UNIVERSITA DEGLI STUDI DI RoMA “LA SAPIENZA”

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA

Decidability of Class-Based Knowledge Representation Formalisms

Giuseppe De Gracomo

PuD THESIS
1995



AUTHOR’S ADDRESS:

GruseppE DE GiacoMo

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA
UNIVERSITA DEGLI STUDI DI RoMA “La SAPIENZA”
Via SaLAria 113, 1-00198 RoMa, ITALIA

E-MAIL: degiacomo@dis.uniromal.it



Contents

Preface

1

Introduction

1.1 Background . . . . .. ... ..o
1.2 Medical Terminology Servers . . . .. .. ... ... ......
1.3 Goals and main results of the thesis . . . . . . ... ... ...
1.4  Structure of the thesis . . . . . . . . .. ... .. ... .....

Preliminaries

2.1 Description logics . . . . . . . . ..o
2.2 Propositional dynamic logics . . . . . . .. .. ...
2.3  The correspondence between DLs and PDLs . . . . . . . . . ..
2.4 Other preliminary notions . . . . . .. . . ... ... ... ...

Functional Restrictions

3.1 Thelogics CZF and DIF . . . . . . .. ... ...
3.2 Reasoning in CZF and DIF . . . . . .. ... ...

3.3 Discussion . . . . . ...

Qualified Number Restrictions

4.1 Thelogics CIN and DIN . . . . . . .. . ... .. ... ... .
4.2 Reasoning in CN and DN . . . . . ... ...
4.3 Reasoning in CZN and DIN . . . ... . ... ... ...
4.3.1 Reification of binary relations . . . . . . ... ... ...
4.3.2 Reducing DIN to DIF . . . . . . ... ... ... ...

4.4 DISCUSSION . . . . . . o e e e e

Boolean Properties and Assertions on Atomic Roles

5.1 Thelogics CZNB and DINB . . . . . . . ... ... .. ....
5.2 Reasoning in CZNBand DINB . . ... ... ... ... ...

5.3 Discussion . . . . . . . .

N-ary Relations

6.1 Thelogic CZINBR . . . . . .. .
6.2 Reasoning in CZNBR . . . . . .. ... ... ...



7 Individuals
7.1 Knowledge
7.2 Knowledge
7.3  Discussion

bases in CN . . . . .
bases In CZ . . . . . . . ...

8 Recursive Definitions: Fixpoints
8.1 Fixpoints . . . . . . . ..
8.2 Concept definitions as equations . . . . . . .. ... ...
8.3 The description logic pALC . . . . . . . .
8.4 Properties of the fixpoint constructs . . . . .. ... .. .. ... ...
8.5 Reasoning in pALC . . . . . . ...
8.6 The description logic pALCN . . . . . . . ... ... .. ... ...

8.7 Discussion

Appendix: Eliminating 7 from DZ
Al ReducingPDI toD . . . . . .

A.2  Discussion

Bibliography

87
87
94
98

101
101
102
105
107
109
113
114

117
117
122

125



Preface

This document is the English version of my doctoral thesis [35]. Tt presents the
research work I have done, mostly at the Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, from 1992 to the beginning of 1995, under the
supervision of Maurizio Lenzerini.

The thesis is concerned with logic-based knowledge representation formalisms in
the tradition of KL-ONE, called Description Logics. The description logics investi-
gated are distinguished by being much more expressive than the usual ones, but still
decidable. High expressivity makes it possible to represent all relevant knowledge
of complex domains, as those managed by Medical Terminology Servers studied in
Medical Informatics. Decidability makes it possible to implement sound and complete
reasoning algorithms for such description logics. A great variety of expressive descrip-
tion logics is considered, and for each of them, reasoning procedures are developed
and EXPTIME-decidability is proved. This complexity bound is the best one can
achieve since the simplest logics considered are already EXPTIME-hard.

The key idea in establishing these results it that, rather then trying to construct
a new algorithm for each extended logic, the decision problems for the extended
logics are polynomially reduced to decision problems of already known logics in an
incremental fashion. Several of these reductions are quite sophisticated, and the proof
of correctness is, in many cases, rather involved. Certain reductions are somewhat
surprising since the extended logics have logical properties that are quite different
from those from which they derive. For instance the basic logics have the finite model
property while some of the extended ones don’t. Overall this “reduction-based” way
of proceeding has proved to be very effective.

The thesis heavily exploits the correspondence that exists between description log-
ics and certain modal logics of programs, called Propositional Dynamic Logics. This
correspondence has already allowed other researchers to obtain decidability and com-
plexity characterization for various description logics from well-known results about
propositional dynamic logics. However, a significant step further is made in this thesis:
instead of just using results for known propositional dynamic logics, new propositional
dynamic logics, corresponding to description logics of interest, are introduced, and
their decidability and complexity characterization is established.

For the sake of brevity and homogeneity, the work concerning applications to
Medical Terminology Servers, which was documented in the original thesis, has been
largely sacrificed in the present version, I briefly discuss the main issues in the first
chapter.



I have preferred to concentrate on the theoretical results, which are reported in ev-
ery detail, including full-fledged proofs, in the following chapters. I have also included
an appendix concerning a further reduction that I devised just after the original thesis
was completed.

Many of the results presented in this thesis were obtained in collaboration with
Maurizio Lenzerini, and some of them have already appeared in [34, 36, 41, 37, 38,
40, 39, 43, 45].

It is a pleasure to acknowledge the people that have helped me most during this
work. I wish to thank the thesis committee, particularly Paolo Atzeni, Carlo Batini,
Paoclo Ercoli, and the external reviewers Franz Baader, Piero Torasso, and Angelo
Rossi Mori. I am specially indebted to Franz Baader for the numerous suggestions
that allowed me to reformulate more rigorously some of the results, and to improve
the overall quality of the thesis. I wish to thank all the people of the Dipartimento di
Informatica e Sistemistica, in particular the people working in Artificial Intelligence
that have always been ready to talk about issues related to the thesis: Luigia Carlucci
Aiello, Marco Cadoli, Diego Calvanese, Amedeo Cesta, Francesco Donini, Daniele
Nardi, Eugenio Omodeo, Fiora Pirri, Marco Schaerf, Andrea Schaerf. I am especially
grateful to Diego Calvanese with whom I discussed in detail many technical points.

I express my gratitude to Fabrizio Consorti (Istituto di IV Clinica Chirurgica,
Universitd di Roma “La Sapienza”), Angelo Rossi Mori and Aldo Gangemi (Istituto
Tecnologie Biomediche — CNR), for introducing me to Medical Terminology Servers;
to Enrico Franconi, for references to the work done at the German Heart Center, Uni-
versity of Berlin; to Rocco De Nicola, for exposing me to logics for reactive processes,
including modal mu-calculus; to Eugenio Omodeo, for a conversation that helped me
to finally set right the proof of Lemma 18; to Konstantinos Georgatos, with whom I
discussed some aspects of the proof of Lemma 9.

I also would like to thank Yoav Shoham for his hospitality at the Computer Science
Department of Stanford University, where part of this research was carried out, and
Johan van Benthem for a quite inspiring chat we had in the courtyard of the Center
for the Study of Language and Information at Stanford University.

Finally my deepest debt of gratitude goes to Maurizio Lenzerini, who has been a
fantastic advisor, co-worker, and friend. He strongly supported and encouraged me
throughout the fulfillment of this work.

Special thanks to my loving wife, Claudia, for putting up with many evenings and
weekends that I have spent working at this thesis.

Giuseppe De Giacomo



Chapter 1

Introduction

1.1 Background

The research in Artificial Intelligence and Computer Science has always paid special
attention to formalisms for the structured representation of information. In Artificial
Intelligence, the investigation of such formalisms began with semantic networks and
frames, which have been influential for many formalisms proposed in the areas of
knowledge representation, databases, and programming languages, and developed to-
wards formal logic-based languages, that will be called here description logics'. Basi-
cally, description logics represent knowledge in terms of objects (individuals) grouped
into classes (concepts) and pairs of objects grouped into relations (roles). Classes are
denoted by using appropriate constructs. Interdependencies between classes (such as
inclusion, disjointness, etc.) are established by means of assertions.

Two main advantages in using structured formalisms for knowledge representation
have been advocated, namely, epistemological adequacy, and computational effective-
ness. In the last decade, many efforts have been devoted to an analysis of these two
aspects. In particular, starting with [14], the research on the computational complex-
ity of the reasoning tasks associated with description logics has shown that in order
to ensure decidability and/or efficiency of reasoning in all cases, one must renounce
some of the expressive power [76, 81, 83, 82, 47, 48, 49]. These results have led to
a debate on the trade-off between expressive power of representation formalisms and
worst-case efficiency of the associated reasoning tasks. Recently, this issue has been
one of the main themes in the area of description logics, and has led to at least four
different approaches to the design of knowledge representation systems.

e In the first approach, the main goal of a description logic is to offer powerful
mechanisms for structuring knowledge, as well as sound and complete (but
possibly non terminating) reasoning procedures. Little attention is paid to
both decidability and computational complexity of the reasoning procedures.
Systems like OMEGA [1] can be considered as following this approach.

