	�

� if 	 is a program formula� then � �	� � �any � �p�	��

�

Lemma �� Let 	 be a DINB formula� and � the mapping de
ned above	 Then � �	�
is a DIN formula� and its size is polynomially related to the size of 		

Proof Straightforward� �

De�nitionLet # be a �nite set of DINB axioms� We de�ne T �#� as the set T��#��T�
of DIN axioms� where�

� T��#� � f� �	� j 	 � #g

� T� is the set composed by the following three axioms�

�any � ��s � �� f� � �s� � �� f� � �s�
�� � f����
�� � f�����

�

Lemma �	 Let # be a 
nite set of DINB axioms� and T the mapping de
ned above	
Then T �#� is a 
nite set of DIN axioms� and its size is polynomially related to the
size of #	


�
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Proof Straightforward� �

Intuitively� in the models of T �#� we distinguish states satisfying �s� which represent
states in the models of #� and �pseudo� states satisfying �any� which represent pairs
of states of any in the models of #� Such pseudo states have exactly one f��successor
and one f��successor� both satisfying �s�

Next� by showing that models of a �nite set # ofDINB axioms can be transformed
into models of T �#�� we prove the following lemma�

Lemma �� Let # be a 
nite set of DINB axioms� 	 a DINB formula� and T and
� the mappings above	 Then # j� 	 if T �#� j� � �	�	

Proof By contradiction� suppose that T �#� j� � �	� and there exists a model M �
�S� fRrg�"� of #� in which 	 is not valid�
From M we de�ne the structure M � � �S �� fR�f��R

�
f�
g�"�� as follows�

� S� � S � fzxy j �x� y� � Ranyg

� for each �x� y� � Rany� we put �any � "
��zxy�� �zxy � x� � R

�
f�
� and �zxy� y� �

R�f�

� for each P � for each �x� y� � RP � we put AP � "��zxy�

� for each state x � S� we put "��x� � "�x� � f�sg�

Observe that for each pair �x� y� � Rany there is exactly one element zxy � S��
Moreover� by construction� M � is a model of T��
Next we prove that for all program formulae �� �x� y� � R� if and only if

�x� y� � R�
f�
� ��p 
����f�

� We proceed by induction on the formation of � �without loss

of generality we skip the cases � � �� � �� and � � �� � ����

� �x� y� � Rany i� �any � "��zxy�� �zxy� x� � R�f� � �zxy� y� � R
�
f�
� by construc�

tion�

� �x� y� � RP i� �any� AP � "��zxy�� �zxy � x� � R�f� � �zxy� y� � R�f� � by con�
struction�

� �x� y� � R����� i� �x� y� � R�� and �x� y� � R�� � i� �by induction hypothesis�
�p���� � "��zxy�� �zxy � x� � R�f� � �zxy� y� � R

�
f�
� and �p���� � "��zxy�� �zxy� x� �

R�f� � �zxy� y� � R
�
f�
� i�e� �p��� � ��� � "

��zxy�� �zxy � x� � R
�
f�
� �zxy� y� � R

�
f�
�

� �x� y� � R
� i� �x� y� � Rany and �x� y� �� R�� i� �by induction hypothesis�
�any � "��zxy�� �zxy� x� � R�f� � �zxy� y� � R

�
f�
� and �p��� �� "��zxy�� �zxy � x� �

R�f� � �zxy� y� � R
�
f�
� i�e� �p���� � "

��zxy�� �zxy� x� � R
�
f�
� �zxy� y� � R

�
f�
�

Observe that by de�nition ofM �� �x� y� � R�
f�� ��p
����f�

if and only ifM �� zxy j� �p����

Proceeding again by induction� it is easy to prove that for all state formulae �
and all x � S� M�x j� � if and only if M �� x j� �s���� For example� let us consider
a state formula of the form �� n ����� By de�nition� M�x j� �� n ���� if there are
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at most n states y such that �x� y� � R� and M� y j� �� We have already proved
that �x� y� � R� if and only if �x� y� � R�

f�� ��p
����f�
� and by inductive hypothesis

we can assume M� y j� � i� M �� y j� �s���� Considering that f� is functional
we have� fy j �x� y� � R�

f�� ��p
����f�
and M �� y j� �s���g is equal to fy j �x� zxy� �

R�
f��
� �zxy� y� � R�f� and M

�� zxy j�� �p���!� f� � �s���g� Thus we conclude that

M�x j� �� n ���� if and only if M �� x j� �� n f�� � � �p���!� f� � �s�����
Let � be a DINB state formula� � is valid in M if and only if for all s � S�

M� s j� �� Considering the de�nition of M � this holds� if and only if� for all s � S�

such that M �� s j� �s� we have M
�� s j� �s���� i�e� if and only if � ��� is valid in M

��
Similarly� let � be a DINB program formula� � is valid in M if and only if for

all x� y � S such that �x� y� � Rany� we have �x� y� � R�� Considering again the
de�nition of M �� this holds if and only if� for all z � S� such that z � �any� we have
z � �p���� i�e� if and only if � ��� is valid in M

��
Hence M � is a model of T �#� and yet � �	� is not valid in M �� contradicting the

hypothesis� �

In order to prove the converse of Lemma ��� we show that� given a model M �
�S� fRf� �Rf�g�"� of T �#�� we can construct a model of # on the basis ofM � However
such construction can be carried out only starting from models of T �#� satisfying the
following condition� for each pair �x� y� � Rf�� ��p
����f

�
�
� there is a single pseudo state

zxy such that �zxy� x� � Rf� and �zxy� y� � Rf� � The next lemma guarantees that
we can assume such condition to be satis�ed in the models of T �#�� without loss of
generality�

Lemma �� Let # be a 
nite set of DINB axioms� and T the mapping de
ned
above	 If T �#� has a model M � �S� fRf� �Rf�g�"�� then it has a model M � �
�S�� fR�f� �R

�
f�
g�"� such that� for each �x� y� � R�

f�� ��p
����f�
there is exactly one zxy

such that �zxy � x� � R�f� and �zxy� y� � R�f� 	 That is� for all z�� z�� x� y � S
� such that

z� �� z� and x �� y� the following condition holds�

M �� z� j� �p��� and M �� z� j� �p��� implies

���z�� x� � R
�
f� � �z�� x� � R

�
f� � �z�� y� � R

�
f� � �z�� y� � R

�
f���

Proof The proof is almost identical to that of Lemma �� in Chapter 	� We sketch it
here for completeness� Suppose that the condition is not already satis�ed by M � We
show how to build a model M � in which the condition above is satis�ed� Given an
pseudo state z referring to a pair �x� y� � Rf�� ��p
����f�

we denote x by f��z� and y by

f��z� �this is in agreement with Rf� and Rf� being functional�� We call the presence
of more pseudo states referring to the same pair� con�ict� Let �x� y� � Rf�� ��p
����f�

�

If there is more than one pseudo state z referring to �x� y�� then we randomly choose
one such pseudo state to represent �x� y� and we say that the others induce a con�ict�
We call Conf the set of all pseudo states inducing a con�ict� Note that Conf can be
uncountable�
We de�ne a structure M�Conf as the disjoint union of j�

Conf j copies of M � one
copy� denoted by ME � for every set E � �Conf � We denote by sE the copy in ME of
the state s in M � Trivially�M�Conf is a model of T �#� as is M �
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Let ME and ME� be two copies of M in M�Conf � we call �exchanging f��t
E � with

f��tE
�

�� the operation on M�Conf consisting of removing the pair �t
E � f��tE �� from

REf� replacing it with �t
E � f��tE

�

�� and� at the same time� removing �tE
�

� f��tE
�

�� from

RE
�

f�
replacing it with �tE

�

� f��tE��� By exchanging f��tE� with f��tE
�

�� we resolve t for

both ME and ME� � in the sense that tE and tE
�

no longer induce con�icts�
We get a modelM � with the desired property by modifyingM�Conf as follows� for

each state t � Conf � for each E � �Conf such that t � E � we exchange f��t
E � with

f��t
E�ftg��
Indeed� proceeding in this way� on the one hand all con�icts present in the original

model M are eliminated from all its copies in M�Conf � On the other hand no new
con�icts are created�
Finally� M � is a model of T �#�� since by construction T� is valid in M

�� and it is
straightforward to check by induction that for every � � T��#�� for all E � �

Conf �
M� s j� � if and only if M �� sE j� �� �

Lemma �� Let # be a 
nite set of DINB axioms� 	 a DINB formula� and T and
� the mappings de
ned above	 Then T �#� j� � �	� if # j� 		

Proof By contradiction� suppose that # j� 	 and there exists a model M � �
�S�� fR�f� �R

�
f�
g�"�� of T �#� such that � �	� is not valid� As a consequence of

Lemma ��� we can assume that� in M �� for each pair �x� y� � R�
f�� ��any��f�

there

exists a single pseudo state zxy such that �zxy� x� � R�f� and �zxy� y� � R
�
f�
�

From M � we de�ne a structure M � �S� fRrg�"� as follows�

� S � fs � S� jM �� s j� �sg

� �x� y� � Rany if and only if �x� y� � R�f�� ��any��f�
� and similarly for all atomic

programs P � �x� y� � RP if and only if �x� y� � R�f�� �
�any�AP ���f�
�note that

x� y � �s by de�nition of T �#��

� "�x� � "��x�� for all x � S�

We prove that for all program formulae �� �x� y� � R�
f�� ��p 
����f�

if and only if

�x� y� � R�� We proceed by induction on the formation of � �without loss of generality
we skip the cases � � �� � �� and � � �� � ����

� �x� y� � Rany if and only if �x� y� � R�f�� ��any��f�
� by construction of M �

� �x� y� � RP if and only if �x� y� � R
�
f�� �
�any�AP ���f�

� by construction of M �

� �x� y� � R�
f�� ��p
��������f�

i� �x� y� � R�
f�� ��p 
�����f�

and �x� y� � R�
f�� ��p
�����f�

i�

by inductive hypothesis �x� y� � R�� and �x� y� � R�� � i�e� �x� y� � R����� �

� �x� y� � R�
f�� ��p 

����f�

� i�e� �x� y� � R�
f�� ��any��f�

and �x� y� �� R�
f�� ��p
����f�

i�

by inductive hypothesis �x� y� � Rany and �x� y� �� R�� i�e� �x� y� � R
��
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Observe that �x� y� � R�
f�� ��p
����f�

if and only if the single �pseudo� state zxy� such

that �zxy� x� � R�f� and �zxy� y� � R
�
f�
� satis�es �p����

It is easy to prove by induction that� for all state formulae �� for all states x � S
M�x j� � if and only if M �� x j� �s����
Let � be a DINB state formula� Then � ��� is valid in M � if and only if for all

s � S �� M �� s j� �s � �s���� Considering the de�nition of M this holds if and only
if� for all s � S� M� s j� �� i�e� if and only if � is valid in M �
Similarly� let � be a program formula� Then � ��� is valid in M � if and only if for

all s � S� M �� s j� �any � �p���� i�e� if and only if for all �x� y� � R�f�� ��any��f�
� we

have �x� y� � R�
f�� ��p 
����f�

� Considering again the de�nition of M this holds if and

only if� for all �x� y� � Rany we have �x� y� � R�� i�e� if and only if � is valid in M �
Hence M is a model of # in which 	 is not valid� contradicting the hypothesis� �

Putting together the Lemma�� and Lemma�� we can state the following theorem�

Theorem �
 Let # be a set of DINB axioms� 	 a DINB formula� and T and �
the mappings above	 Then # j� 	 if and only if T �#� j� � �	�	

Thus we can reduce logical implication in DINB to logical implication in DIN
which in turn is reducible to satis�ability in DIN and hence is decidable and com�
putational characterized as EXPTIME�complete� as established in Chapter 	� As a
consequence� we can assert the following complexity results for DINB�

Theorem �� Logical implication in DINB is an EXPTIME�complete problem	

Proof By Theorem ��� considering Lemma �
� and Lemma �
� and considering that
logical implication in DIN is EXPTIME�complete� �

Theorem �� Satis
ability of DINB state formulae is an EXPTIME�complete prob�
lem	

Proof Considering that satis�ability of DINB state formulae is EXPTIME�hard�
being DINB an extension of DIN � by Theorem ��� the thesis follows� �

As an immediate consequence we can characterize the computational complexity of
reasoning in CINB�

Theorem �� Satis
ability of CINB concepts� satis
ability of CINB TBoxes� and
logical implication for CINB TBoxes� are EXPTIME�complete problems	

��� Discussion

Let us comment on the semantics of negation on basic roles� Given an interpretation
I � � I� 
I�� there are two ways to assign semantics to such a construct� the one
adopted by CINB� namely to interpret a basic role �� as ��I � anyI � �I where
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anyI �  I � I with anyI ��  I � I in general� and a stronger one� namely to
interpret it as ��I �  I � I � �I ��

In order to see when the extra power of the stronger interpretation comes in� let
us present an example� �A problem is EXPTIME�complete if and only if it is in
EXPTIME and every problem in EXPTIME is polynomially reducible to it�� In �rst
order logic we can express this sentence as�

�p�EXPTIME comp�p� �

EXPTIME�p� � �p��EXPTIME�p��� P red to�p� p�����

Adopting the stronger interpretation of negation on basic roles we can express the
same sentence in a description logic as

EXPTIME comp � EXPTIME u ��P red to��EXPTIME

i�e� �A problem is EXPTIME�complete if it is in EXPTIME and all problems� that
are not linked by the role P red to to it� are not EXPTIME��
Observe that to get the desired meaning we need to refer implicitly to the uni�

versal role �the one interpreted as  I � I�� In fact the extra power of the stronger
interpretation of negation on basic roles is tightly connected with the ability to refer
to a basic role that is universal� an ability that CINB does not have��
It is our opinion that� interpreting negation on basic roles as in CINB su�ces for

most uses� Indeed� it captures the �set�theoretic� di�erence of atomic roles �actually�
of conjunction and disjunction of atomic roles�� It allows for expressing implications
between role expressions involving conjunction� disjunction and di�erence� It su�ces
for expressing inclusion assertions on basic roles� We believe that the only strong
limitation it has is that it cannot be used to express the Cartesian product of the
domain � i�e� the universal role � �or of concepts��

The possibility of denoting a basic role which is universal within CINB would
allow us to express constraints on the cardinality of the domain of interpretation�
by means of quali�ed number restrictions� For example by adopting the stronger
interpretation of negation on basic role the concept �� 
P t �P��� would express
that there are at most 
 individuals in the domain�
Now� we have seen that a fundamental step in devising decidability of CINB is