1 Terminological logics, and concept languages are other possible names.
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e The second approach advocates a careful design of the description logics so as
to offer as much expressive power as possible while retaining the possibility of
sound, complete, and efficient (often polynomial in the worst case) inference
procedures. Much of the research on CLASSIC [15] follows this approach.

e The third approach, similarly to the first one, advocates very expressive lan-
guages, but, in order to achieve efficiency, accepts incomplete reasoning pro-
cedures. LOOM [78] and KL-ONE [16] are representatives of this approach.
No general consensus exists on what kind of incompleteness 1s acceptable. Per-
haps, the most interesting attempts are those which resort to a non-standard
semantics for characterizing the form of incompleteness [91, 13, 49].

e Finally, the fourth approach is based on what we can call “the expressiveness
and decidability thesis”, and aims at defining description logics that are both
very expressive and decidable, i.e. designed in such a way that sound, complete,
and terminating procedures exist for the associated reasoning tasks. Great
attention is given in this approach to the complexity analysis for the various
sublogics, so as to devise suitable optimization techniques and to single out
tractable subcases. This approach is the one followed in the design of KRIS [4].

The work presented in this thesis adheres to the fourth approach. It aims at both 1den-
tifying very expressive description logics with decidable associated decision problems,
and characterizing the computational complexity of reasoning in such description log-
ics.

1.2 Medical Terminology Servers

In investigating description logics of this type, we have in mind a particular application
of Medical Informatics, namely Medical Terminology Servers. It is a common opinion
in Medical Informatics that the quality and the effectiveness of automatic information
and record keeping in health-care depends, to a large extent, on the efficient processing
and interpreting of medical terminologies and concepts [12, 116, 29, 103]. This has led
to the proposal of 1solating a special subsystem of health-care information systems to
which are delegated services involving the representation and reasoning about medical
concepts [100, 53, 19, 111]. We call such a subsystem Medical Terminology Server,
borrowing this name from GALEN, one of the main research projects in the area.

A Medical Terminology Server is a knowledge representation system in which
knowledge about a given medical domain (ranging from very specific to very general)
is represented in terms of concepts (classes) and links between concepts. Only part
of such knowledge 1s represented explicitly, and reasoning services are provided to
extract implicit knowledge from the explicit one.

Typical reasoning services of a Medical Terminology Server are: subsumption
checking, 1.e. checking, taking in account the knowledge possessed by the server, if
a concept 1s a specialization of another one, or if two concepts are equivalent; and
consistency checking, i.e. checking if a piece of information (e.g. a concept, or an as-
sertion of inclusion or equivalence between concepts) is consistent with the knowledge
in the server.
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By exploiting the basic reasoning services above, additional services may be pro-
vided. For example a Medical Terminology Server may generate “canonical forms” of
concepts wrt certain parameters, or it may translate the inner representation of con-
cepts in various target languages understandable by humans or by other information
systems.

Applications of Medical Terminology Servers span a broad spectrum of Medi-
cal Informatics. They include decision support tools, literature retrieval systems,
outcome research (extracting information from medical records), structured data en-
try, predictive data entry, intelligent medical records, patient record systems, patient
record retrieval, interlingua, expert systems, hospital departmental information sys-
tems [101, 85, 53, 57, 25, 111, 24, 20, 6, 79, 116]. Below we show some examples
which clarify the role Medical Terminology Servers may have in different application
domains. The examples are taken from [53, 85].

Erample 1. A hospital has installed decision-support tools. The hospital information
system will check the new orders entered into the system for conflicts. One of such
target alert may be warning to the ordering clinician whenever a nonsteroidal anti-
inflammatory agent is ordered for a patient diagnosed as having peptic ulcer disease.
The designers must ensure that the system will recognize every existing nonsteroidal
anti-inflammatory drug by name, as well as every possible reference to acid peptic
disease.

We can delegate to the Medical Terminology Server the task of recognizing if a
given kind of drug is a nonsteroidal anti-inflammatory one or not, and recognizing if
the disease diagnosed in a patient is an acid-peptic disease or if it induces an acid-
peptic condition. Note that the reasoning service involved is subsumption wrt the
knowledge in the server.

Ezample 2. A literature-retrieval system is built that will attempt to recognize con-
cepts that are synonymous. A query is entered about calcium-channel blockers and
their use in stroke. The system must deal with the fact that writers of articles use
many synonymous terms for calcium-channel blockers, such as “calcium blockers”,
“calcium antagonist”, and the individual name of different agents. Likewise, stroke
has many synonyms, such as “cerebrovascular accident” or “CVA”, and may be re-
ferred to generally as “cerebrovascular disease”.

We can delegate to the Medical Terminology Server (possibly assisted by a natural
language recognition system) the task of recognizing whether different terms denote
the same entity (calcium-channel blockers, stroke), and recognizing entities that are
specializations of those requested. Note that again the reasoning service involved is
subsumption wrt the knowledge in the server.

FEzample 3. A group is responsible for outcomes research. 1t is desirable to track
all patient data, including symptoms, yet not have to process charts manually. A
computer program is designed to extract information from patient records, but the
effectiveness of the program depends on the its ability to deal with variations in the
descriptions of patients’ symptoms. For example, what is written as “post-prandial
stomach pain” in one chart is described as “abdominal pain after meals” in another.

We can delegate to the Medical Terminology Server the task of recognizing that
the concept denoted by “post-prandial stomach pain” is actually the same one denoted
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by “abdominal pain after meals”. In general, the Medical Terminology Server can be
used to recognize if two symptoms reported on different patient records are the same
or one a specialization of the other, in order to aggregate data correctly for statistics.
Note that again we make use of subsumption wrt the knowledge in the server.

Erample 4. A renal dialysis center wants to develop a medical record that will support
observation and controlled trials as part of routine patient care. Much of the patient
information will be collected by nurses and physicians through structure data entry
to ensure that study parameters are rigorously assessed. The designers require a
standard source of possible concepts, symptoms, and corresponding values in order
to integrate different trials with overlapping data elements and share their data with
other participating centers.

We can use the Medical Terminology Server as the standard source of concepts
required above. The server will have to use its reasoning services for accomplishing
this task.

Ezample 5. A clinician is visiting a patient using a predictive data entry device.
He discovers that the patient has a fracture, and enters “fracture” into the system.
The system automatically displays “has location” among others modifiers, possibly
suggesting some of the most common alternatives as “humerus”, “ulna”, “radius”, etc.
The clinician answers “humerus”, the system accordingly displays other modifiers.
Meanwhile the system on-line checks for the consistency of the data entered. For
example it does not allow one to specify that the patient has a fracture of the eyebrow
because eyebrow is not a bone and fractures may only be located in bones.

We can designate the Medical Terminology Server as the provider of a canonical
description of the concept given in input (“fracture”) so to exploit its structure to
ask for more data (the qualification of the modifier “has location”). In producing the
canonical description of a concept, the server must reason on the knowledge about
the domain it has. In addition the server can be used to check for the consistency of
the data entered wrt its knowledge (refuting “fracture that has location in eyebrow”).

From what has been said so far it should be apparent that there are strong con-
nections between the notion of Medical Terminology Server and many knowledge
representation systems proposed in Artificial Intelligence and in Computer Science
(indeed, the formalisms adopted by the various Medical Terminology Server propos-
als come from these fields.) However it must be stressed that the notion of Medical
Terminology Server has deep roots, specific to Medicine, in the so called medical con-
cept classification systems, and systematized medical nomenclatures [102, 104, 103].
Roughly, we may divide these systems into three categories according to their repre-
senting and reasoning capabilities.

The first category is that of the so called coding systems. Coding systems (e.g.
ICD9-CM [124], CMIT [61], SNOMED-IIT [30], MeSH [80]) are based on the enu-
merative classification of medical concepts in a given domain. They are composed
by experts systematically enumerating all possible concepts in the domain. Concepts
are organized in hierarchies (sometimes a single hierarchy, sometimes multiple hi-
erarchies), which are also represented by explicit enumeration. To each concept is

10
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assigned a standard code (usually, an alphanumeric string) according to such hierar-
chies. For example in ICD9-CM under “chronic obstructive pulmonary disease and
allied conditions (490-496)” we find “asthma” coded as 493, “extrinsic asthma” as
493.0, “intrinsic asthma” as 493.1, “asthma, unspecified” as 493.9. Originally coding
systems were developed for a paper-based support (indeed, usually they are contained
in books) and their primary purpose is to discipline the use of medical terms by pro-
viding a controlled vocabulary in which each concept has a precise connotation, its
code. Given their nature, coding systems do not provide for reasoning procedures.

Coding systems have recently evolved in concept systems that allow for a struc-
tured representation of medical concepts, though they do not provide reasoning proce-
dures. An example is the semantic network developed within UMLS [77]. UMLS (Uni-
fied Medical Language System) is a project of the National Library of Medicine that
aims at providing an integration of existing controlled medical vocabularies to facili-
tate access and transformation between computer-based information sources. UMLS
organizes the more general concepts (“concept types”) by means of a semantic net-
work, while more specific concepts are supplied by the so called source vocabularies
which are again hierarchical. Another example is MED (Medical Entity Dictionary)
[27]. MED is a structured knowledge representation language developed by the Center
for Medical Informatics of Columbia University at the Columbia-Presbyterian Medical
Center. Concepts, in MED| are represented by means of a frame-based language sim-
ilar to those developed in Artificial Intelligence. No reasoning services are provided.
There have also been proposals of systems for describing medical concepts based on
semantical data models for databases, as the Entity-Relationship Model. The most
attractive aspects of such semantical data models are their high descriptive power,
and the ease with which they interface actual databases [105, 69, 70].

The third category of concept systems is the one that directly led to the notion
of Medical Terminological Server. It includes systems that allow for a structured
representation of knowledge and provide reasoning procedures to extract implicit
knowledge from the knowledge explicitly represented. Several proposals have been
made. Such proposals are based on different formalisms, and aim at somewhat dif-
ferent goals, but they all share the notion of Medical Terminology Server. One of the
major proposals is the one developed within the GALEN project [98, 101, 99, 100].
GALEN (Generalized Architecture for Language Encyclopedias and Nomenclature in
Medicine) is a project funded by the European Community, having the purpose of de-
veloping language-independent concept representation systems as the foundations for
the next generation of multilingual coding systems. A specific concept representation
formalism, GRAIL (GALEN Representation and Integration Language), has been
developed within GALEN. Such a formalism is a logic-based language resembling a
description logic. Similar proposals have been formulated within the CANON Group
[26, 23, 53, 52, 19, 57]. The CANON Group was founded in United States by Medical
Informatics researchers having the goal of establishing a basis for the “canonical” rep-
resentation of medical concepts. They are analyzing different formalisms to approach
the problem, based on frame-based languages, semantic networks, and conceptual
graphs. Conceptual graphs have been proposed as a formalism for concept-based rep-
resentation systems by others researchers as well, e.g. in [9, 97]. Another research

11
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direction is that of the project group Medicine-Informatics at the German Hearth
Center in Berlin [112, 111, 113]. This group is exploring the possible application of
the system BACK [92] (a general-purpose knowledge representation system based on
a description logic) for modeling medical and patient-related information, in order to
exploit its representing and reasoning capabilities as the core of a Medical Terminology
Server.

Observe that though different formalisms have been proposed as basic represent-
ing and reasoning paradigms for Medical Terminology Servers — i.e. semantic net-
works, frame-based languages, conceptual graphs, semantic data models, logic-based
languages — all these formalisms belong to the same family, that of class-based repre-
sentation formalisms.

1.3 Goals and main results of the thesis

Description logics offer a clean, formal and effective framework for analyzing several
important issues related to class-based representation formalisms, such as expres-
sive power, deduction algorithms, and computational complexity of reasoning. Note,
however, that in order to address these issues, description logics should be sufficiently
general, but, at the same time, sufficiently simple so as to not fall into undecidability
of reasoning.

Currently those description logics that have been studied from a formal point of
view suffer from several limitations that prevent them form being able to capture a
sufficiently broad family of class-based representation formalisms. In particular they
are too weak to meet the requirements imposed by modeling complex domains as
those often involved in Medical Terminology Servers. Several papers (e.g. [100, 112,
62, 18, 115, 50, 68]) have pointed out that in real applications, the following features
are often called for.

1. The availability of assertions for imposing mutual dependencies between classes.
The basic mechanism for this feature is the so-called inclusion assertion, stating
that every instance of a class is also an instance of another class. Much of the
work done in description logics assumes that all the knowledge on classes is
expressed through the use of class descriptions, and rules out the possibility of
using this kind of assertion (note that the power of assertions vanishes with the
usual assumption of acyclicity of class definitions).

2. The availability of a full range of constructs in order to form concept and role
descriptions. Besides the constructs corresponding to the usual boolean connec-
tives (union, intersection, complement), and existential and universal qualifica-
tions, two important types of constructs must be mentioned: those for building
complex role descriptions, in particular inverse roles (e.g. “has-direct-part” is
the inverse of “direct-part-of”) and reflexive transitive closure (e.g. “part-of”
is the reflexive transitive closure of “direct-part-of”); and those for expressing
cardinality constraints ranging from functional restrictions (i.e. that a role is
functional for the instances of a given class) to qualified number restrictions (a

12
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generalization of functional restrictions, stating the minimum and the maximum
number of links an instance of a class has with instances of another class).

3. The availability of boolean constructs on roles, and the possibility to state as-
sertions on roles, expressing inclusion, disjointness, etc.

4. The possibility of aggregating individuals in tuples, and then of grouping tuples
into n-ary relations as opposed to binary relations only (roles).

5. The possibility of asserting properties of individuals. Usually this is done in
terms of the so-called membership assertions. Two kinds of membership asser-
tions are taken into account, one for stating that an object is an instance of a
given class, and another one for stating that two objects are related to by means
of a given role.

6. The possibility of defining classes recursively. In this way it is possible to model,
for example, terminating sequences, non-terminating sequences, as well as many
other data structures of Computer Science.

The main goal of this thesis is to introduce description logics with the above fea-
tures, studying their properties, and to devise reasoning procedures for them, investi-
gating decidability and characterizing their computational complexity.

To this end, we resort to the work by Schild [108], which singled out a tight cor-
respondence between description logics and propositional dynamic logics, which are
modal logics specifically designed for reasoning about program schemes. The cor-
respondence is based on the similarity between the interpretation structures of the
two kinds of logics: at the extensional level, objects in description logics correspond
to states in propositional dynamic logics, whereas connections between two objects
correspond to state transitions. At the intensional level, classes correspond to propo-
sitions, and roles corresponds to programs. This correspondence is extremely useful
for two reasons. On the one hand, it makes it clear that reasoning about assertions on
classes is equivalent to reasoning about single dynamic logic formula. On the other
hand, the large body of research on decision procedures in propositional dynamic
logics (see, for example, [74]) can be exploited in the context of description logics,
and, inversely, the various works on tractability /intractability of description logics
(see for example [48]) can be used in the context of propositional dynamic logics. We
sustain that the work on propositional dynamic logics 1s a good starting point for our
investigation, because it provides a general method for reasoning with:

e assertion on classes;

e inverses of roles (indeed, several propositional dynamic logics proposed in the
literature include a construct that exactly corresponds to the inverse of roles).

The reasoning tasks we focus on are the usual ones.

e Satisfiability of concepts, i.e. checking if a concept expression C' admits a non-
empty interpretation (has some instances).

13
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e Satisfiability of TBoxes, i.e. checking if a TBox 1s consistent, where a TBox is
the collection of inclusion assertions that makes up the knowledge the system
is provided with. We assume inclusion assertions to have the form C; C Cy,
where C and C can be any concept expressions (this is the most general form
of assertions on classes).

e Logical implication in TBoxes, 1.e. checking if a concept C7 is subsumed by a
concept Cy wrt the knowledge in the TBox K, written K = C) C C5.2

We also consider assertional reasoning, i.e. reasoning taking into account knowl-
edge about single individuals. However such knowledge will be expressed not only
through the usual membership assertions (ABox), but also through inclusion asser-
tions involving special atomic concepts denoting exactly a single individual. This
allows us not to include assertional reasoning among the basic reasoning tasks.

The basic reasoning tasks above are not independent. In particular we can easily
reformulate both satisfiability of single concepts and satisfiability of TBoxes in terms
of logical implications. Indeed logical implication seems to be the most general rea-
soning task. However we will see that for most of the logics we will introduce, logical
implication can be reformulated as satisfiability of a single concept (it is essentially
the ability of expressing reflexive transitive closure of roles that allows us to capture
the knowledge in the TBox within a single concept).

Next to each description logic we will introduce a corresponding propositional
dynamic logic®. Most of these propositional dynamic logics have not been studied
yet, and decidability and computational characterization (of both satisfiability and
logical implication) are established within this thesis.