Lemma ��� To carry out the proof of this lemma it is only required that the logic
ful�lls very general conditions �see the discussion on the similar Lemma �� at the end
of Chapter 	�� Such conditions are actually violated exactly when constraints on the
cardinality of the domain of interpretation can be expressed�
We can conclude that the technique developed in this chapter to establish the

decidability of CINB cannot be applied� if the stronger interpretation of negation on
basic roles is adopted� Indeed� to the best of our knowledge� decidability in this case
remains an open problem�

�This interpretation is stronger� in the sense that it can represent �� as interpreted in CINB �as
any u ��� while the other way round is not true�

�Note that CINB does have the ability to denote the universal role �through the role �any t
any���� essentially�� it lacks the ability to denote it by means of a basic role�
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We close the chapter mentioning the possibility of using DINB for representing
and reasoning about situations evolving as a result of performing actions� in line with
the literature on Situation Calculus in Arti�cial Intelligence� In such respects DINB
o�ers a formal framework with a clean semantics and a precise computational charac�
terization that in our opinion makes it a kind of Principled Monotonic Propositional
Situation Calculus� By exploiting the features of DINB� many advanced issues can
be investigated� including complex actions� concurrent actions� hierarchies of actions�
etc�	 In �	�� and �		� a preliminary account of this line of research is reported�

�In particular� a basic program �� expresses the performance of an action which is di�erent from
�� This way of interpreting negations of programs is well suited for reasoning on actions�
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N�ary Relations

In this chapter we study the description logic CINBR obtained from CINB by means
of suitable mechanisms to aggregate individuals into tuples� Each tuple has an asso�
ciated arity which is the number of individuals constituting the tuple� Tuples of the
same arity n can be grouped into sets forming n�ary relations�� The corresponding
propositional dynamic logic� DINBR� can easily be de�ned� however we will not
explicitly introduce it here�

��� The logic CINBR

An n�ary relation is described by a name and n relation roles �r�roles in the following��
Each r�role names a component of the relation� i�e� a component of each of its tuples�
For each relation R the set of its r�roles is denoted by rol�R�� The cardinality of this
set is greater than or equal to �� and implicitly determines the arity of R� We call
�U �component� the component of R corresponding to the r�role� U � rol�R��
In CINBR� relations having the same set of r�roles U�� � � � � Un can be composed

by means of boolean constructs according to the following abstract syntax�

R ��� AnyU������Un j P j R� uR� j R� tR� j R� � R� j �R

where AnyU������Un denotes the most general relation having as set of r�roles
U�� � � � � Un� P an atomic relation� and R �possibly with a subscript� a generic re�
lation� We remark that CINBR allows for composing relations R� and R� only in
case rol�R�� � rol�R���
A relation R can be projected onto two of its components U�U � � rol�R� getting

a binary relation denoted by R�U�U ��� In CINBR such projections play the part
that basic roles play in CINB� Projections can be composed into navigation paths
by means of nondeterministic choice� chaining� re�exive transitive closure� identity
binary relation projected on concepts� namely�

R ��� R�U�U �� j R� tR� j R� 	R� j R
� j R� j id�C��

�We remark that extending description logics with n�ary relations� has already been proposed in
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Note that the application of the inverse construct can be restricted to only R�U�U ��
projections� without loss of generality� Furthermore� since �R�U�U ���� is equivalent
to R�U �� U �� we could actually do without the inverse construct at all in CINBR�
Next we introduce the constructs to build CINBR concepts� Concepts in CINBR

have the following abstract syntax�

C ��� � j � j A j C� uC� j C� tC� j C� � C� j �C j �R�C j �R�C j
�R�U ��T� � C�� � � � � Tm � Cm j �R�U ��T� � C�� � � � � Tm � Cm

�� lR�U ��T� � C�� � � � � Tm � Cm� j �� lR�U ��T� � C�� � � � � Tm � Cm�

where A denotes an atomic concept� C �possibly with a subscript� a concept� R a
navigation path� R a relation such that U� T�� � � � � Tm � rol�R� and m � jrol�R�j�
The intuitive meaning of the new concept constructs is explained below �the other

constructs have the usual meaning��

� �R�U ��T� � C�� � � � � Tm � Cm represents the set of individuals x such that for
each tuple r in R with x as U �component� the Ti�component of r belongs to the
extension of Ci �i � �� � � � �m��

� �R�U ��T� � C�� � � � � Tm � Cm represents the set of individuals x such that there
is a tuple r in R with x as U �component and xi �i � �� � � � �m� as Ti�component�
such that xi belongs to the extension of Ci�

� �� lR�U ��T� � C�� � � � � Tm � Cm� represents the set of individuals x such that
there are at most l tuples r in R with x as U �component and xi �i � �� � � � �m�
as Ti�component� such that xi belongs to the extension of Ci�

� �� lR�U ��T� � C�� � � � � Tm � Cm� represents the set of individuals x such that
there are at least l tuples r in R with x as U �component and xi �i � �� � � � �m�
as Ti�component� such that xi belongs to the extension of Ci�

The semantics of CINBR is given� as usual� through an interpretation I �
� I � 
I�� now extended to interpret relations and the new constructs� In particu�
lar� if R is a relation whose set of r�roles is rol�R� � fU�� � � � � Ung� then RI is a set
of labeled tuples of the form � U� � d�� � � � � Un � dn � where d�� � � � � dn �  I� We
write r�U � to denote the value associated with the U �component of the tuple r�
Relations R with rol�R� � fU�� � � � � Ung are interpreted by I as�

�AnyU������Un�
I � f� U� � d�� � � � � Un � dn �j d�� � � � � dn �  

Ig
PI � �AnyU������Un�

I

�R� uR��I � RI
� �R

I
�

�R� tR��
I � RI

� �R
I
�

�R� � R��
I � �RI

� �R
I
�

�RI � �AnyU������Un�
I �RI�

Projections R�U�U �� of R onto its U �component and U ��component �U�U � �
rol�R�� are interpreted by I as follows�

R�U�U ��I � f�d� d�� �  I � I j �r � RI�d � r�U �� d� � r�U ��g�
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The other constructs for navigating paths have the usual meaning in I�

Finally the new constructs for concepts are interpreted by I as follows�

��R�U ��T� � C�� � � � � Tm � Cm�
I � fd �  I j

�r � RI �r�U � � d� �r�T�� � CI� � 
 
 
 � r�Tm� � CIm�g

��R�U ��T� � C�� � � � � Tm � Cm�
I � fd �  I j

�r � RI �r�U � � d� r�T�� � CI� � 
 
 
 � r�Tm� � CImg

�� lR�U ��T� � C�� � � � � Tm � Cm�
I � fd �  I j

there are at most l tuples r � RI such that

r�U � � d � r�T�� � CI� � 
 
 
 � r�Tm� � CImg

�� lR�U ��T� � C�� � � � � Tm � Cm�
I � fd �  I j

there are at least l tuples r � RI such that

r�U � � d � r�T�� � CI� � 
 
 
 � r�Tm� � CImg

An interpretation I is a model of a CINBR concept C� if CI �� 
� Similarly� I
is a model of a CINBR relation R� if RI �� 
� A CINBR concept is satis�able� if it
has a model� Similarly a CINBR relation is satis�able� if it has a model� In CINBR�
we allow for inclusion assertions on both concepts� C� v C�� and relations� R� v R�

with rol�R�� � rol�R��� An interpretation I is a model of an inclusion assertions on
concepts C� v C�� if CI� � CI� � Similarly� I is a model of an inclusion assertion on
relations R� v R�� if RI

� � RI
� �

CINBR TBoxes are de�ned as a �nite set of inclusion assertions on both concepts
and relations� An interpretation I is a model of a TBox K if it is a model of all the
inclusion assertions in it� A TBox is satis�able if it has a model� A TBox K logically
implies an inclusion assertion k �either on concepts or on relations�� if every model of
K is a model of k�

Let us show some examples of the use of CINBR� Consider the relation Parents�
with rol�Parents� � fchild� father�motherg� denoting the set of tuples� child and
his�her �natural� parents �both father and mother�� We may force the following
inclusion assertion�

Human v �Parents�child��father � Human�mother � Human

stating that both the father and the mother of a child� who is human� must be
human as well �more precisely� every individual who is Human is such that� if �s�he
participates� as child�component� in a tuple r of the relation Parents� then both the
father�component of r and the mother�component of r are Human�� Note that� in
order to represent the �natural� parents of a child� the relation Parent must be so
that any individual has at most one father and one mother in the relation Parents �
that is� individuals may occur as child�component in at most one tuple of the relation�
This fact can be represented in CINBR by asserting that�

� v �� �Parents�child��child � ���


�



CHAPTER �

��� Reasoning in CINBR

We investigate the decidability and the complexity of the reasoning tasks for CINBR�
Satis�ability of CINBR relations is easily reducible to propositional logic and hence
is characterized as NP�complete� Satis�ability of concepts� satis�ability of TBoxes�
and logical implication in CINBR TBoxes� are all EXPTIME�hard� being CINBR
a superset of CIN � However their decidability and computational complexity char�
acterization are yet to be established� In the following we concentrate on logical
implication� showing that logical implication in CINBR is polynomially reducible
to logical implication in CIN � which is decidable and EXPTIME�complete� In fact
the argument by which we prove the result follows quite closely the one adopted in
Chapter 
 to reduce logical implication in DINB to logical implication in DIN �

For simplicity of exposition we will implicitly assume that in a logical implication
K j� k the atomic relations �including AnyU������Un� occurring in k also occur in K�

�

We start the reduction by de�ning two mappings� �r from CINBR relations to
CIN concepts� and �c from CINBR concepts to CIN concepts�

De�nition We de�ne a mapping �r form CINBR relations R having rol�R� �
fU�� � � � � Ung to CIN concepts �r�R� as follows�

�r�AnyU������Un� � �Any
U������Un

�r�P� � �Any
U������Un

uAP
�r�R� uR�� � �r�R�� u �r�R��
�r�R� tR�� � �r�R�� t �r�R��
�r�R� � R�� � �r�R��� �r�R��
�r��R� � �Any

U������Un

u ��r�R�

where �Any
U������Un

and AP are new atomic concepts� �

De�nitionWe de�ne a mapping �c from CINBR concepts C to CIN concepts �c�C�

�We recall that satis�ability of concepts and satis�ability of TBoxes can be reformulated as
logical implications� namely� a concept C is satis�able i� � �j� C v �� and a TBox K is satis�able i�
K �j� � v ��

�Observe that this will not limit the generality of the result� since if an atomic relation P occurs
in k but not in K� we may add the inclusion assertion P v P to K without changing its model�

��
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as follows�

�c��� � �c

�c��� � ��c

�c�A� � A
�c�C� uC�� � �c�C�� u �c�C��
�c�C� tC�� � �c�C�� t �c�C��
�c��C� � ��c�C�
�c��R�C� � ���c�R���c�C�
�c��R�C� � ���c�R���c�C�
�c��R�U ��T� � C�� � � � � Tm � Cm� �

�f�U ���r�R� u �fT� ��c�C�� u � � �u �fTm ���Cm��
�c��R�U ��T� � C�� � � � � Tm � Cm� �

�f�U ���r�R� u �fT� ��c�C�� u � � �u �fTm ���Cm��
�c��� lR�U ��T� � C�� � � � � Tm � Cm�� �

�� l f�U ��r�R� u �fT� ��c�C�� u � � �u �fTm ���Cm��
�c��� lR�U ��T� � C�� � � � � Tm � Cm�� �

�� l f�U ��r�R� u �fT� ��c�C�� u � � �u �fTm ���Cm��

where fU are new atomic roles� and �
�
c is a mapping from CINBR navigation paths

R to CIN roles ��c�R� de�ned as follows�

��c�R�U�U
��� � f�U 	 �r�R� 	 fU �

��c�R� tR�� � ��c�R�� t �c�R��
��c�R� 	R�� � ��c�R�� 	 �

�
c�R��

��c�R
�� � ��c�R�

�

��c�id�C�� � id��c�C��
��c�R

�� � ��c�R�
��

�

Making use of the above mappings we de�ne a mapping � from CINBR inclusion
assertions to CIN inclusion assertions� and a mapping P from CINBR TBoxes to
CIN TBoxes�

De�nition Let k be a CINBR inclusion assertions� we de�ne ��k� as follows�

� if k � C� v C�� then ��k� � �c u �c�C�� v �c�C��

� if k � R� v R�� then ��k� � �r�R�� v �r�R���

�

Lemma �� Let k be a CINBR inclusion assertion� and � the mapping de
ned above	
Then ��k� is a CIN inclusion assertion� and its size is polynomially related to the
size of k	

Proof Straightforward� �

De�nition Let K be a CINBR TBox� We de�ne a CIN TBox P �K� as P �K� �
P��K� � P��K�� where

��
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� P��K� � f��k� j k � Kg

� P��K� is the set constructed by one

�Any
U������Un

� ��c u �fU� ��c u � � �u �fUn ��c

for each �Any
U������Un

occurring in P��K�� and one

� v �� � fU ���

for each fU occurring in P��K��

�

Lemma �� Let K be CINBR TBox� and P the mapping de
ned above	 Then P �K�
is a CIN TBox� and its size is polynomially related to the size of K	

Proof Straightforward� �

Intuitively� in the models of P �K�� we distinguish individuals in �c� which repre�
sent instances of concepts in models of K� and those in �Any

U������Un

� which represent

instances of the relation AnyU������Un in models of K� Individuals in �Any
U������Un

have exactly one link for each fU� � � � � � fUn � and these links connect them to individ�
uals in �c� In general� a relation R� with rol�R� � fU� � � � � Ung� occurring in K� is
represented in P �K� by the concept �r�R�� i�e� the tuples of R are represented by in�
stances of �r�R�� Observe that this representation is accurate only in the models I of
P �K� where each tuple of R corresponds to a single individual� otherwise� in I there
would be two individuals representing the same tuple� However� we can show �by
using the same technique applied in proving Lemma �� in Chapter 	 and Lemma ��
in Chapter 
� that if P �K� admits a model� then it admits a model satisfying the
above condition� Formally� the following lemma holds�

Lemma �	 The CIN TBox P �K� obtained by the above construction has a model I
if and only if it has a model I� satisfying the condition�

d� d� � �r�R�
I� �

���d� d�� � fI
�

U�
� �d�� d�� � fI

�

U�
�

� � �� �d�� dn� � fI
�

Un
� �d�� dn� � fI

�

Un
�

for every relation R� with rol�R� � fU�� � � � � Ung� occurring in P �K�	

Proof The proof is almost identical to that of Lemma �� in Chapter 	� We sketch
it here for completeness� Suppose that the condition is not already satis�ed in the
model I� we show how to build a model I� in which the condition above is satis�ed�
Given an individual t � �r�R�

I � we denote by fU �t� �U � U�� � � � � Un� the individual
u such that �t� u� � fIU � this is in agreement with f

I
U being functional�

��
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We call con�ict the existence of a non�singleton set S�U��d������Un�dn� of individuals
t� such that t � �r�R�I � and fU��t� � d�� � � � � fUn � dn� for some �xed d�� � � � � dn�
From S�U��d������Un�dn� we randomly choose one individual z� and we say that the
others induce the con�ict� We call Conf the set of all individuals inducing a con�ict�
Note that Conf can be uncountable�
We de�ne a interpretation I�Conf as the disjoint union of j�

Conf j copies of I� one
copy� denoted by IE � for every set E � �Conf � We denote by dE the copy in IE of the
individual d in I� Trivially� I�Conf is a model of P �K� as I is�
Let IE and IE

�

be two copies of I in I�Conf � we call �exchanging fUn�t
E � with

fUn �t
E��� the operation on I�Conf consisting of removing the pair �t

E � fUn�t
E �� from

fI
E

Un
replacing it with �tE � fUn�t

E� �� and� at the same time� removing �tE
�

� fUn�t
E���

from fI
E�

Un
replacing it with �tE

�

� fUn�t
E ��� By exchanging fUn�t

E � with fUn �t
E��� we

resolve t for both IE and IE
�

� in the sense that tE and tE
�

no longer induce con�icts�
We get a model I� with the desired property by modifying I�Conf as follows� for

each state t � Conf � for each E � �Conf such that t � E � we exchange fUn�t
E � with

fUn �t
E�ftg��
Indeed proceeding in this way� on the one hand all con�icts present in the original

model I are eliminated from all its copies in I�Conf � On the other hand no new
con�icts are created�
Finally� I � is a model of P �K�� since by construction inclusion assertions in P��K�

are satis�ed in I�� and it is straightforward to check by induction that for every
C � P �K�� for all E � �Conf � d � CI if and only if dE � CI

�

� �

Now� we are ready to state the desired result�

Theorem �� Let K be a CINBR TBox� k a CINBR inclusion assertions� and P
and � the mappings de
ned above	 Then K j� k if and only if P �K� j� ��k�	

Proof � By contradiction� suppose there exists a model I of K which is not a
model of k�
From I we can de�ne an interpretation I� as follows�

�  I
�

�  I �  I
�

r � where  
I�

r contains one element z�U��d������Un�dn� for each
� U� � d�� � � � � Un � dn �� �AnyU������Un�

I � for some AnyU������Un

� for all AnyU������Un� for all � U� � d�� � � � � Un � dn �� �AnyU������Un�
I � we put

z�U��d������Un�dn� � �
I�

Any
U������Un

�z�U��d� �����Un�dn�� d�� � fI
�

U�

� � �

�z�U��d� �����Un�dn�� dn� � fI
�

Un

� for all P� for all � U� � d�� � � � � Un � dn �� PI� we put z�U��d������Un�dn� � AI
�

P

� �I
�

c �  
I� and for all atomic concepts A� we put AI

�

� AI �

��
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First� note that by construction� I� is a model of P��K��
Next it is easy to verify by induction that� given a CINBR relation R with

rol�R� � fU�� � � � � Ung� for all d�� � � � � dn �  I �

� U� � d�� � � � � Un � dn �� RI i� z�U��d� �����Un�dn� � �r�R�
I�

and that� given a CINBR concept C� for all d �  I�

d � CI i� d � �c�C�
I� �

Let C� v C� be a CINBR inclusion assertion on concepts� The interpretation I
is a model of C� v C� i� for all d �  

I� d � CI� � d � CI� � Considering the de�nition
of I � this holds if and only if� for all d � �c� d � �c�C��

I� � d � �c�C��
I� � i�e� I � is a

model of �c u �c�C�� v �c�C���
Similarly� let R� v R� be a CINBR inclusion assertion on relations � The inter�

pretation I is a model ofR� v R� i� for all� U� � d�� � � � � Un � dn �� �AnyU������Un�
I �

� U� � d�� � � � � Un � dn �� RI
� �� U� � d�� � � � � Un � dn �� RI

� � Considering the def�
inition of I� this holds if and only if� for all z � �I

�

Any
U������Un

� z � �r�R��I
�

� z �

�r�R��
I� � which is equivalent to� for all z �  I

�

� z � �r�R��
I� � z � �r�R��

I� � i�e�
I� is a model of �r�R�� v �r�R���
Hence I � is a model of P �K� and yet is not a model of ��k�� contradicting the

hypothesis�

� Again by contradiction� suppose there exists a model I� of P �K� which is not
a model of ��k�� Without loss of generality we assume that I� satis�es the condition
in Lemma �
�
From I � we can de�ne an interpretation I as follows�

�  I � �I
�

c

� for all AnyU������Un � for all z � �I
�

Any
U������Un

with �z� d�� � fI
�

U�
� � � � � �z� dn� �

fI
�

Un
� we put � U� � d�� � � � � Un � dn �� �AnyU������Un�

I

� for all atomic relations P with rol�P� � fU�� � � � � Ung� for all z �
��Any

U������Un

u AP�
I� with �z� d�� � fI

�

U�
� � � � � �z� dn� � fI

�

Un
� we put � U� �

d�� � � � � Un � dn �� PI

� for all atomic concepts A� we put AI � AI
�

� I�

It is easy to verify by induction that given a CINBR relation R with rol�R� �
fU�� � � � � Ung�

� U� � d�� � � � � Un � dn �� RI i� z � �r�R�
I�

where d�� � � � � dn are the individuals such that �z� d�� � fI
�

U�
� � � � � �z� dn� � fI

�

Un
�observe

that by Lemma �
 d�� � � � � dn univocally determine z�� Similarly we can verify that
given CINBR concept C� for all d � �I

�

c

d � CI i� d � �c�C�
I� �

��
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Let C� v C� be a CINBR inclusion assertion on concepts� The interpretation I� is
a model of�cu�c�C�� v �c�C�� i� for all d �  I

�

� d � ��cu�c�C���I
�

� d � �c�C��I
�

�
that is equivalent to� for all d � �I

�

c � d � �c�C��I
�

� d � �c�C��I
�

� Considering the
de�nition of I this holds if and only if� for all d �  I� d � CI� � d � CI� � i�e� I is a
model of C� v C��
Similarly� let R� v R� be a CINBR inclusion assertion on relations� The inter�

pretation I� is a model of �r�R�� v �r�R�� i� for all z �  I
�

� z � �r�R��I
�

�
z � �r�R��I

�

� that is equivalent to for all z � �I
�

Any
U������Un

� z � �r�R��I
�

�

z � �r�R��I
�

� Considering the de�nition of I this holds if and only if� for all
� U� � d�� � � � � Un � dn �� �AnyU������Un�

I� � U� � d�� � � � � Un � dn �� R� ��
U� � d�� � � � � Un � dn �� R�� i�e� I is a model of R� v R��
Hence I is a model of K and yet is not a model of k� contradicting the hypothesis�

�

Theorem �� Satis
ability of CINBR concepts� satis
ability of CINBR TBoxes�
and logical implication in CINBR TBoxes� are EXPTIME�complete problems	

Proof Considering that� by Lemma �
 and Lemma �	� P �K� and ��k� are poly�
nomially bounded to K and k� the decidability and the complexity of reasoning in
CINBR are an immediate consequence of the results on CIN in Chapter 	� �

�	
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Chapter �

Individuals

In this chapter� we study reasoning involving knowledge on individuals expressed in
terms of membership assertions� Given an alphabet O of symbols for individuals� a
membership assertion is of one of the following forms�

C����� R���� ���

where C is a concept� R is a role� and ��� �� belong to O� The semantics of such
assertions is stated as follows� An interpretation I is extended so as to assign to each
� � O an element �I �  I in such a way that di�erent elements are assigned to
di�erent symbols in O� Then� I satis�es C��� if �I � CI� and I satis�es R���� ���
if ��I� � �

I
� � � RI � An extensional knowledge base �ABox� M is a �nite set of mem�

bership assertions� and an interpretation I is called a model ofM if I satis�es every
assertion inM�
A knowledge base is a pair B � �K�M�� where K is a TBox� andM is an ABox�

An interpretation I is called a model of B if it is a model of both K and M� B is
satis�able if it has a model� and B logically implies an assertion � �B j� ��� where �
is either an inclusion or a membership assertion� if every model of B satis�es �� Since
logical implication can be reformulated in terms of unsatis�ability �e�g� if � � C����
then B j� � i� B � f�C���g is unsatis�able� similarly if � � C� v C�� then B j� �
i� B � fC�u�C�����g is unsatis�able� where �� does not occur in B�� we only need a
procedure for checking satis�ability of a knowledge base�
We study the satis�ability problem for knowledge bases expressed in two descrip�

tion logics CN �Section ���� and CI �Section �����

��� Knowledge bases in CN

The description logic CN is obtained from CI by dropping inverse roles and adding
quali�ed number restrictions �see Chapter 	�� We show that satis�ability of a CN
knowledge base B can be polynomially reduced to satis�ability of a DN formula
��B�� where DN is the PDL obtained from DI by dropping converse programs and
including quali�ed number restrictions�

��
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We start the reduction by de�ning a mapping �� form CN knowledge bases to
DN formulae�

De�nition Let B be a CN knowledge base� We de�ne the DN formula ���B� as
the conjunction of the following formulae �there is a new letter Ai in ���B� for each
individual �i in B��

� for every individual �i�
Ai � �j 
�i�Aj

� for every membership assertion of the form C��i� �� is the mapping introduced
in Chapter ���

Ai � ��C�

� for every membership assertion of the form R��i� �j��

Ai �� R � Aj

� for every inclusion assertion C� v C� in K�

��C��� ��C���

�

We call r
int the program obtained from r by chaining the test ��i�Ai�! after
each atomic program occurring in r� i�e� the program de�ned inductively as�

P
int � P � ��i�Ai�!
�r�� r��
int � �r��
int� �r��
int
�r� � r��
int � �r��
int � �r��
int
�r���
int � �r���
int
��!�
int � �!�

The size of both Post�r� and Pre�r� is polynomial in the size of r�
Next we de�ne the DN �counterpart of a CN knowledge base�

De�nitionLet B be a CN knowledge base� �� the mapping from above� create a new
atomic program� and u an abbreviation for �P�� � � ��Pm�

�� where P�� � � � � Pm are all
the atomic roles in B� We de�ne the DN �counterpart of B as ��B� � ���B� ����B��
where�

� ���B� � ��
��B��
 
 
��

n
� �B���create���u����B��� with one �i��B� �� create � Ai

for each individual �i in B�

� ���B� is the conjunction of the following formulae�

� for all Ai and for all P occurring in ���B��

�create��u��� �P �Ai� �����

��



Knowledge bases in CN

� for all Ai in ���B�� for all � � CL��u����B���

�create��� u � �Ai � ��� �u��Ai � ��� �����

� for all Ai in ���B�� for all � r � � � CL��u����B���

�create���u� �Ai� � r
ind � ���
�u��Ai �� r
ind � ���

�����

� for all Ai� Aj and for all P in ���B�� for all programs r
� � Pre�r�� with r

occurring in CL��u����B���

�create���u� �Ai� � r�
ind�P � Aj��
�u��Ai �� r�
ind�P � Aj���

���	�

�

Lemma �� Let B be a CN knowledge base� and ��B� its DN �counterpart	 Then
��B� is a DN formula� and its size is polynomially related to the size of B	

Proof Straightforward� �

The role of ����������������� and ���	� is to allow us to collapse all the states where
a certain Ai holds� so as to be able to transform them into a single state corresponding
to the individual �i�
In the following� without loss of generality� we will implicitly restrict our attention

to models M � �S� fRPg�"� of ��B� such that S � fsg � fs� j �s� s�� � Rcreate 	
�
S
P RP ��g and M� s j� ��B��
We call states t of a model M of ��B�� individual�aliases of an individual �i i�

M� t j� Ai� The formulae ����� and ���	� allow us to prove the technical lemma below�

Lemma �
 Let M be a model of ��B�� let t be an individual�alias of �i� and let
� r � � � CL��u����B��	 If there is a path from t that satis
es � r � � and contains
N individual�aliases t � t�� � � � � tN � of �i � �i�� � � � � �iN respectively� then from every
individual�alias t� of �i in M � there is a path that satis
es � r � � and contains N
individual�aliases t� � t��� � � � � t

�
N of �i�� � � � � �iN � in the same order as t�� � � � � tN 	

Proof By induction on the number N of individual�aliases�
Base Case� N � �� i�e� the only individual�alias is t� Then� by ������ we have

�create��� u � �Ai� � r
ind � ��� �u��Ai �� r
ind � ����

So from every individual�alias t� of �i there is a path satisfying � r � � in which no
individual�aliases� other than the initial t�� occur�
Inductive Case� N � �� Assume that from t there is a path satisfying � r � �

in which k % � individual�aliases of �i� � � � � � �ik
� occur� Let such a path be �t �
s�� � � � � sw� � � � � sq�� where M� s� j� Ai� � M� sw j� Ai� � and no individual�aliases occur
in �s�� � � � � sw���� This implies that there exists a program r��P � Pre�r� and a

��
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program r�� � Post�r� such that �s�� � � � � sw� � PathsM�r��P �� and �sw� � � � � sq� �
PathsM �r���� and � r��P �� r�� � ��� r � ��
Note that � r�� � � � CL��u����B�� thus� since the path �sw� � � � � sq�� satisfying

� r�� � � contains k individual�aliases of �i�� � � � � �ik� by inductive hypothesis we can
conclude that from each individual�alias of �i� � there is a path satisfying � r�� � �
which goes through one individual�alias for each one of the individuals �i�� � � � � �ik�
in the same order as in �sw � � � � � sq��
On the other hand� by ���	�� we have�

�create��� u � �Ai�� � r�
ind�P � Ai��� �u��Ai� �� r�
ind�P � Ai� ���

So for any individual�alias t� of �i�� there is a path satisfying � r��P � Ai� in which
no other individual�aliases occur� Thus combining these two arguments we get the
thesis� �

Given a model M � �S� fRP g�"� of ��B�� we can obtain a new model M � �
�S�� fR�Pg�$

�� of ��B� in which there is exactly one individual�alias� for each individ�
ual in B� Let s � S be such that M� s j� ��B�� For every individual �i� we randomly
choose� among its individual�aliases x such that �s� x� � Rcreate� a distinguished one
denoted by s	i � We de�ne the relations R

��
create and R

��
P � for every atomic program

P in ���B�� as follows�

� R��create � f�s� s	i� � Rcreate j �i is an individualg�

� R��P � �RP � f�x� y� � RP j M� y j� Aj for some Ajg� � f�x� s	j � j �x� y� �
RP and M� y j� Aj for some Ajg�

Now� we de�ne M � as�

� S� � fsg � fx � S j �s� x� � R��create 	 �
S
P R

��
P �
�g

� R�create � R
��
create � �S

� � S��

R�P � R
��
P � �S

� � S��

� "��x� � "�x�� for each state x � S��

Observe that� for every atomic program P � the number of P �successors of all states
in M �� remains unchanged wrt M � The following two lemmas concern M ��

Lemma �� Let M be a model of ��B�� and M � be de
ned as above	 Then for every
formula � � CL����B��� for every state x of M �� M�x j� � i� M �� x j� �	

Proof By induction on the formation of � �called formula induction in the following��
We assume� without loss of generality� ���� �
�� �� n 
� to be expressed by means of
���� � 
 �� �� n 
��

� � � A �atomic formula�� M�x j� A i� M �� x j� A� by construction of M ��

� � � ������ M�x j� ����� i�M�x j� ���M�x j� �� i�M
�� x j� ���M

�� x j� ��
�by formula induction hypothesis� i� M �� x j� �� � ���

��
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� � � ���� M�x j� ��� i� M�x �j� �� i� M �� x �j� �� �by formula induction
hypothesis� i� M �� x j� ����

� � � �� nP �����

�� M�x j� �� nP ���� if there are at least n states x�� � � � � xn such thatM�xi j�
��� We distinguish two cases�

� xi is not an individual�alias� Then �x� xi� � RP implies �x� xi� � R�P �
whereas by formula induction hypothesis M �� xi j� ���

� xi is an individual�alias for �j� Then� by ������ either xi � s	j or �x� s	j � ��
RP � In both cases� by construction of M �� �x� xi� � RP implies �x� s	j� �
R�P � Now� M�xi j� �� implies M� s	j j� �� by ������ and thus� by formula
induction hypothesis M �� s	j j� ���

Hence we can conclude that M �� x j� �� nP �����

�� M �� x j� �� nP ���� if there are at least n states x�� � � � � xn such that
M �� xi j� ��� We distinguish two cases�

� xi is not an individual�alias� Then �x� xi� � R�P implies �x� xi� � R�P �
whereas by formula induction hypothesis M�xi j� ���

� xi � s	j � Then� by construction of M
� and by ������ �x� s	j � � R

�
P implies

that there exists �exactly� one t in M such that �x� t� � RP �possibly
t � s	j �� Now� M

�� s	j j� �� implies M� s	j j� ��� by formula induction
hypothesis� and thus� by ������M �� t j� ���

Hence we can conclude that M�x j� �� nP �����

� � �� r � ���

�� Let M�x j�� r � �� then there is a path �x � x�� � � � � xq� � PathsM�r�
such that M�xq j� ��� We prove M �� x j�� r � ��� by induction on the number
k of individual�aliases along the path �x�� � � � � xq�� starting the count from the
�rst non�chosen individual�alias �we call this induction� path induction��

k � �� this means that for all the states xi along the path� xi � S
�� By applying

Proposition 
 q times and Proposition 	 once� we can conclude that there exists
a formula

� �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pq� ��q��!� � � � ��q�gq!� � ��

with gi � �� such that�

� all tests �i�j! occur in r� and hence all �ij are subformulae of � r � ���

� �xi��� xi� � RPi � for i � �� � � � � q�

� the formula
� �����!� � � � ����g�!��P��
�����!� � � � ����g�!�� � � � �Pq�
��q��!� � � � ��q�gq!� � �� �� r � ��

is valid�

��
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By formula induction hypothesis we have that� for all �i�j� M�xi j�
�i�j i� M �� xi j� �i�j� and M�xq j� �� i� M �� xq j� ��� While by construction
of M �� �xi��� xi� � RPi implies �xi��� xi� � R�Pi � Hence M

�� x j�� r � ���

k � �� Let �x�� � � � � xq� � �x�� � � � � xu� � � �xq� where xu� such that M�xu j� Aj �
is the �rst non�chosen individual�alias along the path �x�� � � � � xq�� By applying
Proposition 
 m times only� we can conclude that� there exists a formula

� �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pu �� r� � ��

with g� � �� such that�

� all tests �i�j! occur in r� and hence all �ij are subformulae of � r � ���

� r� � Post�r��� and hence by Proposition �� the formula � r� � �� is equiv�
alent to 	 for some 	 � CL�� r � ��� � CL����B���

� �xi��� xi� � RPi � for i � �� � � �u�

� �xu� � � � � xq� � PathsM �r���

� � �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pu �� r� � �� �� r � ��

is valid�

The path �xu� � � � � xq� contains k individual�aliases thus� by Lemma 	�� from
each individual�alias on �j there is a path satisfying � r� � �� which goes
through exactly the �same� k individual�aliases in the same order� Let �s	i �
x�u� � � � � x

�
q�� be such a path from s	j � This path contains strictly less than k

individual�aliases� excluding x�u� thus by path induction hypothesis�M
�� s	i j��

r� � ���

Now� by construction of M �� �xu��� xu� � RPu implies �xu��� s	i� � R
�
Pu
thus

M �� xu�� j�� Pu �� r� � ��� Whereas� by formula induction hypothesis� for all
�i�j�M�xi j� �i�j i� M �� xi j� �i�j� Hence considering that for i � �� � � � � u���
�xi��� xi� � RPi implies �xi��� xi� � R

�
Pi
� we get M �� x j�� r � ���

�� Let M �� x j�� r � ��� then there is a path �x � y�� � � � � yq� � PathsM ��r�
such thatM �� yq j� ��� We proveM�x j�� r � ��� by induction on the number k
of individual�aliases along the path �y�� � � � � yq� excluding x� if x is an individual�
alias �we call this induction� path induction��

k � �� this means that for all the states yi along the path� yi � S� By applying
Proposition 
 q times and Proposition 	 once� we can conclude that there exists
a formula

� �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pq� ��q��!� � � � ��q�gq!� � ��

with gi � �� such that�

� all tests �i�j! occur in r� and hence all �ij are subformulae of � r � ���

� �yi��� yi� � R
�
Pi
� for i � �� � � � � q�

��
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� the formula
� �����!� � � � ����g�!��P��
�����!� � � � ����g�!�� � � � �Pq�
��q��!� � � � ��q�gq!� � �� �� r � ��

is valid�

By formula induction hypothesis� for all tests �i�j M �� yi j� �i�j i� M� yi j� �i�j�
and M �� yq j� �� i� M� yq j� ��� While by construction of M �� �yi��� yi� � R�Pi
implies �yi��� yi� � RPi � Hence M

�� x j�� r � ���

k � �� Let �y�� � � � � yq� � �y�� � � � � yu� � � �yq� where yu � s	i is the �rst
individual�alias along the path� By applying Proposition 
 m times only� we
can conclude that� there exists a formula

� �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pu �� r� � ��

with g� � �� such that�

� all tests �i�j! occur in r� and hence all �ij are subformulae of � r � ���

� r� � Post�r��� and hence by Proposition �� the formula � r� � �� is equiv�
alent to 	 for some 	 � CL�� r � ��� � CL����B���

� �yi��� yi� � R�Pi � for i � �� � � �u�

� �yu� � � � � yq� � PathsM ��r���

� � �����!� � � � ����g�!��P�� �����!� � � � ����g�!�� � � � �Pu �� r� � �� �� r � ��

is valid�

Notice that M �� s	i j�� r� � ��� and along yu� � � � � yq there are k�� individual�
aliases� excluding yu� Thus� by path induction hypothesis M� s	i j�� r� � ���
and by ����� the same is true for all the individual�aliases of �i appearing inM �

Now� by construction of M �� �yu��� yu� � R�Pu implies that there exists an
individual�alias t of �i such that �yu��� t� � RPu � Thus M� yu�� j�� Pu ��
r� � ��� Whereas� by formula induction hypothesis� for all �i�j� M

�� xi j�
�i�j i� M�xi j� �i�j� Hence considering that� for i � �� � � � � u� �� �yi��� yi� �
R�Pi implies �yi��� yi� � RPi � we get M�x j�� r � ���

�

Lemma �� Let M be a model of ��B� such that M� s j� ��B�� and let M � be a
structure derived from M as speci
ed above	 Then M �� s j� ��B�	

Proof By Lemma 	� M� s j� ���B� implies M �� s j� ���B�� On the other hand�
we trivially have M �� s j� ���B�� since it has one individual�alias of each individual�
Hence the thesis holds� �

We can now state the main theorem on reasoning in CN knowledge bases�

��
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Theorem �� A CN knowledge base B is satis
able i� its DN �counterpart ��B� is
satis
able	

Proof � Let I be an interpretation satisfying the knowledge base B� Then we can
de�ne a modelM � �S� fRPg�"� of ��B� as follows� S �  

I � fsnewg� R

P � � P I�
Rcreate � f�snew� �

I
i � j �i � Og� "�s� � f��A� j s � AIg � fAi j s � �Ii g� It is

easy to see that M� snew j� ���B�� Furthermore since� by construction� in M there
is exactly one individual�alias of each individual� we have triviallyM� snew j� ���B��
Hence M� snew j� ��B��

� If there exists a model M of ��B� then by Lemma 	� we can construct a
model M � such that for each individual there exists exactly one individual�alias� Let
M �� s j� ��B�� we can de�ne an interpretation I as follows�  I � fs� j �s� s�� �
R�create 	 �

S
P R

�
P �
�g� RI � R�

R�� C

I � fs� jM �� s� j� ��C�g� and for each individual

�i� �
I
i � fs	i jM

�� s	i j� Aig �please notice that this set is a singleton��
Now for each inclusion assertion C� v C� in B� we have that ��C��� ��C�� holds

in every state of M �� thus CI� � CI� � For each membership assertion �i � C in B�
we have M �� s	i j� ��C�� Finally for each membership assertion �iR�j� we have that
M �� s	i j�� ��R� � Aj and there is only one state in M � in which Aj holds� thus
��i� �j� � R

R�� Hence I satis�es B� �

Theorem �� Satis
ability and logical implication for CN knowledge bases �TBox
and ABox
 are EXPTIME�complete problems	

Proof By Theorem 	�� satis�ability for CN knowledge bases is polynomially related
to satis�ability in DN � which is EXPTIME�complete� by Theorem �
� �

��� Knowledge bases in CI

Analogously to the case of CN � satis�ability of a CI knowledge bases can be polyno�
mially reduced to satis�ability of DI�formulae�
We de�ne a mapping ���B� from CI knowledge bases to DI formulae� as identical

to �� introduced in the previous section� Then we de�ne the DI�counterpart of a CI
knowledge base as follows�

De�nition Let B be a CI knowledge base� �� the mapping de�ned above� create a
new atomic program� and u an abbreviation for �P� � � � � � Pm � P�� � � � � � P�m �

��
where P�� � � � � Pm are all the atomic roles in B� We de�ne the DI�counterpart of B as
��B� � ���B� � ���B�� where�

� ���B� � ����B��
 
 
��
n
� �B���create���u����B��� with each �

i
��B� �� create � Ai

for each individual �i in B�

� ���B� � ����B� � 
 
 
 � �p��B�� where we have one �
i
��B� of the form

�create��� u � �Ai � ��� �u��Ai � ���� ���
�

for each Ai� and for each � � CL��u����B���

��
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�

Lemma �� Let B be a CI knowledge base� and ��B� its DI counterpart	 Then ��B�
is a DI formula� and its size is polynomially related to the size of B	

Proof Straightforward� �

Again� the role of ���
� is to make all the states where a certain Ai holds� equivalent�
so as to be able to collapse them into a single state corresponding to the individual �i�
By reasoning similarly to the case of CN � we are going to show that B is satis�able
i� ��B� is satis�able��

We again use the notion of individual�aliases of an individual in the models of
��B��
Let M � �S� fRP g�"� a model of ��B�� such that M� s j� ��B�� for some state

s � S� We show how to obtain a new modelM � of ��B� in which for every individual
in B there is exactly one individual�alias in M ��
For each individual �i� we randomly choose among the individual�aliases x such

that �s� x� � Rcreate� a distinguished one denoted by s	i and we de�ne R
��
create �

f�s� s	i� j �i is an individualg� For each atomic program P we de�ne R��P as follows�

� if �x� y� � RP � M�x j� �i�Ai� and M� y j� �i�Ai� then we put �x� y� � R��P �

� if �x� y� � RP � M�x j� �i�Ai� and M� y j� Aj then we put �x� s	j � � R
��
P �

� if �x� y� � RP � M�x j� Aj � and M� y j� �i�Ai� then we put �s	j � y� � R
��
P �

� if �x� y� � RP � M�x j� Ai� and M� y j� Aj � then we put �s	i � s	j � � R
��
P �

The structure M � � �S�� fR�Pg�"
�� is now de�ned as follows�

� S� � fsg � fx � S j �s� x� � R��create 	 �
S
P �R

��
P �R

��
P
���g

� R�create � R
��
create

� R�P � R
��
P � �S

� � S��

� "��x� � "�x�� for each state x � S��

Note that� in contrast to the construction in the previous section� the one above
does not preserve the number of edges involving the chosen individual�aliases� hence
it does not preserve either local or global functionality� The main properties of M �

are stated in the following two lemmas�

Lemma �	 Let M be a model of ��B�� let M � be de
ned as above� and let f � S � S �

be a mapping de
ned as follows�

f�x� �

�
s	i if M�x j� Ai �for some Aj

x otherwise�

�The proof is much simpler in this case� witness the absence of constraints analogous to ����� and
������

�	
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Then for every formula � � CL����B��� for every state x of M �

M�x j� � i� M �� f�x� j� ��

Proof We prove the lemma by induction on the formation of � �called formula in�
duction in the following�� We assume� without loss of generality� �� �
� to be expressed
by means of ���� � 
 �� and that the converse operator is applied only to atomic
programs�

� � � A�

M�x j� A i� M �� f�x� j� A by construction of M ��

� � � �� � ���

M�x j� �� ��� i� M�x j� �� �M�x j� �� i� �by formula induction hypothesis�
M �� f�x� j� �� �M �� f�x� j� �� i� M �� f�x� j� �� � ���

� � � ����

M�x j� ��� i� M�x �j� �� i� �by formula induction hypothesis� M �� f�x� �j� ��

i� M �� f�x� j� ����

� � �� r � ���

�� Let M�x j�� r � �� and let �x � x�� � � � � xq� � PathsM�r� such that
M�xq j� ��� We prove M �� f�x� j�� r � ��� by induction on the length q of the
path �called path induction� in the following��

q � �� By Proposition 	� there exists a formula� ��!� � � � ��g! � ��� with g � ��
such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M�x j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � ��� r � � is valid�

By formula induction hypothesis� for 	 � f��� � � � � �q� �
�g� M�x j� �i implies

M �� f�x� j� �i�

q � �� By Proposition 
� there exists a formula � ��!� � � � ��g!� a �� r� � ���
with g � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r� � Post�r�� and hence the formula � r� � �� is equivalent to 	 for some
	 � CL�� r � ��� � CL����B���

� �x�� x�� � Ra�

� �x�� � � � � xq� � PathsM �r
���

� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

��
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By formula induction hypothesis� for �i � f��� � � � � �qg� M�x j� �i implies
M �� f�x� j� �i� By construction of M �� �x� x�� � Ra implies �f�x�� f�x��� � R�a�
By path induction hypothesis� since �x�� � � � � xq� � PathsM �r�� is shorter then
�x�� � � � � xq� � PathsM�r�� we can conclude that M�x� j�� r� � �� implies
M �� f�x�� j�� r� � ��� Hence M �� x j�� r � ���

�� LetM �� f�x� j�� r � �� and let �f�x� � y�� � � � � yq� � PathsM ��r� such that
M �� yq j� ��� We prove M�x j�� r � ��� by induction on the length q of the
path �called path induction� in the following��

q � �� By Proposition 	� there exists a formula� ��!� � � � ��g! � ��� with g � ��
such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M� f�x� j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � ��� r � � is valid�

By formula induction hypothesis� for 	 � f��� � � � � �q� ��g�M �� f�x� j� �i implies
M�x j� �i�

q � �� By Proposition 
� there exists a formula � ��!� � � � ��g!� a �� r� � ���
with g � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r� � Post�r�� and hence the formula � r� � �� is equivalent to 	 for some
	 � CL�� r � ��� � CL����B���

� �y�� y�� � R�a�

� �y�� � � � � yq� � PathsM ��r���

� � ��!� � � � ��g!� a �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for �i � f��� � � � � �qg � M �� f�x� j� �i implies
M�x j� �i� By construction of M �� if �f�x�� y�� � R�a then there exists a state
x� such that f�x�� � y� and �x� x�� � Ra� By path induction hypothesis�
since �y�� � � � � yq� � PathsM ��r�� is shorter then �y�� � � � � yq� � PathsM ��r�� we
can conclude that M �� f�x�� j�� r� � �� implies M�x� j�� r� � ��� Hence
M�x j�� r � ���

�

Lemma �� Let M be a model of ��B� such that M� s j� $� and let M � be derived
from M � as speci
ed above	 Then� M �� s j� ��B�	

Proof By Lemma 	
 M� s j� ���B� implies M �� s j� ���B�� On the other hand�
M �� s j� ���B�� since it has one individual�alias of each individual� Hence the thesis
holds� �

We can now state the main theorem of this section�

�
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Theorem �� A CI knowledge base B is satis
able i� its DI�counterpart ��B� is
satis
able	

Proof Similar to the proof of Theorem 	�� �

Theorem �� Satis
ability and logical implication for CI knowledge bases �TBox and
ABox
 are EXPTIME�complete problems	

Proof By Theorem 	�� satis�ability for CI knowledge bases is polynomially related
to satis�ability in DI� which is EXPTIME�complete� �

��� Discussion

Observe that in devising the results in Section ��� and Section ���� we did not exploit
the fact that knowledge about individuals is organized in membership assertions� We
exploited only the fact that the number of individuals occurring in a knowledge base
is �nite�
This observation allows us to rephrase the results in those sections in a more

general form� Let us introduce the description logics CNO and CIO� which are
obtained by adding to CN and CI special atomic concepts A	� called names� having
exactly a single instance �� i�e� the individual they name� Names may occur in
concepts exactly as atomic concepts� and hence constitute one of the most �exible
way to express knowledge about single individuals�
By using names we can capture the construct ONE�OF� having the form

f��� � � � � �ng� denoting the concept made of exactly the enumerated individuals
��� � � � � �n

�� as well as the construct FILLS� having the form R � �� denoting those
individuals having the individual � as a role 
ller of R � �see ����� and references
therein for further discussion on these constructs��
The result in Section ��� can be generalized as follows� satis�ability in CNO

knowledge bases can be polynomially reduced to satis�ability of CN formulae� hence
is decidable� and EXPTIME�complete� Similarly� the result in Section ��� can be
generalized as follows� satis�ability in CIO knowledge bases can be polynomially
reduced to satis�ability of CI formulae� hence is decidable� and EXPTIME�complete�
It is straightforward to de�ne the propositional dynamic logics DNO and DIO�

corresponding to the description logics CNO and CIO respectively� It is also straight�
forward to de�ne CFO and DFO� the description logic and propositional dynamic
logic obtained from CNO and DNO by allowing only functional restrictions� instead
of full quali�ed number restrictions�

The notion of names introduced above has a correspondent in modal logic in the
notion of nominals� Nominals have a tradition in modal logic that dates back to
��
� ���� recent papers on nominals are ���� 
�� ���� Nominals have also been studied

�Actually� names and the ONE�OF construct are essentially equivalent� since a name A� is
equivalent to f
g and f
� � � � � 
ng is equivalent to A�� t � � � tA�n �

�The FILLS construct R � 
 is captured by �R�A��

��



Discussion

within the setting of propositional dynamic logics in ���� 
�� ���� In the following� we
focus on two such logics�
The �rst is called deterministic combinatory propositional dynamic logic� DcPDL�

and is essentially deterministic propositional dynamic logic augmented with nominals�
In ���� its decidability is established� by a �nite model argument� and it is proved that
satis�ability can be checked in nondeterministic double exponential time� i�e� it is in
the complexity class �NEXPTIME� Since that paper� this upper bound hasn�t be
improved �see ������ Obviously since DcPDL contains deterministic PDL� its satis��
ability is EXPTIME�hard� Thus the computational complexity of satis�ability is not
fully characterized yet� Now it is easy to check that every DcPDL formula can be
polynomially translated into a DFO formula� From the discussion above we know
that satis�ability in DFO is EXPTIME�complete� Hence the results in this chapter
allow us to precisely characterize the complexity of satis�ability �and thus of validity
and logical implication� of DcPDL as EXPTIME�complete� closing the previous gap
between the upper bound and the lower bound�
The second logic we consider is called converse combinatory propositional dynamic

logic� CcPDL� and is essentially converse propositional dynamic logic with nominals�
Such logic is not known to be decidable yet� see ����� Now it is easy to check that
every CcPDL can be polynomially translated into a DIO formula� preserving satis�a�
bility� where DIO is the propositional dynamic logic corresponding to CIO� From the
discussion above we know that satis�ability in DIO is EXPTIME�complete� Hence
the results in this chapter allow us to establish the decidability of CcPDL and to pre�
cisely characterize the computational complexity of satis�ability �and hence validity
and logical implication� as EXPTIME�complete�
Finally� we remark that� to the best of our knowledge� DNO is the �rst logic

in which both nominals and graded modalities �quali�ed number restrictions� are
present�
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Recursive De�nitions�

Fixpoints

There are basically two ways of using and describing classes �concepts�� In the �rst
one� which we can call the prescriptive approach� the description formalism allows for
expressing several properties of a class� thus prescribing constraints that the instances
of the class must satisfy� In the second one� which we can call the de
nitional approach�
the formalism allows for providing the de�nition of a class� i�e� a set of properties that
precisely characterize the instances of the class� While the prescriptive approach is
quite well understood and established� the de�nitional approach is still the subject
of an interesting debate� regarding both its nature and its semantic foundation� In
particular� it is well known that there are various possibilities of assigning a meaning
to a class de�nition when it contains some sort of recursion ��� �� �	� �� 
��
In this chapter� we are concerned with the semantical problems related to the

de�nitional approach� arguing that� instead of choosing a single style of semantics for
the knowledge representation formalism� we achieve better results by adopting a more
general formalism that allows for di�erent semantics to coexist�

	�� Fixpoints

In this section� we brie�y recall some notions on �xpoints� The reader is referred to
���� for an introduction to the subject�
Consider the equation X � f�X� where f is an operator from �S to �S ��S

denotes the set of all subsets of a set S�� The solutions E of such an equation are
called 
xpoints of the operator f � In general an equation as the one above may have
either no solution� a �nite number of solutions� or in�nite number of them� Among
the various solutions� the smallest and the greatest solutions �with respect to set�
inclusion� have a prominent position� if they exist� A fundamental result due to
Tarski ����� guarantees the existence and the uniqueness of both such solutions in
case f is monotonic wrt set�inclusion ���� where f is monotonic wrt � whenever
E� � E� implies f�E�� � f�E���

���
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Theorem �
 �Tarski� Let S be a set� and f an operator from �S to �S that is
monotonic wrt �	 Then� there is a unique least 
xpoint of f given by�

fE � S j f�E� � Eg

and a unique greatest 
xpoint of f given by�
fE � S j E � f�E�g�

	�� Concept de
nitions as equations

It is widely recognized that the notion of TBox as introduced in Chapter � can be
made more powerful if we allow some sort of concept de�nitions to be expressed� Let
us call de
nition statement �or simply de�nition�� statements of the form�

A �def C

where A is an atomic concept and C is a concept expression �A cannot occur in the
left�hand part of more then one de�nition�� Intuitively� the above de�nition statement
is intended to provide a precise account of A in terms of C� When we specify the
semantics of de�nitions� we need to distinguish between two di�erent types of atomic
concepts� namely� primitive concepts and de
ned concepts� given a set D of de�nitions�
primitive concepts are the atomic concepts that do not appear on the left of any
de�nition of D� whereas de�ned concepts are those that have an associated de�nition
in D� An interpretation I satis�es a set of de�nitions if� for each A �def C in the set�
I assigns the same subset of  I to the de�ned concept A and to concept C�
We call recursive de
nition statements� �or simply recursive de�nitions�� de�nition

statements of the form
A �def F �A��

where F �A� stands for a concept that has A as a subconcept� � From a semantical
point of view� a recursive de�nition A �def F �A� is a sort of equation specifying that�
for any interpretation I� the subset of  I that can be tied to the concept A must
satisfy the equation AI � �F �A��I � i�e� must be one of its solutions� Notice that�
in general� either none� one� or several subsets of  I may exist which are solutions
of the above equation� For example� it is easy to see that two interpretations that
satisfy the statement A �def P u �R�A and that agree on both the concept P and
the role R� may di�er in the extension assigned to the de�ned concept A� Notice also
that we can associate to a de�nition statement an operator from subsets of  I to
subsets of  I � such that the solutions of the equation correspond to the �xpoints of
the operator� For example to the de�nition A �def P u�R�A we can associate� for any
interpretation I� the operator �S�fs �  I j s � P I and �t��s� t� � RI implies t � Sg�
In the literature on concept languages� three semantics for recursive de�nitions�

have been proposed �see ��	���

�Terminological cycles in 	�� �� ���� Note that� for the moment� we do not consider mutual
recursive de�nitions� as A �def F �B�� B �def F ��A��

�A subconcept of a conceptC is any substring of C �includingC itself� that is a concept� according
to the syntax rules�

���



Concept de
nitions as equations

� the descriptive semantics�

� the least �xpoint semantics�

� the greatest �xpoint semantics�

Let us recall their properties using some examples� According to the descriptive
semantics� a recursive de�nition A �def F �A� is a constraint stating that� for any I
satisfying the de�nition� AI has to be any solution of the equation AI � �F �A��I � In
other words� the meaning assigned to A �def F �A� is the same as that assigned to
the equivalence assertion A � F �A�� In our example� A �def P u �R�A states that
the individuals in the class A are those in the class P that are related by means of R
to individuals in A itself� and vice versa� where A is no better speci
ed� In fact� the
descriptive semantics is not appropriate to properly de�ne recursive concepts� Instead�
it is suitable to specify a set of necessary and su�cient conditions that individuals
must satisfy in order to be instances of a concept� For example ��	�� we can express
the fact that humans are mammals having two parents that are humans� and� on the
converse� that mammals having two parents that are humans are humans themselves�
in terms of the equivalence assertion

human � mam u �� � par���u �� � par���u �par�human�

It is interesting to observe that we may state an analogous property for horses
horse � mamu �� � par���u �� � par���u�par�horse without implying any mutual
relationship between human and horse� We will see later on� this is not true if we
use a �xpoint semantics for de�ning these two concepts�
According to the least �greatest� �xpoint semantics� a de�nition statement of the

form A �def F �A� speci�es that� in any interpretation I� A is to be interpreted as
the smallest �greatest� solution� if it exists� of AI � �F �A��I � In other words� in
order to consider an interpretation I adequate to give a meaning to A �def F �A��
any other interpretation J � agreeing with I on the primitive concepts and roles� must
assign to A a superset �subset� of AI � Let us consider some examples illustrating the
di�erences in the two �xpoint semantics� In our running example A �def P u �R�A�
the least �xpoint semantics leads to identify A with �� �indeed the empty set satis�es
the statement� and it is obviously the smallest solution�� while the greatest �xpoint
semantics interprets A as the largest class satisfying the de�nition� which can be
proven to be equivalent to �R��P � where R� denotes the re�exive and transitive
closure of R�
Although the least �xpoint semantics does not help in the above example� it is

particularly suitable for providing inductive de
nitions of concepts� Consider the case
of a single source �nite directed acyclic graph �DAG� de�ned as follows��

� an EMPTY�DAG is a DAG �base step��

�We assume that a leaf of a DAG is a NODE with all arcs leading to a special node called
EMPTY�DAG� as opposed to a NODE having no connection at all� Indeed� in the latter case� the
de�nition of dag would simplify to dag �def node u �arc�dag� hiding the general form of inductive
de�nitions� i�e� base case and inductive case�
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� a NODE that has connections and all connections are DAGs� is a DAG �induc�
tive step��

� nothing else is a DAG�

We can write a natural de�nition statement denoting the class of DAGs� namely

dag �def emptydag t �node u �arc��u �arc�dag��

as long as we interpret it according to the least �xpoint semantics� Similarly� we
can model the class of LISTs �de�ned inductively as� an EMPTY�LIST is a LIST�
a NODE that has exactly one successor that is a LIST is a LIST� nothing else is a
LIST� by

list �def emptylist t �node u �� �succ���u �succ�list��

The greatest �xpoint semantics is well suited for de�ning classes of individuals
whose structure is non�well�founded or co�inductive� An example is the class of
STREAMs� modeling the well�known linear data structure having a NODE as �rst
element� and such that the rest of the structure is a STREAM itself� Note that
streams� di�erently from lists� are in�nite sequences of nodes� A natural statement
for the de�nition of stream is

stream �def node u �� � succ���u �succ�stream

with the proviso that� for every I� we need to associate to streamI the greatest
solution of the corresponding equation�
Notice however that� if we interpret the de�nition statements

human�def mam u �� � par���u �� � par���u �par�human�
horse �def mam u �� � par���u �� � par���u �par�horse

by the greatest �xpoint semantics� as well as with least �xpoint semantics� we obtain
a rather non�intuitive result� for any interpretation I satisfying the above de�nition
statements� humanI � horseI �
The above considerations show that the three semantics capture di�erent intu�

itions� and hence we may need all of them in the same TBox in order to properly
model di�erent concepts� Our proposal in this paper is exactly in the direction of
reconciling the various semantics in the same TBox� This is pursued by means of
a language that incorporates two constructs� �X�F �X� and �X�F �X� �the symbols
X�Y� � � � stand for concept variables�� denoting� respectively� the least �xpoint and the
greatest �xpoint of the operator associated with the de�nition X �def F �X�� that is�
for every I satisfying the de�nition� the smallest solution and the greatest solution of
the equation XI � �F �X��I �
In our approach� de�nition statements will never appear in a TBox� Instead� as

usual a TBox will be simply a set of inclusion assertions that may involve �xpoint
constructs� For example� in order to specify the properties of the concepts of human�
horse� dag� list and stream� we can use the equivalence assertions��

�Notice that� if we add to this TBox the equivalence assertion sm � �X � mamu�
 � par���u�	
� par��� u �par�X� de�ning the concept sm �sexual mammal�� then it turns out that both human

and horse are subsumed by sm�
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dag � �X � emptydag t �node u �arc��u �arc�X�
list � �X � emptylist t �node u �� � succ���u �succ�X�
stream� �X�nodeu �� � succ���u �succ�X
human�mam u �� � par���u �� � par���u �par�human
horse �mam u �� � par���u �� � par���u �par�horse�

The availability of least and greatest �xpoint constructs not only allows di�erent
semantics to be used in the same TBox� but also increases the expressive power of
concept de�nitions� On the one hand� it makes it possible to model not only ab�
stract classes� but also inductively and co�inductively de�ned data structures� such
as dags� lists and streams� This is particularly important if our objective is to in�
tegrate class�based representation formalisms and programming systems �declarative
or procedural�� in order to make these formalisms more useful in practice� On the
other hand� we have the possibility of nesting �xpoints� thus going beyond the simple
equational format by which we motivated their introduction� As an example� consider
the following� Among the inhabitants of the planet �Plonk�� a disease called �foo�
is quite common� Such a disease manifests itself in two forms� a �visible� one and
a �latent� �not visible� one� and it has a rather intricate hereditary pattern� Indi�
viduals that have the visible form transmit the visible form to at least one direct
descendant �obviously� if there is any direct descendant�� these ill descendants in turn
do the same� and so on� until someone transmits the latent form of the disease� All
direct descendants �if any� of an individual that has the latent form inherit the visi�
ble form� The pattern goes on like this� generation after generation� forever� Notice
that� along any chain of descendants� the visible form of the disease sooner or latter
is interrupted� because either an individual has no direct descendant or an individual
transmits to some descendant the latent form� The hereditary pattern �foo hp� of
the above disease can be de�ned as follows�

foo hp � �X��Y���visible u ��child�Y t �child����t
��visible u �child��visible uX���

where visible denotes the visible form of the disease� while �visible denotes the latent
form�

	�� The description logic �ALC

The �rst description logic involving �xpoints that we shall study is called �ALC� and
is obtained by adding the �xpoint constructs to ALC�
In the sequel we make use of notions of scope� bound and free occurrences of

variables� closed formulas� etc� The de�nitions of these notions are the same as the
analogues in �rst�order logic� treating � and � as quanti�ers�
The primitive symbols in �ALC are atomic concepts� �concept
 variables �denoted

by X�Y� � � ��� and atomic roles which are the only roles admitted in the language�
Concepts in �ALC are formed inductively according to the following abstract

syntax�

C ��� A j � j � j �C j C� uC� j C� t C� j �R�C j �R�C j �X�C j �X�C j X

��	
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where A denotes an atomic concept� R an atomic role� X a variable� We implicitly
assume the restriction that every free occurrence of a variable X is in the scope of an
even number of negation signs ����
Not all the constructs introduced are independent� The following equalities hold�

� � ��� �R�C � ��R��C� � � �X�X� �X�C � ��X��C�X��X� �where C�X��X�
is the concept obtained substituting all free occurrences of X by the concept �X��
As usual� an interpretation I � � I � 
I� consists of a domain of interpretation  I�

and a interpretation function 
I � which maps every atomic concept to a subset of  I�
and every atomic role to a subset of  I � I� But the presence of free variables does
not allow us to extend the interpretation function 
I directly to every concept of the
language� For this reason we introduce valuations� A valuation � on an interpretation
I� is a mapping from variables to subsets of  I �
Given a valuation �� we denote by ��X�E � the valuation identical to � except for

��X�E ��X� � E � In other words� for every variable Y �

��X�E ��Y � �

�
E if Y � X
��Y � if Y �� X

Let I be an interpretation and � a valuation on I� We assign meaning to concepts
of the language by associating to I and � an extension function 
I� � mapping concepts

to subsets of  I� de�ned as follows�

XI
� � ��X� �  I

AI� � AI �  I

�I� �  I

�I� � 

��C�I� �  I � CI�
�C� uC��

I
� � �C��

I
� � �C��

I
�

�C� tC��
I
� � �C��

I
� � �C��

I
�

��R�C�I� � fs �  I j �s�� �s� s�� � RI and s� � CI� g
��R�C�I� � fs �  I j �s�� �s� s�� � RI implies s� � CI� g
��X�C�I� �

T
fE �  I j CI��X�E� � E g

��X�C�I� �
S
fE �  I j E � CI��X�E� g

We remark that� in the last two cases CI��X�E� is interpreted as an operator from

subsets E of  I to subsets of  I� By the syntactic restriction enforced on variables�
such an operator is guaranteed to be monotonic wrt �� Notice also that free variables
appearing in a concept are interpreted more or less as atomic concepts�
A concept C is satis�able� if there exists an interpretation I and a valuation � on

I such that CI� �� 
� otherwise the concept is unsatis�able� A concept C� is subsumed
by a concept C�� written as C� v C�� if for every interpretation I and every valuation
� on I� �C��

I
� � �C��

I
� �

A �ALC TBox is a �nite set �possibly empty� of inclusion assertions C� v C�

where C� and C� are closed concepts of �ALC�
�

�As usual� we use equivalence assertions of the form C� � C� as an abbreviation for fC� v
C��C� v C�g�
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xpoint constructs

An interpretation I satis�es an inclusion assertion C� v C�� if �C��I� � �C��I� �
where � is any valuation on I �being C� and C� closed� and hence independent from
valuations�� I is a model of a TBox K� if I satis�es all inclusion assertions in K� We
say that a TBox K is satis�able� if it has a model� Observe that inclusion assertions
in K are interpreted according to the descriptive semantics�
We say that a TBox K logically implies an inclusion assertion C� v C�� written

K j� C� v C�� if for every model I of K and every valuation � on I� �C��I� � �C��I� �

	�� Properties of the 
xpoint constructs

In the following� we use the notation C�X� to indicate that the variable X occurs
free in the concept C �other variables could occur free in C as well�� and the notation
C�D�� where D is a concept� as a shorthand for C�X��X�D�� In addition� we use the
symbol � as an abstraction for either � or ��
Let us comment brie�y on some simple properties of the logic� First� the con�

cept �X�C�X� is equivalent to the concept �Y�C�Y �� as long as Y is free for X in
C�X�� Second� the extension function 
I� gives to a closed concept a value which is
independent of the actual valuation �� Hence �X�C� where X does not occur in C�
is equivalent to C� Third� since �X�C�X� is a �xpoint we have that C��X�C�X�� is
equivalent to �X�C�X�� Furthermore� we have that the concept �X�C�X� is always
subsumed by the concept �X�C�X��
The next property is more substantial� Consider a �ALC TBox K containing the

two equivalence assertions

dag of student � �X � emptydag t �student u �arc��u �arc�X�

dag of person � �X � emptydag t �person u �arc��u �arc�X�

de�ning the concepts dag of student and dag of person as the classes of DAGs whose
nodes are students and persons respectively� Assuming that students are persons� we
want to be able to infer that DAGs of students are DAGs of persons as well� That is
we want

K j� student v person implies K j� dag of student v dag of person�

It turns out that for �ALC such a property holds� To prove this we introduce the
following lemma� �rst�

Lemma �� Let K be a �ALC TBox� and C and D two �ALC concepts in which a
variable X may occur free	 Then

K j� C v D implies K j� �X�C v �X�D�

Proof We proceed by contradiction�	 Assume that CI� � DI
� holds for all models I

of K and all valuations � on I� And suppose that there exists a model I of K and a
valuation � on I such that ��X�C�I� �� ��X�D�

I
� �

�For uniformity� we do not distinguish if X occurs free or not� Obviously if X does not occur
free� the result is trivial�
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First we prove the result for � � �� Let s be an individual in ��X�C�I� but not in

��X�D�I� � Now� we have

s � ��X�C�I� i� �E �  I � �CI��X�E� � E implies s � E� �����

s �� ��X�D�I� i� �E � �  I � �DI
��X�E� � � E � and s �� E ��� �����

For the set E � in ������ the following expression holds�

CI��X�E� � � DI
��X�E� � � E �

hence by ����� we have s � E � and by ����� we have s �� E �� which is impossible�

The proof for � � � is similar� Let s be an individual in ��X�C�I� but not in

��X�D�I� � Now� we have

s � ��X�C�I� i� �E �� �  I � �E �� � CI��X�E��� and s � E
��� �����

s �� ��X�D�I� i� �E �  I � �E � DI
��X�E� implies s �� E�� ���	�

For the set E �� in ������ the following expression holds�

E �� � CI��X�E��� � DI
��X�E�� �

hence by ����� we have s � E �� and by ���	� we have s �� E ��� which is impossible� �

By using this lemma we can prove the result we are looking for�

Theorem �� Let K be a �ALC TBox� and D�X� a �ALC concept such that every
occurrence of the variable X in D�X� is in the scope of an even number of negation
signs	 Then� for any �ALC concepts C� and C��

K j� C� v C� implies K j� D�C�� v D�C���

Proof First� we transform D�X� in �negation normal form�� that is we push the
negations occurring in D�X� all way in� getting an equivalent concept Dn�X� where
negations occur only in front of atomic concepts and no negation occur in front X�
Now we prove the result by induction on the formation of Dn�X�� Base case� If

Dn�X� � X� the result holds trivially�
Inductive case� We assume that the result holds for every subconcept of Dn�X��

and we show that K j� Dn�C�� v Dn�C�� holds as well� Indeed this easily follows
from the semantics� for Dn�X� of the forms

Dn
� �X� uDn

� �X� j D
n
� �X� tDn

� �X� j �R�D
n
� �X� j �R�D

n
� �X��

It remains to prove the result for Dn�X� � �Y�Dn
� �X� �Y �� X�� but by Theorem 
�

we have

K j� Dn
� �C�� v Dn

� �C�� implies K j� �Y�Dn
� �C�� v �Y�Dn

� �C���

���
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hence we are done� �

Going back to our the example� we can� in fact� infer that DAGs of students are
also DAGs of persons� Indeed� by Theorem 
�� we have that K j� student v person
impliesK j� �X�emptydagt�studentu�arc��u�arc�X� v �X�emptydagt�personu
�arc��u �arc�X��
Even though it does not include any role construct� �ALC is actually an extension

of C� Indeed we can translate a C concept into a �ALC concept by resorting to the
following equivalences�

�R� 	R��C � �R���R��C
�R� tR��C � �R��C t �R��C
�R��C � �X��C t �R�X�
�id�D��C � C uD�

Note that �R��C � �X��C u �R�X��

	�� Reasoning in �ALC

In this section� we focus on the problem of reasoning in �ALC TBoxes� We start
our discussion by showing that logical implication in �ALC TBoxes �thus also satis�
�ability of �ALC TBoxes� is reducible to unsatis�ability of a single �ALC concept�
To prove this result� we introduce the notions of generated sub�interpretation and
sub�valuation��

Let I � � I � 
I� be an interpretation� � a valuation on I� and s �  I an indi�
vidual� We de�ne the interpretation Is � � I

s

� 
I
s

�� and the valuation �s on Is� as
follows�

�  I
s

� fs� �  I j �s� s�� � �RI� � � � ��RIm�
�g�

� For each atomic role Ri� we have RI
s

i � RIi � � 
Is � I

s

��

� For each atomic concept A� we have AI
s

� AI � I
s

�

� For each variable X� we have �s�X� � ��X� � I
s

�

We call Is the sub�interpretation of I generated by s� and �s the sub�valuation of �
generated by s�
For generated sub�interpretations and sub�valuations we can state the following

lemma�

Lemma �� Let C be a �ALC concept	 Then for any interpretation I� any valuation
� on I� and any individual s �  I� we have� s � CI� i� s � CI

s

�s �

Proof Without loss of generality� we consider concepts formed according to the
following simpli�ed abstract syntax� C ��� A j � j �C j C� uC� j �R�C j �X�C j X�

�Together these notions play the same role as that of generated sub�model in modal logics�

���
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We prove the result by induction on the number of nested �xpoint constructs� Base
case� If in C there are no �xpoint constructs� the thesis can be proven by induction
on the formation of C�
Inductive case� We assume that the thesis holds for concepts C with n nested

�xpoint constructs� and we prove it for concepts �X�C with n%�� We recall that� by
Tarski�Knaster Theorem on �xpoints ������ s � ��X�C�I� i� there exists an ordinal �

such that s � ��	X�C�
I
� � where ��	X�C�

I
� is de�ned by trans�nite induction as

� ���X�C�I� � 


� ��	
�X�C�
I
� � CI��X�
��X�C�I� �

� ��
X�C�I� �
S
	�
��	X�C�

I
� � if � is a limit ordinal�

Hence we proceed by trans�nite induction on ordinals ��
Base case of the trans�nite induction� ��X�C is de�ned as �� thus trivially we

have s � ���X�C�I� i� s � ���X�C�I
s

�s �
Successor case of the trans�nite induction� We want to show that s �

��	
�X�C�
I
� i� s � ��	
�X�C�

Is

�s � which reduces to

s � CI��X�
��X�C�I� �
i� s � CI

s

�s�X�
��X�C�I
s

�s
�� ���
�

To prove this� we start by showing that

s � CI
s

�s�X�
��X�C�I
s

�s
� i� s � CI

s


��X�
��X�C�I� ��
s � ���
�

Notice that the two valuations above may di�er only on the value of X� If it holds
that

s � XIs

�s �X�
��X�C�I
s

�s
� i� s � XIs


��X�
��X�C�I� ��
s � �����

then by straightforward induction on the formation of C we have that ���
� holds as
well� Let us prove ������ We can write it as

s � �s�X���	X�C�
Is

�s ��X� i� s � ���X���	X�C�
I
� ��

s�X��

and since s �  I
s

� this reduces to

s � ��	X�C�
Is

�s i� s � ��	X�C�
I
� �

which holds by trans�nite inductive hypothesis�
Now� since C contains n �xpoint constructs� by inductive hypothesis on n� we

have

s � CI��X�
��X�C�I� �
i� s � CI

s


��X�
��X�C�I� ��
s �

Hence� considering ���
� and ���
�� it follows that indeed s � ��	
�X�C�I� i� s �

��	
�X�C�I
s

�s �

���
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Limit case of the trans�nite induction� Let � be a limit ordinal� then s � ��
X�C�I�
i� there exists an ordinal � � � such that s � ��	X�C�

I
� � By trans�nite induction

hypothesis� it holds that s � ��	X�C�I� i� s � ��	X�C�I
s

�s � and thus

s � ��
X�C�
I
� i� s � ��
X�C�

Is

�s �

This completes the trans�nite induction� So for all ordinals � it holds that

s � ��	X�C�
I
� i� s � ��	X�C�

Is

�s �

The induction on the nesting of �xpoint constructs is completed as well� hence we
have proven the lemma� �

Now we are ready to state the result mentioned above�

Theorem �� Let K � fC� v D�� � � � � Cn v Dng be a �ALC TBox� and C and D
two �ALC concepts	 Then K j� C v D if and only if the �ALC concept

�X���R��X u � � �u �Rm�X u CK� uC u�D �����

is unsatis
able� where R�� � � � � Rm are all the atomic roles appearing in K� and CK �
��C� tD�� u � � �u ��Cn tDn�	

Proof If part� By contradiction� Assume that ����� is not satis�able� and suppose
that K �j� C v D� i�e� there exists an interpretation I� and a valuation � on I� such
that I is a model of K and CI� �� DI

� � It follows that� there exists an individual s �  
I

such that s � CI� and s � ��D�
I
� � On the other hand� the fact that I is a model of K

implies that �CK�
I
� �  

I � and thus that ��X���R��X u � � �u �Rm�X uCK��
I
� �  

I�

So we have s � ��X���R��X u � � �u �Rm�X uCK�uC u�D�I� � i�e� ����� is satis�able�
contradicting the hypotheses�
Only If part� Again we proceed by contradiction� Assume K j� C v D� And

suppose that ����� is satis�able� i�e� there exists an interpretation I� a valuation � on
I� and an individual s �  I� such that s � ��X���R��Xu� � �u�Rm�XuCK�uCu�D�I� �

Now consider the sub�interpretation Is � � I
s

� 
I
s

�s � and the sub�valuation �
s on

Is generated by s� On the one hand� we clearly have that �CK�I
s

�s �  
Is� hence Is

is a model of K� On the other hand by Lemma 
� s � ��X���R��X u � � �u �Rm�X u
CK�uC u�D�

Is

�s � so it follows that I
s and �s do not satisfy the subsumption C v D�

contradicting the hypotheses� �

This result allows us to limit our attention to concept unsatis�ability only� In
order to devise a method to check a �ALC concept for unsatis�ability� we exhibit
a correspondence between �ALC and a well�known logic of programs called modal
mu�calculus ����� ��� ���� ������ which has been recently investigated for expressing
temporal properties of reactive and parallel processes ������ �
� ��� ���� �����
Formulas $�'� � � � of modal mu�calculus are formed inductively from atomic for�

mulas A� � � � and variables X� � � � according to the following abstract syntax�

$�' ��� A j � j � j �$ j $ �' j $ �' j� a � $ j �a�$ j �X�$ j �X�$ j X

���
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where a is the generic element of a set of labels L� and every occurrence of any variable
X must be in the scope of an even number of negation signs� The semantics of modal
mu�calculus is based on the notions of �Kripke� structure and valuation� A Kripke
structure M is a triple �S� fRi j i � Lg�V�� where S is a set of states� each Ri is a
binary relation� and V is a mapping from atomic formulas to subsets of S� A valuation
� onM is a mapping from variables to subsets of S� To a Kripke structure M and
a valuation � on M� we associate an extension function 
M� de�ned inductively as
follows�

XM
� � ��X� � S

AM� � V�A� � S
�M� � S
�M� � 

��$�M� � S �$M�
�$ �'�M� � $M� �'M�
�$ �'�M� � $M� �'M�
�� a � $�M� � fs � S j �s�� �s� s�� � Ra and s

� � $M� g
��a�$�M� � fs � S j �s�� �s� s�� � Ra implies s

� � $M� g
��X�$�M� �

T
fE � S j $M��X�E� � E g

��X�$�M� �
S
fE � S j E � $M��X�E� g

A formula $ is satis
able if there exists a Kripke structure M and a valuation � on
M such that $M� �� 
�
The following theorem is the basis for the correspondence between �ALC and the

modal mu�calculus�

Theorem �� There exists a one�to�one linear�time function q mapping concepts of
�ALC to formulas of modal mu�calculus such that for any �ALC concept C� C is
satis
able if and only if q�C� is satis
able	

Proof We can de�ne q in the following way� q�A� � A �atomic concepts are mapped
to atomic formulas�� q�X� � X� q��� � �� q��� � �� q��C� � �q�C�� q��R�C� ��
R � q�C� �atomic roles are mapped to labels�� q��R�C� � �R�q�C�� q��X�C� �
�X�q�C�� and q��X�C� � �X�q�C��
An interpretation I � � I � 
I� is equivalent to a Kripke structure M � �S� fRi j

i � Lg�V� such that� S �  I� fRi j i � Lg is equal to the part of 

I interpreting

atomic roles� and V is equal to the part of 
I interpreting atomic concepts� We also
have that a valuation � on I is equivalent to a valuation �� on M� Now both the
extension function associated with I and �� and the extension function associated
withM and �� map� respectively� any concept C and the corresponding formula q�C�
to the same subset of  I � S� Hence the thesis follows� �

It follows that we may transfer both decidability and complexity results ����� 
��
��
�� for the modal mu�calculus to �ALC� Thus� we can immediately state what is
the complexity of reasoning with �ALC concepts and �ALC TBoxes�

Theorem �	 Satis
ability of �ALC concepts� satis
ability of �ALC TBoxes� and
logical implication in �ALC TBoxes are EXPTIME�complete problems	

���
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Proof Since the satis�ability problem for modal mu�calculus is EXPTIME�complete
��
���� by Theorem 

 the satis�ability of �ALC concepts can be checked in deter�
ministic exponential time �tight bound�� Hence� by Theorem 
	� the thesis follows�
�

	�� The description logic �ALCN

In this section� study the description logic �ALCN � obtained from �ALC by including
quali�ed number restrictions �see Chapter 	��
Concepts in �ALCN are formed inductively according to the following abstract

syntax�

C ��� A j � j � j �C j C� uC� j C� tC� j �R�C j �R�C j
�� nR�C� j �� nR�C� j �X�C j �X�C j X

where A denotes an atomic concept� R an atomic role� X a variable� We implicitly
assume the restriction that every free occurrence of variables X is in the scope of an
even number of negations� considering concepts C in �� nR�C� in the scope of one
negation�
Quali�ed number restrictions are interpreted as follows� Let I be an interpretation

and � a valuation on I� and 
I� the extension function associated with I and ��

�� nR�C�I� � fs �  I j there exists at most n s� such that
�s� s�� � RI and s� � CI� g�

�� nR�C�I� � fs �  I j there exists at least n s� such that
�s� s�� � RI and s� � CI� g

The other constructs are interpreted as in �ALC�
Next we investigate the decidability and the complexity of satis�ability of �ALCN

concepts and logical implication in �ALCN TBoxes �and thus of satis�ability of
�ALCN TBoxes�� As for �ALC these two reasoning tasks are not distinct� Indeed�
we can prove the analogue of Theorem 
	�

Theorem �� Let K � fC� v D�� � � � � Cn v Dng be a �ALCN TBox� and C and D
two �ALCN concepts	 Then K j� C v D if and only if the �ALCN concept

�X���R��X u � � �u �Rm�X u CK� uC u�D

is unsatis
able� where R�� � � � � Rm are all the roles appearing in K� and CK � ��C� t
D�� u � � �u ��Cn tDn�	

In order to devise a �e�ective� method for checking a �ALCN concept for un�
satis�ability� we exhibit a correspondence between �ALCN and a variant of modal
mu�calculus� called deterministic modal mu�calculus� which has the same syntax as
the modal mu�calculus� but is interpreted on deterministic Kripke structures� that is
Kripke structures in which the relations Ri are partial functions ��������
We show that there is a function t mapping concepts of �ALCN to deterministic

modal mu�calculus formulae� such that C is satis�able if and only if t�C� is satis�able�

���
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The function t is de�ned inductively� The mapping fromA� X� CuD� CtD� �C� and
�X�C is simply t�A� � A� t�X� � X� t�C uD� � t�C�� t�D�� t�CtD� � t�C�� t�D��
t��C� � �t�C�� t��X�C� � �X�t�C�� The mapping form �R�C and �R�C is based on
a technique developed for propositional dynamic logic to map non�deterministic PDL
formulae to deterministic PDL formulae preserving satis�ability ����� ������ namely�

t��R�C� � � R � ��X��t�C�� � Rnew � X���
t��R�C� � �R���X��t�C�� �Rnew�X���

where Rnew is a new role� Finally� �� nR�C� and �� nR�C� are mapped to the
following formulae �we use the abbreviations �R��$ for �X��$ � �R�X�� �R
�$ for
�R��R��$� � R� � $ for �X��$� � R � X�� and � R
 � $ for � R �� R� � $��

t��� nR�C�� ��R��R�new��t�C�� �R

new��t�C��

�R

new��� � � �t�C�� �R


new��t�C�� � � ���

where the number of nested formulae of the form t�C�� �R

new�$ is n� and

t��� nR�C�� �� R �� R�new � �t�C�� � R

new � �t�C��

� R

new � �� � � �t�C�� � R


new � t�C�� � � ���

where the number of nested formulae of the form t�C�� � R

new � $ is n� �� These

formulae express constraints on the number of states satisfying C along the chain
R	R�new� For example� consider the concept �� �R�A�� where A is an atomic concept�
t��� �R�A�� � �R��R�new��A � �R


new��A � �R

new��A�� that means �everywhere

along the chain R	R�new there are at most two states where A holds� �see Chapter 	��

Theorem �� Let C be a �ALCN concept� and t the function de
ned above	 Then�
C is satis
able if and only if t�C� is satis
able	

It is known that satis�ability in deterministic modal mu�calculus is an EXPTIME�
complete problem ������ 
�� ��
��� Since t�C� is clearly polynomial in the size of C
�assuming numbers in C coded in unary�� from the above theorem we can derive the
decidability and the computational complexity of reasoning with �ALCN TBoxes�

Theorem �� Satis
ability of �ALCN concepts� satis
ability of �ALCN TBoxes�
and logical implication in �ALCN TBoxes are EXPTIME�complete problems	

	�� Discussion

We already noticed that �xpoint constructs allow for representing not only abstract
classes� but also several data structures extensively used in application programs� We
believe that this characteristic is an important step towards a satisfactory integration
of concept languages with both traditional and declarative programming systems�
Indeed the description logics introduced in this chapter provide powerful mecha�

nisms for data structure modeling� In particular� the properties stated in Section ��	

���
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can be the base to formulate a notion of parametric concept�� For instance� the
expression �named dag of �Z��

�X � emptydag t �Z u �arc��u �arc�X�

where Z is a formal parameter� denotes the class of DAGs whose nodes are left
unspeci�ed� This class can be used in several ways in the TBox� For example� it can
be instantiated by binding the formal parameter to actual parameters� thus getting�
say� dag of �student�� dag of �person�� � � �� which are concepts inheriting the properties
of dag of �Z��
Our proposal of allowing for �xpoint construct explicitly in the formalism is shared

by a recent work independently carried out by Schild ������� The main goal of that
work is to study both the expressive power and the computational complexity of
subsumption and satis�ability for TBoxes expressed in ALC �no �xpoint constructs��
that allow for mutually recursive de�nitions� To this end� a concept language is
de�ned that corresponds to a variant of the modal mu�calculus ������� in whichmutual

xpoints are allowed but some restrictions on nested �xpoints are enforced� It is well
known that mutual �xpoints can be re�expressed by means of nested ones �see� for
example� ���� ������ As a consequence of this observation it follows that both logics
introduced in this chapter� are actually more expressive than the one analyzed in
������
We conclude by noting that although the proposed language is very powerful� it

lacks the construct for inverse roles which is needed for example to correctly capture
the notions of ��nite� TREE� BINARY�TREE� etc� Indeed� to de�ne the concept of
TREE �an EMPTY�TREE is a TREE� a NODE that has at most one parent� some
children� and all children are TREEs� is a TREE� nothing else is a TREE� we can
write tree � �X � empty treet �nodeu �� � child����u�child��u�child�X� Notice
that the introduction of inverse roles does not pose any di�culty from the semantical
point of view� however� its impact on the reasoning method needs to be investigated�

�Note that parametric concepts can be introduced also in simpler logics which do not include
�xpoint constructs�


In 	
� � number restrictions are not considered�
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Eliminating I from DI

In this appendix we consider two well known propositional dynamic logics� namely D
and DI� D is the original propositional dynamic logic de�ned in �

�� whereas DI�
also de�ned in �

�� extends D by including the construct to denote the �converse� of
a program�

We show that is possible to eliminate the �converse� operator from DI� without
compromising the soundness and completeness of inference for it� Speci�cally we
present an elegant reduction of DI formulae into D formulae that eliminates the con�
verse programs from a DI formula but adds enough information so as not to destroy
its original meaning with respect to satis�ability� validity� and logical implication�
Notably the resulting formula� which is a D formula� is polynomially related to the
original one�

This reduction on the one hand helps in better understanding the nature of the
converse operator� On the other hand it puts the basis to build e�cient �in practical
cases� inference procedures for DI� In fact the reduction� being polynomial� allows
one to build e�cient inference procedures for DI� by translating DI formulae into D�
and then running an e�cient inference procedure for D� We discuss this issue further
at the end of the appendix�

The general technique used for deriving the reduction is analogous to the one
introduced in Chapter � and used to prove many results in this thesis� However the
present reduction is probably the best illustration of the technique� since every step
is intuitive� and proofs go through without major complexities� thus exhibiting the
key features of the technique in a neat way�

A�� Reducing DI to D

We now show the reduction from DI to D� More precisely� we exhibit a mapping �
from DI formulae to D formulae such that� for any DI formula $� $ is satis�able if
and only if ��$� is satis�able� The formula ��$�� whose size is polynomial in the size
of $� is said to be the D�counterpart of $�

We assume without loss of generality that in $ the converse operator is applied

���
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to atomic programs only� It is easy to check that any DI formula can be transformed
in linear time in the size of the formula so that such an assumption is ful�lled�

De�nition Let $ be a DI formula with the converse operator applied to atomic
programs only� We de�ne the D�counterpart ��$� of $ as the conjunction of two
formulae� ��$� � ���$� � ���$�� where�

� ���$� is obtained from the original formula $ by replacing each occurrence of
P� with a new atomic program P c� for all atomic programs P occurring in $�

� ���$� � ��P� � � � ��Pm �P c
� � � � ��P

c
m�

����� � � � �� �
g
� � where P�� � � � � Pm are all

atomic programs appearing in $� and with one conjunct �i� of the form

��� �P � � P c � �� � ��� �P c� � P � ��

for every � � CL����$�� and P � fP�� � � � � Pmg�

�

Theorem 	
 Let $ be a DI formula� and ��$� its D�counterpart	 Then ��$� is a
D formula� and its size is polynomially related to the size of $	

Proof Straightforward� �

The purpose of ���$� it to replace the converse of atomic programs �the only
converse programs� in $ with new atomic programs� Each new atomic program P c

is intended to represent P� �the converse of the atomic program P � in ���$��
The purpose of ���$� is to force the models M of ��$� so that� for all � �

CL����$��� for all states s of M � if � holds in s then all the P �successors of s have
a P c�successor in which � holds� and similarly all the P c�successors of s have a P �
successor in which � holds� We shall show that� as far as satis�ability �but also
validity and logical implication� is concerned� this allows us to faithfully represent
the converse of P by means of P c�
First of all� observe that if instead of ���$�� we imposed the two axiom schemas

�� any formula��
�� �P � � P c � �
�� �P c� � P � �

then the models of ���$� would be isomorphic to the models of $� In fact� the above
axiom schemas are identical to the ones used in the axiomatization of DI to force
programs P� to be the converse of the programs P � However the resulting logics
would not be D but trivially DI�
Instead� ���$� can be thought as a �nite instantiation of the above two axiom

schemas� one instance for each formula in CL�$��� Although imposing the validity of
such a �nite instantiation does not su�ce to guarantee the isomorphism of the models

�Actually� ����� already takes into account the reduction from logical implication to satis�ability
of Theorem 
�

���
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of ���$� and $� we show that it su�ces to guarantee that ���$� has a model if and
only if $ has a model�

It is a standard result that if a DI�formula $ has a model� then it has a connected
model� where a modelM � �S� fRPg�"� of $ is a connected model� if for some ss � S�

� M� ss j� $�

� S � ft j �ss� t� � �
S
P RP �RP� �

�g�

Let $ be either a DI formula or a D formula� We call a structure M �
�S� fRP g�"� a structure of $� if every atomic program P and every atomic proposi�
tion A occurring in $ is interpreted in M � i�e� RP appears in M � and A appears in
the co�domain of "� respectively�
In the following we use � as an abstraction for both P and P c� Moreover� �c

denotes P c if � � P � and it denotes P if � � P c�
Let M � �S� fR�g�"� be a connected model of ��$�� We call the c�closure ofM �

the structure M � � �S�� fR��g�"
�� of ��$�� de�ned as follows�

� S� � S�

� R�� � R� � f�t� s� j �s� t� � R�cg� for each atomic program � in ��$��

� "� � "�

Note that in the c�closure M � of a modelM � each R�P of M
� is obtained from RP of

M by including� for each pair �s� t� in RP c � the pair �t� s� in R�P � and similarly each
R�P c is obtained from RP c by including� for each pair �s� t� in RP � the pair �t� s� in
R�P c � As a result in the c�closure of a model each atomic program P c is interpreted
as the converse of P �
The next lemma is the core of the results in the present section� Intuitively it says

that the c�closure of a connected model is equivalent to the original model wrt the
formulae in CL�
��$���

Lemma 	� Let M � �S� fRPg�"� be a connected model of ��$�� and M � �
�S�� fR�Pg�"

�� its c�closure	 Then� for every s � S �� S��� and every � � CL����$���

M� s j� � i� M �� s j� ��

Proof We prove the lemma by induction on the formation of � �called formula
induction in the following��

� � � A�

M� s j� A i� A � "�s� i�� by construction of M �� A � "��s� i� M �� s j� A�

� � � ����

M� s j� ��� i� M� s �j� �� i�� by formula induction hypothesis� M �� s �j� �� i�
M �� s j� ����
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� � � �� � ���

M� s j� ����� i�M� s j� �� andM� s j� �� i�� by formula induction hypothesis�
M �� s j� �� and M

�� s j� �� i� M
�� s j� �� � ���

� � �� r � ���

�� M� s j�� r � �� i� there is a path �s � s�� � � � � sq� � PathsM �r� such that
M� sq j� ��� We show that M �� s j�� r � ��� by induction on the length of the
path �called path induction in the following��

q � �� In this case �s � s�� � PathsM�r� and M� s j� ��� Then� by Proposi�
tion 	� there exists a formula � ��!� � � � ��g! � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M� s j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � � � �g� �
�g� we have that

M� s j� �x i� M
�� s j� �x� Hence M

�� s j�� r � ���

q � �� In this case� by Proposition 
� there exists a formula� ��!� � � � ��g!�� ��
r� � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r� � Post�r�� and hence � r� � �� � CL�� r � ��� � CL����$���

� �s�� s�� � R� �

� M� s� j�� r� � ���

� �s�� � � � � sq� � PathsM �r���

� � ��!� � � � ��g!�� �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � � � �gg� we have M� s� j�
�x i� M �� s� j� �x�

By construction of M �� �s�� s�� � R� implies �s�� s�� � R
�
��

Considering that � r� � �� � CL�� r � ��� � CL����$��� by path induction
hypothesis� M� s� j�� r� � �� and �s�� � � � � sq� � PathsM �r

�� impliesM �� s� j��
r� � ���

Hence M �� s j�� r � ���

�� M �� s j�� r � �� i� there is a path �s � s�� � � � � sq� � PathsM ��r� such that
M �� sq j� ��� We prove that M� s j�� r � ��� by induction on the length of the
path �called path induction in the following��

q � �� In this case �s � s�� � PathsM ��r� and M �� s j� ��� Then� by Proposi�
tion 	� there exists a formula � ��!� � � � ��g! � �� such that�

���
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� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� M �� s j�� ��!� � � � ��g! � ���

� � ��!� � � � ��g! � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � � � �g� ��g� we have that
M �� s j� �x i� M� s j� �x� Hence M� s j�� r � ���

q � �� In this case� by Proposition 
� there exists a formula� ��!� � � � ��g!�� ��
r� � �� such that�

� all tests �i! occur in r� and hence all �i are subformulae of � r � ���

� r � Post�r�� and hence � r� � �� � CL�� r � ��� � CL����$���

� �s�� s�� � R
�
� �

� M �� s� j�� r� � ���

� �s�� � � � � sq� � PathsM ��r���

� � ��!� � � � ��g!�� �� r� � �� �� r � �� is valid�

By formula induction hypothesis� for every �x � f��� � � � � �gg� we haveM �� s� j�
�x i� M� s� j� �x�

Considering that � r� � �� � CL�� r � ��� � CL����$��� by path induction
hypothesis�M �� s� j�� r� � �� and �s�� � � � � sq� � PathsM ��r�� impliesM� s� j��
r� � ���

Since �s�� s�� � R
�
�� by construction of M

�� we have that either �s�� s�� � R� �
or �s�� s�� �� R� and �s�� s�� � R�c �

� If �s�� s�� � R�� then we can immediately conclude that M� s� j�� r � ���

� If �s�� s�� �� R� and �s�� s�� � R�c � then considering that � r� � �� is
equivalent to a formula 	 � CL����$��� by ���$� we have that

M� s� j�� r� � �� � ��c� � � �� r� � ���

Thus there exists a state s�� � S �di�erent from s�� such that �s�� s
�
�� �

R� and M� s�� j�� r� � ��� Hence� also this case� we can conclude that
M� s� j�� r � ���

�

The previous lemma has the following consequence�

Lemma 	� Let M be a connected model of ��$� and M � its c�closure	 Then M � is
a model of ��$� as well	

Proof Let M � �S� fR�g�"� and M � � �S�� fR��g�"
��� By Lemma 
�� for all

s � S � S� and all � � CL����$���

M� s j� � i� M �� s j� ��

���
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Furthermore� by de�nition of M �� �s� s�� � R�� implies �s
�� s� � R��c � Thus� for all

s � S� and all � � CL����$�� �

M �� s j� �� �P � � P c � �
M �� s j� �� �P c� � P � ��

Hence we can conclude that the thesis holds� �

We can now formulate the main result of this appendix�

Theorem 	� A DI formula $ is satis
able i� its D�counterpart ��$� is satis
able	

Proof �� Let MDI � �SDI � fRDIP g�"DI� be a model of $� We de�ne a structure
MD � �SD� fRD� g�"

D� of ��$� as follows�

� SD � SDI �

� RDP � RDIP and RDP c � f�t� s� j �s� t� � RDIP g� for all atomic programs P
occurring in $�

� "D � "DI �

It is easy to verify that MD is a model of ��$��

�� Let MD � �SD� fRD� g�"
D� be connected model of ��$� and MD� �

�SD
�
� fRD�

�
g�"D

�
� its c�closure� By Lemma 
�� M � is a model of ��$� as well�

Observe that� by de�nition� M � is such that� for each atomic program �� RD�c
�
�

�RD�
�
��� We de�ne a structure MDI � �SDI � fRDIP g�"DI� of ��$� as follows�

� SDI � SD
�
�

� RDIP � RDP
�
for all atomic programs P occurring in $�

� "DI � "D
�
�

It is easy to verify that MDI is a model of $� �

A�� Discussion

The logics D and DI share many characteristics� and many results for D extend to DI
with no di�culties� For instance the proofs of �nite model property and decidability
for D in �

� are easily extended to DI� as well as the proof of EXPTIME�completeness
in ��	�� However� while e�cient � in practical cases � inference procedures have been
successfully developed for D� extending them to DI has proved to be a di�cult task�
and to the best of our knowledge has been unsuccessful till now�
To be more precise� the inference procedures for D based on the enumeration of

models such as those in �

� �	� can be easily modi�ed to accommodate converse
programs� But these procedures are better suited for proving theoretical results than
for being used in practice� since they are inherently exponential� not only in the
worst�case�

���
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In contrast� inference procedures for D such as those in ���� �
�� based on tableaux
methods� which are much more e�cient in practical cases� are di�cult to modify to
cope with converse programs�
The di�culty can be intuitively grasped by observing how these procedures at�

tempt to build a model of a D formula in order to check its satis�ability� They start
by introducing an initial state� and try to make it satisfy the formula� At �rst� reason�
ing is carried out locally� i�e� considering subformulae that involve state transitions�
simply as atomic propositions� Next� when no more local reasoning is possible� the
successor states� introduced by atomic programs� are generated� and the relevant for�
mulae that these states ought to satisfy are propagated� The two steps above are
recursively repeated for each successor state until certain termination conditions are
met� The key point is that once the successors of a given state have been generated�
no more reasoning involving that state will be carried out� Thus� to check satis�ability
of a D formula� a tableaux based procedure can be organized so as to work �forward�
only� This feature turns out to be essential in order to ensure e�cient termination
criteria�
The presence of converse programs does not allow us to extend the above approach

in an obvious way� Indeed� reasoning on a state may not be completely carried out
locally� i�e� without generating its successors� because� through converse programs�
some successors may require further properties to be satis�ed by the original state�
Therefore� to check satis�ability of a DI formula� a procedure has to work both
�forward� and �backward�� thus losing e�ciency� since at any point reasoning may
involve the whole piece of model built so far�
Is there a way out of this problem! One possible solution is trying to single out

a small set of additional formulae to be checked in every state� that� in some sense�
anticipate the properties its successors may require at a later stage of the computation�
The reduction from DI to D presented in this appendix singles out a set of addi�

tional formulae of the kind mentioned above� Hence the reduction can be used as the
basis to develop better reasoning procedure for DI� on top of inference procedures for
D� In fact� the reduction allows us to build a satis�ability procedure for DI by simply
translating a DI formula to a D formula and then running on it a D satis�ability
procedure� Therefore� considering that the reduction is polynomial� by employing an
e�cient satis�ability procedure for D we get an e�cient satis�ability procedure for
DI�
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