Figure 1.1 depicts the description logics studied in the thesis. The weaker logics
are at the bottom of the figure while the stronger ones are at the top.

A line (either thin or thick) between two logics denotes that the logic above is an
extension (in the sense that it has more constructs) of the logic below. If the line is
a thick line then it means that, a (non trivial) reduction, from (the reasoning tasks
of) the logic above to (the reasoning tasks of) the logic below, is exhibited in the
thesis. The dashed thick line between CZ and C denotes a reduction from CZ to C
which was not contained in the original version of the thesis and it is included here
as an appendix.

The logics in the closed area have already been studied, and the decidability and
computational complexity characterization of the basic reasoning tasks is already
known.

Figure 1.2 is the analogue of Figure 1.1 for the corresponding propositional dy-
namic logics. The meaning of the various lines and of the closed area is the same as
before.

Let us briefly introduce the logics in the pictures.

?Note that checking if a new piece of information is consistent with the knowledge of the system,
is expressible as checking that the TBox does not logically imply the negation of the new piece of
information.

3We use the term propositional dynamic logic in a slightly more general sense then usual, so as
to include the basic multimodal logic K;, and modal mu-calculus.
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Figure 1.1: Description logics studied in the thesis

ALC is a very well known description logic [110]. Tt includes boolean constructs
(union, intersection, and complement), existential qualification and universal qualifi-
cation for building complex concept expressions, while role can only be atomic. ALC
corresponds to the well-known modal logic K; [108], which is the basic normal mul-
timodal logic [60, 63, 22, 66]. Satisfiability of an ALC concept (satisfiability of a X;
formula) is known to be PSPACE-complete while logical implication for ALC (for K;)
1s EXPTIME-complete.

C is the description logic obtained from ALC by adding the following role con-
structs: union, chaining, reflexive transitive closure, and identity role over a concept
(see [108, 3]). C corresponds to the propositional dynamic logic D, which is the origi-
nal propositional dynamic logic introduced in [56]. All the basic reasoning tasks in C
(D) are known to be EXPTIME-complete.

wALC is obtained from ALC by adding two concept constructs denoting the least
fixpoint and the greatest fixpoint of concept expressions (see Chapter 8 for details).
Notabily, the fixpoint constructs allow for recursive concept definitions within the
usual descriptive semantics. Observe that even if no role constructs are present, pALC
is actually an extension of C, since all concept denotable in C are also denotable in
wALC. Indeed using fixpoints we can emulate all role expressions occurring in a C
concept. The correspondent propositional dynamiclogic ¢ /; 1s the modal mu-calculus
[71], which is known to be decidable and EXPTIME-complete. The correspondence
was derived independently by both Schild and the author in [109] and [38] respectively.

The description logics (propositional dynamic logics) introduced in this thesis are
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DINBR

DINB

Figure 1.2: Propositional dynamic logics studied in the thesis

obtained from € and pALC (D and pK;) by adding constructs either on concepts
(formulae) or roles (programs). The presence of such constructs is reflected in the
name of the logics.

7 in the name of a logic indicated the presence of inverse roles (converse programs
in propositional dynamic logic). In all description logics introduced that include
inverse roles, there 1s a perfect symmetry between atomic roles and inverse of atomic
roles, in the sense that all constructs dealing with atomic roles, deal with inverse of
atomic roles as well, similarly for the corresponding propositional dynamic logics.

F in the name of a logic indicates the presence of functional restrictions. In de-
scription logics, a functional restriction forces a specified atomic role or its inverse
to be functional wrt the individuals that satisfy it. Similarly for the corresponding
propositional dynamic logics. Observe the difference between functional restrictions
on atomic programs and the assumption that atomic programs are deterministic, char-
acterizing the so called deterministic propositional dynamic logics. The first impose
the functionality of a given program locally (i.e. wrt states that are forced to satisfy
the restriction), while the other assumes the functionality of each atomic program
once and for all (i.e. for all possible states).

N in the name of a logic indicates the presence of qualified number restrictions.
Qualified number restrictions have a correspondent notion in modal logic, the graded
modalities. Though, to our knowledge we are the first to study full-fledged proposi-
tional dynamic logics that include graded modalities.

B in the name of a logic indicates the presence of boolean constructs for atomic roles
(programs), together with the ability of stating assertions on boolean combinations
of atomic roles (programs). Although negation of a role is allowed, it is defined so as
not to introduce, as a side effect, the ability to denote the universal role, by means of
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a boolean expression of atomic roles (see the discussion in Chapter 5).

R in the name of a description logic indicates the presence of n-ary relations in
place of atomic roles, with suitable constructs to build complex relations, roles, and
concepts, similarly for the corresponding propositional dynamic logics.

Finally, O in the name of a logic indicates the presence of special atomic concepts
(formulae) called names denoting exactly a single individual. Note that by means
of names, ABoxes (collections of membership assertions), and constructs involving
single individuals as ONE-OF or FILLS can be represented. Names corresponds to
the notion of nominals in modal logics. Propositional dynamic logics with nominals
are often called combinatory propositional dynamic logics. The results on names in
this thesis close some open problems related to combinatory propositional dynamic
logics, by characterizing the computational complexity of deterministic combinatory
propositional dynamic logic (which is easily reduced to DFQ), and establishing the
decidability and characterizing the computational complexity of converse combinatory
propositional dynamic logic (which is easily reduced to DZ0O).

The main results of the thesis can be summarized as follows:
o We have defined and studied the new logics shown in Figure 1.1 and Figure 1.2.
e We have established the decidability of their reasoning tasks.

e We have characterized the computational complexity of their reasoning tasks as
EXPTIME-complete, by reducing them to reasoning tasks of known propositional
dynamic logics (either D, DI, or puK; ).

Research on description logics has systematically investigated concept satisfiabil-
ity and concept subsumption for a wide range of constructs (e.g. [47]). The work
reported in this thesis can be seen as the analogue of that study, when TBoxes of
the most general form (no restrictions on cycles) are taken into account. Indeed, we
systematically investigate satisfiability and concept subsumption wrt to TBoxes (both
expressible in terms of logical implication in TBoxes) for a wide variety of constructs.
Note, however, that emphasis 1s put on extending the set of constructs, instead of
cutting it down. This is because, as mentioned above, even for the simple description
logic ALC, reasoning tasks that take into account TBoxes are EXPTIME-complete.

1.4 Structure of the thesis

The thesis i1s organized in nine chapters plus an appendix. The contents of each
chapter is reported below.

Chapter 1 is the present introduction.

Chapter 2 introduces the relevant background on both description logics and
propositional dynamic logics, the correspondence between description logics and
propositional dynamic logics [108], and some convenient notions used later.

Chapter 3 introduces the description logic CZF (C plus inverse roles and functional
restrictions) and the corresponding propositional dynamic logic PZF. The decidabil-
ity and the computational characterization as EXPTIME-complete of the reasoning
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tasks in CZF and DZF, is established by exhibiting a polynomial reduction from sat-
isfiability in DI F to satisfiability in DZ (i.e. converse propositional dynamic logic).
The reduction is based on adding special “constraints” so as to represent functional
restrictions within DZ. A discussion on the results ends the chapter.

Chapter 4 introduces the description logic CZA (C plus inverse roles and qualified
number restrictions) and the corresponding propositional dynamic logic PZN . The
decidability and computational characterization as EXPTIME-complete of the rea-
soning tasks in CZN and DZIN is established by showing a polynomial reduction from
satisfiability in DZN to satisfiability in DZF. The reduction is defined in two steps:
first every atomic role is reified; then qualified number restrictions are reduced to
expressions involving only functional restrictions as cardinality constraints. A much
simpler technique to reduce CA and DN to deterministic propositional dynamic logic
is also presented. A discussion on the results ends the chapter.

Chapter 5 introduces the description logic CZN B (CZA plus boolean expressions
of roles and inclusion assertions on atomic roles) and the corresponding propositional
dynamic logic DINB. The decidability and the computational characterization as
EXPTIME-complete of the reasoning tasks, is established by exhibiting a polynomial
reduction from logical implication in DZN B to logical implication in DZN. Such
reduction makes use of the reification technique introduced in Chapter 4. Note that
for such logics, logical implication cannot be readily reduced to satisfiability as in the
previous cases, because of the presence of inclusion assertions on atomic roles (axioms
on atomic programs). A discussion on the results ends the chapter.

Chapter 6 introduces the description logic CZABR (CZAN B plus boolean expres-
sion on atomic n-ary relations and inclusion assertions on atomic n-ary relations).
The corresponding propositional dynamic logic DZA BR is not explicitly presented
in this case. The decidability and the computational characterization as EXPTIME-
complete of the reasoning tasks, is established by exhibiting a polynomial reduction
from logical implication in CZA BR to logical implication in DZN . Such a reduction
is in line with the one shown in Chapter 5.

Chapter 7 deals with individuals. It shows how to reduce reasoning with both
ABox and TBox to reasoning with only a TBox for the description logics CA" and
CZ. This is done by showing a polynomial reduction from satisfiability of CA (CZ)
ABoxes and TBoxes to satisfiability of a single DA (DZ) formula. A discussion on the
results ends the chapter, showing that the reductions presented are general enough
to allow for polynomially reducing reasoning tasks in CA'Q and CZO to reasoning
tasks in CA” and CZ, respectively. Thus decidability and computational characteriza-
tion as EXPTIME-complete is established for CA'@ and CZ© and the corresponding
propositional dynamic logics.

Chapter 8 starts with a discussion on the various semantics for recursive definitions
of concepts, arguing for an unifying approach that allows for the various semantics
to coexist in the same formalism. To this end, fixpoints of concept expressions are
introduced, and a correspondence is devised with modal mu-calculus. Specifically
the reasoning tasks in the description logics pALC are shown to be reducible to
satisfiability of modal mu-calculus, thus establishing their decidability and computa-
tional characterization as EXPTIME-complete. Next, qualified number restrictions
are taken into account, getting the description logic pALCN and the corresponding

18



Structure of the thesis

extended modal mu-calculus pK; N. Decidability and computational characterization
as EXPTIME-complete are established for these logics as well, by showing a reduc-
tion from satisfiability in pALCA to satisfiability in modal mu-calculus interpreted
over deterministic structures. Other interesting properties of description logics with
fixpoints are discussed in the chapter.

Finally the appendix contains the details of a polynomial reduction from DT (CT)
to D (C), which was not included in the original version of the thesis.
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Chapter 2

Preliminaries

In this chapter we present the basic notions regarding both description logics and
propositional dynamic logics. We refer the reader to [82] and [74] for an introduction
to the subjects. We also prove some propositions to be used in the following chapters.

2.1 Description logics

Description logics allow one to represent a domain of interest in terms of concepts and
roles. Concepts model classes of individuals, while roles model relationships between
classes. Starting with atomic concepts and atomic roles, which are concepts and roles
described simply by a name, complex concepts and roles can be built by means of
suitable constructs.

In the following, we focus on the description logic CZ which has been studied in
[108].! The formation rules of CZ are specified by the following abstract syntax:

C

T|J_|A|Cl|_|02|01L|CQ|01:>CQ|—|C|E|RC|VRC
R = P|R1UR2|R10R2|R*|R_|id(0)

where A denotes an atomic concept, C' (possibly with a subscript) denotes a concept,
P denotes an atomic role, and R (possibly with a subscript) denotes a role.

Note that CZ is a very expressive language, comprising all usual concept constructs,
and a rich set of role constructs, namely: union of roles Ry U Rs, chaining of roles
Ry 0 Ry, reflexive-transitive closure of roles R*, inverse roles R~ , and the identity role
id(C') projected on C.

Concepts are interpreted as subsets of a domain, while roles are interpreted as
binary relations over such a domain. Formally, an interpretation 7 = (A%, .T) consists
of a domain of interpretation AT and an interpretation function £ mapping every

1The description logics C and ALC are obtained from CZ by dropping inverse roles and all role
constructs respectively.
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concepts to a subset of AT and every role to a subset of A7 x AT as follows®:

AT C AT
TI_AI
17 =

("C)I — AI _ CI

(Cinc)f =cinct

(C1 U (12)1 =Ctu Cg

(01 = Cz) = ("Cl) U CI

(AR.CY! = {de AT |3d". (d d) € R and d' € C?}
(VR.CY! = {d € AT |Vd'.(d,d") € RT implies d' € CT}

PT C AT x AT

(Ry U Ry)T = R{ URZ

(R1 0 R2)* = Rf o R

(B)F = (RT)" = Uso(RY)’

(R7)F = {(d1,dy) € AT x AT | (dy, dy) € R}
id(C)T = {(d,d) € AT x AT |d € C7}.

A concept is satisfiable if there exists an interpretation Z such that C% # 0§,
otherwise the concept is unsatisfiable. An interpretation 7 is a model of a concept C'
if 7 satisfies C'.

A TBox K (i.e. intensional knowledge base) is a finite set on inclusion assertions
of the form C7 C C5, where €7 and (5 are general concepts. An interpretation 7
is a model of an inclusion assertion ¢, C Cs if C¥ C CZ. An interpretation 7 is
a model of a TBox K if 7 is a model of each inclusion assertion in K. A TBox K
is satisfiable if it has a model. A TBox K logically implies an assertion C7; C CY,
written K | Cy E Csy, if ) C Oy is satisfied by every model of K. Observe that
K | Cy C C4 expresses that the concept €} is subsumed by C3 wrt the TBox K.3

Note that each basic reasoning task can be (linearly) reformulated as logical im-
plication in a TBox. Namely satisfiability of a concept ' can be reformulated as

0}t C C L, satisfiability of a TBox K as K [£ T C L.

2.2 Propositional dynamic logics

We focus on the propositional dynamic logic DI (Converse PDL [56]) which as it
turns out corresponds to CZ.* The abstract syntax of DZ is as follows:

¢

Tl LAt AG2|d1Voa| 1= 02| 0| <r>¢]][r]o

r o= PlriUry|ryre |77 | v |67

2The notation (Rz)i stands for ¢ repetitions of R” —i.e., (R*)! = R?, and (Rz)i =RZo (Rz)i_l.

3 Accordingly, a concept Cp is subsumed by a concept Cs, if # = C; C Cs, i.e. if for every
interpretation 7, C’lI C 021.

4The propositional dynamic logic D (PDL [56]) is obtained from D by dropping converse programs
r~, while K; is obtained by allowing only atomic programs.
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where A denotes a propositional letter, ¢ (possibly with a subscript) denotes a for-
mula, P denotes an atomic program, and r (possibly with a subscript) denotes a
program.

The semantics of propositional dynamic logics (see [74]) is based on the notion of
(Kripke) structure, which is defined as a triple M = (S, {Rp},1II), where § denotes
a non-empty set of states, {Rp} is a family of binary relations over § such that each
atomic program P is given a meaning through Rp, and II is a mapping from § to
propositional letters such that TI(s) determines the letters that are true in the state
s. The basic semantical relation 1s “a formula ¢ holds at a state s of a structure M”,
which is written M, s = ¢ and is defined by induction on the formation of ¢:

M,s E Aiff Aell(s)

M,s =T always

M,s =1 never

M,sE¢1 Ao it M, s = ¢y and M, s |E ¢o
M,sE g1 Vo it M,s = ¢y or M,s = ¢
M,s = ¢1 = ¢2 iff M s = ¢y implies M, s | ¢o
M,s =—¢iflf M,s £ ¢

M,sE<r>¢iff 3s'.(s,s") € R, and M,s" | ¢
M,s | [r]le iff Vs'.(s,s") € R, implies M, s' = ¢

where the family {Rp} is systematically extended so as to include, for every program
r, the corresponding relation R, defined by induction on the formation of r:

RpCSEXS

RmUrQ — er URT2

RRi:R; = Rry o Ry, (seq. comp. of R, and R,,)
Rp = (Ry)* (refl. trans. closure of R;)

R,- ={(s1,82) €S x 8| (s2,51) E Ry}

Ryr = {(5,5) €eSxS | M, s ':¢}

We often denote a structure M = (S, {Rp}, 1) by (S,{R,}, 1), where {R,} includes
a binary relation for every program (atomic or non-atomic).

A structure M = (S,{Rp}, ) is called a model of a formula ¢ if there exists a
state s € § such that M,s = ¢. A formula ¢ is satisfiable if there exists a model of ¢,
otherwise the formula is unsatisfiable. A formula ¢ 1s valid in structure M, if for all
s€S, M,s = ¢. We call azioms, formulae that are assumed to be valid. Formally, a
structure M is a model of an axiom ¢, if ¢ 1s valid in M. An axiom is satisfiable, if
it has a model. A structure M is a model of a finite set of axioms I', if M is a model
of all axioms in I'. A finite set of axioms 1s satisfiable if it has a model. We say that
a finite set T of axioms logically implies a formula ¢, written T' |= ¢, if ¢ is valid in
every model of I'.

Observe that satisfiability of a formula ¢ as well as satisfiability of a finite set of
axioms I' can be reformulated by means of logical implication, as § £ =¢ and T' [~ L
respectively. In turn logical implication can be reformulated in terms of satisfiability,
by making use of the following theorem (see [74]).
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Theorem 1 Let T be a finite set of DI azioms, and ¢ a DI formula. Then T = ¢
of and only if the DT formula

(PLU...UP,UPTU...UP )T A=

is unsatisfiable, where Py, ... Py, are all atomic programs occurring in T' U {¢} and
IV 4s the conjunction of all axioms in T.

An analogous result holds for most propositional dynamic logics.> Observe that such
a result exploits the power of program constructs (union, reflexive transitive closure)
and the “connected model property”® of propositional dynamic logics in order to
represent axioms (valid formulae).

Theorem 1 (and its analogues) is one of the main reasons to exploit the correspon-
dence between description logics and propositional dynamic logics.

2.3 The correspondence between DLs and PDLs

The correspondence between CZ and DZ, first pointed out by Schild [108], is based
on the similarity between the interpretation structures of the two logics: at the ex-
tensional level, individuals (members of AZ) in description logics correspond to states
in propositional dynamic logics, whereas connections between two individuals corre-
spond to state transitions. At the intensional level, classes correspond to propositions,
and roles corresponds to programs. The correspondence is realized through a (one-
to-one and onto) mapping § from CZ concepts to DZ formulae, and from CZ roles to
DI programs. The mapping 8 is defined inductively as follows (we assume U, = to
be expressed by means of M, —):

5(4)=A §(P)=P

B(CL1Ca) = B(C) AO(C)  8(C) = ()
§(AR.C) =< 8(R) > 6(C)  S(YR.C) = [S(R)]5(C)
(S(Rl U Rz) = (S(Rl) U (S(Rz) (S(Rl o Rs) = (S(Rl), (S(Rz)
o) =ty S(id(C)) = 5(C)?

The mapping é can be extended to a mapping 1 from CZ TBoxes to DZ formulae.
Namely, if X = {ky, -+, k,} is a TBox in CZ, and Py, ..., P, are all atomic roles
appearing in K, then

STK)=[(PLU-- - UP, UPT - UP] 8Tk ) A AST({kn}),
6T ({C1 C Ca}) = (8(C1) = 8(Ca)).

Making use of Theorem 1, we can state the following: if K is a TBox, then K = C; C
C'5 (where atomic concepts and roles in Cp,Cy are also in K) if and only if the DT
formula

ST(K)YAS(Cr) A S(=C2)

5In the analogue of Theorem 1 for D the formula to check for unsatisfiability is [(P; U ... U
P )*T' A .

8 That is, if a formula has a model, it has a model which is connected.
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1s unsatisfiable. Note that the size of the above formula is polynomial with respect to

the size of K, and (.

By virtue of 6§ and 6%, respectively, both satisfiability of CZ concepts, and logi-
cal implication for CZ TBoxes, can be (polynomially) reduced to satisfiability of DT
formulae. Since satisfiability for DZ an EXPTIME-complete problem, so are satisfi-
ability of CZ concepts and logical implication for CZ TBoxes. It is straightforward to
extend the correspondence, and hence both 6 and 6T, to other description logics and
propositional dynamic logics.

2.4 Other preliminary notions

In this section, we introduce several notions, propositions, and notations that will be
used in the chapters which follow. We assume, without loss of generality, V, =[]
to be expressed by means of =, A, < - >, and the converse operator to be applied to
atomic programs only”.

Fisher-Ladner closure

The Fisher-Ladner closure ([56]) of a DT formula ®, denoted C'L(®), is the least set
I such that ® € I and such that:

$1 Ny €EF = ¢1,¢2€F

¢ EF = ¢EF

$pEF = —¢ € F (if ¢ is not of the form —¢’)
<r>¢€eF = ¢€eF

<ryre>gEF = <r><ry>¢el
<rMUrea>¢€elF = <rm>¢,<ry>¢p€FlF
<r*>¢€er = <r><rr>¢€r

<Pt >pel = ¢’ eF.

The notion of Fisher-Ladner closure of a formula is closely related to the notion of set
of subformulae in simpler modal logics: intuitively, given a formula &, C'L(®) includes
all the formulae that play some role in establishing the truth-value of ®. Both the
number and the size of the formulae in C'L(®) are linearly bounded by the size of &
(see [56]). Note that, by definition, if ¢ € C'L(®), then CL(¢) C CL(®). We remark
that the notion of Fisher-Ladner closure can be easily extended to formulae of other
propositional dynamic logics.

Let us denote the empty sequence of programs by the program e, and define
<e>¢=¢and [g]¢p = ¢. We call Post(r) the set of programs defined by induction

TWe recall that the following equations hold: (r1;72)~ = ryiry, (riUre)T =r] Ury, (rf)” =

(ry) (7)) = o7
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on the structure of r as follows (a = P | P7):

Post(a) = {e,a}

Post(ry;r2) = {rl;ra | r) € Post(r1)} U Post(ra)
Post(ry Ury) = Post(r)U Post(rs)

Post(r}) = {ri;ry | v} € Post(ri)}

Post(¢7) = {g,¢7}.

Similarly, we call Pre(r) the set of programs defined by induction on the structure of
r as follows:

Pre(a) = {e,a}

Pre(ri;re) = {ry;rh | rh € Pre(re)} U Pre(r)
Pre(ryUrs) = Pre(ry)U Pre(rsa)

Pre(r]) = A{riiri | ) € Pre(r)}

Pre(¢?) = {g,¢7}.

Roughly, Post(r) is the set formed by those programs that are “postfix” of the pro-
gram r, while Pre(r) is the set formed by those programs that are “prefix” of r. The
size of both Post(r) and Pre(r) is polynomial in the size of r. Moreover the programs
in Post(r) have the following two properties.

Proposition 2 Let < r > ¢ be a formula. For all v' € Post(r), < r' > ¢ € CL(<
7> é).

Proof By induction on r.

26

e r=aorr=¢'? Then Post(r) = {¢,r}. By definition, both ¢ € CL(< r > ¢)

and <r>¢ € CL(< r> ¢).
7 = r1;79. Then Post(ri;re) = {r;ra | ¥} € Post(r1)} U Post(ra).

Since ry is a subprogram of r1; r9, by induction hypothesis, for all 7| € Post(r1):

<ri>(<ra>¢)eCL(<Kr >< 71y >¢) CCOL(< 11570 > @),

On the other hand, since ry is subprogram of r1;rs, by induction hypothesis,
for all v, € Post(rs):

<rh>¢eCL(<ry > @) COL(< ri;7m0 > @),

r = r1Ury. Then Post(ryUry) = Post(r1)U Post(rs). By induction hypothesis,
for ¢ = 1,2, for all v} € Post(r;):

<ri>¢eCL(<r>¢) CCL(<r Ury > ¢).

r= Z“T Then Post(ry) = {ri;r; | v} € Post(r1)}. By induction hypothesis, for
all ] € Post(ry):

<ri>(<r>¢)eCL(<r ><r] >¢) CCL(< ] > ¢).
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O

Proposition 3 Let < ry > ... <1 > ¢ be a formula. For all ' € Post(ry;...;r),
there is a formula € CL(< vy > ... <1 > ¢) such that ¢ is equivalent to < v’ > ¢
(i.e. b =<r' > ¢ is valid).

Proof By induction on [. If [ = 1, the thesis holds trivially, by Proposition 2. If
! > 1then Post(ri;ra;...;r) = {ri;ra;...;r | 7y € Post(r1)} U Post(ra;...;1). By
Proposition 2, for all ] € Post(r1): < 7] > (< ra>...<r >)p € CL(< r; ><
re > ... < 1 > ¢). While, by induction hypothesis, for all v € Post(ra;...;r):
< 7' > ¢ is equivalent to ¥, for some € CL(< ry > ... <1 > ¢) CCL(< r ><
re>...<r>¢). 0

Paths

Next we introduce the notion of path, which is similar to the notion of trajectory used
in [7], and to that of execution sequence in [119].

A pathin a structure M is a sequence (sq, . .., 84) of states of M (¢ > 0), such that
foreach i=1,...,¢, (si—1,s;) € R, for some a = P | P~. The length of (so,...,s,)
is q. Intuitively a path describes the sequence of states a given run of a program goes
through.

We inductively define the set of paths Pathsy(r) of a program r in a structure
M, as follows®:

Pathsyr(a) = Rela=P|P7)

Pathspyr(r1 Urs) = Pathsy(r1) U Pathsy(ra)

Pathsyr(r1;r2) = {(s0,..-,8u,.-.,8¢) | (s0,...,8u) € Pathsp(r1)
and (sy,...,$q) € Pathsy(rs)}

Pathspr(r*) = {(s) | s € S} U (U;»o Pathsy(r'))

Pathsp(¢'7) = {(s)| M,sE¢'}.

We say that a path (sg) in M satisfies a formula ¢ which is not of the form
<r > ¢ if M,sgp E ¢. We say that a path (so,...,s,) iIn M satisfies a formula
¢ of the form < ry > --- < r; > ¢', where ¢’ is not of the form < v > ¢” if
(s0,...50) € Pathsy(r1;---;r) and M, s, = ¢'.

The following two propositions describe the basic properties of paths: they concern
paths of length 0 and paths of length greater then 0 respectively.

Proposition 4 Let M be a structure and < r > ¢ a formula such that: M,s =< r >
®, (s) € Pathsy(r), and M,s |= ¢. Then there exists a formula < $:17;...;¢,7 > ¢,
with g > 0, such that:

o all tests ¢;7 occur in r;

o M,s E< ¢17;...50,7 > ¢;
1

8 The notation r* stands for i repetitions of » —i.e., r! =r, and r* = r;r*~1.
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o P17 507> =< > ¢ is valid.

Proof By induction on r.

1) r=¢'"7.
The thesis holds trivially.

2) r=ry;ro.
M,s =< r1;70 > ¢ and (s) € Pathsyr(r) implies that M, s =< r1 >< r2 > ¢ and
(s) € Pathspy(ry) and (s) € Pathspy(rz).

By induction hypothesis, we can assume that:

o there is a formula < ¢117;...;¢1,4,7 >< 12 > ¢ such that all tests ¢; ;7 occur
inr, M,s E< ¢117;...501,4,7 >< 12 > ¢, and < ¢117;...;01,4,7 >< 19 >
¢ =< ry >< ro > ¢ is valid,;

o there is a formula < ¢217;...;¢24,7 > ¢ such that all tests ¢ ;7 occur in r,
M s E<¢217;.. 502,57 >0, and < ¢217;.. 502 4,7 > ¢ =< ry > ¢ is valid.

Hence, we can conclude that the formula

< @117 501,07 0217 02,,7 > @

is such that: (1) all tests ¢; ;7 occur in 71 or ry and therefore in r; (2) M,s E<
1175 5010750217 502,47 > ¢ (3) < @1aTi 01,0, 02175020, T >
¢ =< ry;re > ¢ 1s valid, as can be easily verified, considering that <
G117 P17 >< T2 > ¢ =< 1 >< 9 > ¢ is valid, and any formula of the
form < 917;.. ;9,7 > 1 is equivalent to 1 A ... Aty A

3) r=ry Urs.

M, s =< 1 Ury > ¢ implies that, either for i = 1 or for i = 2, M s =< 7; > ¢ and
(s) € Pathspy(r;). By induction hypothesis we can assume that there is a formula
< $iaT;. .5 bi g7 > ¢ such that all tests ¢; ;7 occur in vy, M,s E< ¢;17;...;6;,4,7 >
¢, and < ¢;17;...;054,7 > ¢ =< r; > ¢ is valid. Therefore, considering that
<> ¢ =><ry Urs > ¢, we get the thesis.

) r=r.
Since (s) € Pathspy(r}), < ry > ¢ is equivalent ¢V < r; >< rf > ¢, and M, s E ¢,
the thesis holds trivially (with ¢ = 0). O

Proposition 5 Let M be a structure, and < r > ¢ a formula such thalt: M, s E<
r> ¢, (s = s0,...,8) € Pathspy(r) with ¢ > 0, M, s, = ¢. Then there exists a
formula < ¢17;.. 56,7 a >< v > ¢, with g > 0, such that:

o all tests ¢;7 occur in r;

o 7' € Post(r) (and hence < v’ > ¢ is equivalent o ¢ — i.e. <v' > ¢ = is valid
— for some Y € CL(< r > ¢));

L4 (SOa 51) € Ra;
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o M s ':< r' > QZ),'
o (s1,...,8) € Pathsy(1');

o <17 0 Tia><r > =< r > ¢ s valid

Proof By induction on r.

1)r=a.
The thesis holds trivially.

2) r=ry;ro.
Let (sq,...,si) be the segment of (sp,...,s,) such that (so,...,s;) € Pathsy(r1)
and (s;,...,sq) € Pathsy(r2). We consider two cases:

e i > 0. Consider that: (1) M,sq E<ry > ¢’ for ¢' =< r2 > ¢; (2) (so,...,8) €
Pathsyr(ry) with ¢ > 0; (3) M,s; E< ra2 > ¢. By induction hypothesis, there
is a formula < ¢17;...;6,7;a >< r{ >< ry > ¢ such that:

— all tests ¢;7 occur in 71, and hence in r;

— 7] € Post(ry), and hence r{;ry € Post(ry;ra);

— (s0,51) € Ra;

— M,s1 E<r] ><ry> ¢, and hence M, sy =< ri;ry > ;

— (s1,...,8;) € Pathspy(r]) with i < ¢, and hence (s1,...,5,) € Pathspy(<

riira > 9);
— < P17 T a>< ] >< re > ¢ =< 1 >< rp > ¢ is valid, and hence
< P17 0T a >< Py > ¢ =<y > ¢ s valid.
e ¢ = 0. By Proposition 4, there exists a formula < ¢117;...;¢1 4,7 >< 712 > ¢
such that

— all tests ¢1 ;7 occur in ry;

= M,so E< ¢117;...501,4,7 >< 12 > ¢;

= < P17 P gt > e > ¢ =< >< rp > ¢ is valid.
On the other hand, observe that < ry > ¢ is such that: (1) M, s E< ry > ¢;
(2) (s = sn,...,84) € Pathsy(ry) with ¢ > 0; (3) M, s, |E ¢. Therefore, by
induction hypothesis, there is a formula < ¢217;...;¢24,7;a >< 7y > ¢ such
that

— all tests ¢2 ;7 occur in ry;

— vh € Post(ry) (C Post(ry;r2));

— (s0,51) € Ra;

- M,51 ':< 70/2 > ¢a

— (s1,...,84) € Pathsp(r});

— < P17 Pa g Tia >y > ¢ =< ry > ¢ is valid.
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Hence the formula < ¢117;...;¢1,57;¢217;.. ;02476 >< 74 > ¢ is such
that

— all tests ¢; ;7 occur in either in ry or in ra;

— rh € Post(r1;r2);

— (80,81) € Ra;

- M, sy =< rh > ¢

— (s1,...,84) € Pathsp(r});

= < 11T h1,0 T >< PTG da e ><rh > ¢ <y >< 1y > ¢

is valid, and hence < ¢117;...501 5,7, 02175 .. ;025,750 >< 7h > ¢ =<

r1; 79 > ¢ is valid (recall that any formula of the form < ¢17;.. ;9,7 > ¢
is equivalent to ¥ A ... Aty A ).

3) r=ry Urs.

M s E< riUry > ¢ with (s = so,...,8,) € Pathsy(r1 U ry) implies that ei-
ther for i = lor i =2: (1) M,s E< r; > ¢; (2) (s = s0,...,8) € Pathspy(r;)
with ¢ > 0; (3) M,s; = ¢. Thus, by induction hypothesis, there is a formula
< il big T a; >< vl > ¢ such that:

o all tests ¢; ;7 occur in r;, and hence in r; Urs;

7} € Post(r;) C Post(r; Urs);

(s0,51) € Ra;
M, sy ':< 7“; > ¢>,

(s1,...,84) € Pathsp(rl);

< @i1Ts b T >< > ¢ =< r; > ¢ is valid, and therefore, considering
that, < r; > ¢ =< ri Ury > ¢ is valid, we get that < ¢;17;...;¢i 4,7 ai ><
7l > ¢ =><ryUre > ¢ is valid.

) r=r.
Since ¢ > 0, we have that M,s E< r7 > ¢ implies M,s E< r >< rf > ¢,
and furthermore there is a segment (so,...,s;) of (sg,...,s,) With 0 < ¢ < ¢,

such that (so,...,s;) € Pathsy(r1) and (s;,...,s,) € Pathspy(r}). Thus we have:
(1) M,sg E< r1 > ¢/ with ¢ =< vf > ¢; (2) (s0,...,8;) € Pathsy(ry) with
i > 0; (3) M,s; =< ri > ¢. By induction hypothesis there exists a formula
< P17 047 a >< ) >< r > ¢ such that

o all tests ¢;7 occur in ry, and hence in rJ;
e 7| € Post(ry), and hence ry;r € Post(r});
o (s50,51) € Ra;

o M s; E< 7] ><r] > ¢, and hence M, sy E< 7];7] > &;
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® (s1,...,8;) € Pathsy(r)), and hence (s1,...,5,) € Pathsy(r};7});

o < 1T dgha > ] >< ) > ¢ =< . >< ] > ¢ is valid, hence <
17 Pt a >< rlyry > ¢ =< r;r; > ¢ is valid. Therefore, considering
that < r;77 > ¢ =< r} > ¢, we get that < ¢17;...;0,7;a ><ri;r] > ¢ =<
ri > ¢ is valid.

Finally, if a denotes the atomic program P (resp. the inverse of an atomic program
P7), then we write ¢~ to denote P~ (resp. P).
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Chapter 3

Functional Restrictions

In this chapter we study the description logic CZF and the propositional dynamic
logic DIF obtained from CZ and DI by adding the functional restriction construct
(<1 a). The functional restriction (< 1 @) imposes that the role a, where «a is either
an atomic role (program) or the inverse of an atomic role (program), is functional wrt
individuals (states) in which (< 1 a) holds.

3.1 The logics CIF and DIF

Concepts of CIF are formed according to the following abstract syntax:

c = T|J_|A|Cl|_|02|01L|02|01:>02|—|C|
IR.C |YR.C | (< 1a)

a == P|P~

R = a|R1I_|R2|R10R2|R*|R_|id(C)

where A denotes an atomic concept, C' (possibly with a subscript) a generic concept,
P an atomic role, a a simple role, 1.e. either an atomic role or the inverse of an atomic
role, R (possibly with a subscript) a generic role.

The semantics of CZF is the same as for CZ, except for functional restrictions
(<1 a) whose meaning in an interpretation 7 is the following (recall a = P | P7):

(<1 a)f ={d e AT | there exists at most one d’ such that (d,d’) € a*}.

Note that in CZF there is a complete symmetry between atomic roles and inverse
of atomic roles. This symmetry is often needed in representing complex domains.
Furthermore it makes CZF suitable to explore extensions of the logic based on the
reification of the relations as shown later.

The corresponding propositional dynamic logic is called DZF and its syntax is as
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follows:
¢ = TIL|A|¢1Ada| 1V a| 1= ¢o]|¢]|
<r>¢l[rle[(<1a)

n= P| P~
rou= al|lrmUrg|rgre | et r | @7

where A denotes a propositional letter, ¢ (possibly with a subscript) a formula, P
an atomic program, a a simple program, i.e. an atomic program or the inverse of an
atomic program, and r (possibly with a subscript) a generic program.

Consistently with its interpretation in CZF, the new construct is interpreted as
follows: given a structure M = (S,{R,},1) and a state s € S,

M,s | E (£ 1a) iff there exists at most one t such that (s,1) € R,.

The rest of the constructs are interpreted as in DZ.

Observe that the functional restriction (< 1 @) allows the notion of local determin-
ism for both atomic programs and the converse of atomic programs to be represented
in the logic. With this construct, we can denote states in which the running of an
atomic program, or the converse of an atomic program, is deterministic, i.e. 1t leads
to at most one state. It is easy to see that this possibility allows one to impose the
so-called global determinism too, i.e. that all runs of a given atomic program or the
converse of an atomic program, are deterministic. Therefore, DZF subsumes the
logic studied in [131], called Converse Deterministic PDL, where atomic programs,
not their converse, are (globally) deterministic.

3.2 Reasoning in CZF and DIF

The decidability and complexity of both satisfiability of CZF concepts and logical im-
plication in CZF TBoxes can be derived immediately by exploiting the correspondence
between CZF and DIF. This is realized through the mappings § and §T described
in Chapter 2, suitably extended in order to deal with functional restrictions (given
the semantics of these constructs in CZF and DIF, the extension is trivial). Note
however that the decidability and the complexity of satisfiability in DZF have yet to
be established. We establish them below by exhibiting an encoding of DZF-formulae
in DI. More precisely we show that, for any DZF-formula @, there is a DZ-formula,
denoted y(®), whose size is polynomial with respect to the size of ®, and such that ®
is satisfiable if and only if y(®) is satisfiable. Since satisfiability in D7 is EXPTIME-
complete, this ensures that satisfiability in DZF is EXPTIME-complete too.

In what follows, we assume, without loss of generality, that ® is in negation normal
form (i.e. negations are pushed inside as much as possible). Tt is easy to check that
the transformation of any PDL formula in negation normal form can be performed in
linear time in the size of the formula.

Definition Let & be a DZF formula in negation normal form. We define the DZ-

counterpart y(®) of ® as the conjunction of two formulae, y(®) = 1 (P) A y2(P),
where:

34



Reasoning in CIF and DIF

e v1(®) is obtained from the original formula ® by replacing each (<1 a) with a
new propositional letter A(<14), and each ~(< 1 a) with (< a > H<1q)) A (<
a > _‘H(gla)), where H(<1,4) is again a new propositional letter.

e 1(®)=[(PLU...UP,UP T U...UP)]vd Ao AYS, Whelje Py, ..., P, are
all atomic programs appearing in ®, and with one conjunct % of the form

(Ai<iaA < a> ¢) = [a]¢

for every A(<1q) occurring in 71(®) and every ¢ € CL(71(®)).

O

Lemma 6 Let ® be a DIF formula, and y(®) its DIL-counterpart. Then y(®) is a
DI formula, and its size s polynomially related to the size of @.

Proof Straightforward. O

The purpose of y1(®) is to introduce the new propositional letters A(<14) and
H(<1q) in place of (< 1 a). Positive occurrences of (< 1 a) are represented by
the letter A(<14), while negative occurrences of (< 1 a) are represented by < a >
Hi<1)N < @ > —=H(<14). Note that every state where < a > Hi<i)A < a > =H(<1q)
holds, has at least two a-successors.

The purpose of v2(®) is less obvious. Intuitively, it constrains the models M of
7(®) so that: for every state s of M, if A<14) holds in s, and #; and ¢, are two
a-successors of s, then ¢ and t5 are equivalent wrt the formulae in CL(y1(®)). We
show that this allows us to actually “collapse” #; and ¢, into a single state.

Observe that if, instead of adding v2(®), we imposed the axiom schema

(Ai<iaA < a > ¢) = [a]¢

where ¢ is any formula, then the models of v;(®) would be models of the original
formula as well. However, the problem of whether a D7 formula ¢ is deducible from
an axiom schema is in general undecidable [74]. So, adding the above axiom schema
to DI is of no use in establishing the decidability of DZF.

Instead, the formula v2(®) can be thought of as a finite instantiation of the axiom
schema (A<1)A < a > ¢) = [a]¢ (one instance for each formula in CL(y1(®))).!
Intuitively, imposing the validity of such finite instantiation guarantees that if 41 (®)
has a model then it has a model that is model of the original formula as well.

Next we introduce a function ES that given a state s of a model M identifies the
states of M that can be thought of as “replicas” of s. We consider (without loss of
generality) “connected” models only.?

Definition Let M = (S, {R,},I) be a model of v(®). For any state s € S, we denote
by ES(s) the smallest set £(s) of states in M such that

1 Actually, 2 (®) already takes into account the reduction from logical implication to satisfiability.
2 A connected model of ¢ is amodel M = (S, {Rp},II) such that S = {¢ | (s,t) € (Up(RpURL)*}
and M, s E ¢.
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e s€&(s), and
o if s € £(s) and for some simple program a
— (¢/,t) € Ry,
- Mat/ ': A(Sla‘)a
-t e &(t),
_ (t//’S//) E R(;’

then s” € £(s).

Note that, as a consequence of 75(®), we have M, 1 = A<y 4-y, since A<qq-) €
CL(y1(®)) (all atomic prepositions occurring in 41 (®) are in C'L(y1(D)).
An alternative way to see FS(s) is the following:

ES(s) ={s"|(s,5') e Rx}

where X is program, which is not denoted by a regular expression, but by the following
context-free grammar:

X i=¢|(a;A<14-)7; X;a7); X (a any simple program).

By definition, ES(s) is obtained starting from s by including recursively the states
s" which are linked by

-y or
(al;A(Sla: )7;(11 )

R —\. =y OT
(al;A(Slal—)7;(%;14(31@;)7;% Jiai )

. e Caw: ca=Va=Va—) OF
(a“A(Sla:)?’(GJ’A(Sla;)?’(ak’A(Sla;)?’ak )vaj )va, )

to states that are already known to be in ES(s). By v2(®), the states s’ satisfy the
same formulae of C'L(y1(®)) as the state s. Hence all states in £S5(s) satisfy the same
formulae, wrt those in C'L(7y1(®)).

Observe, however, that FS(s) does not contain all the states of M satisfying
the same formulae of C'L(y1(®)) that s satisfies. The discussion above clarifies that
the states in ES(s) are only those in the connected component of the relation R x
containing s.

In the reminder of this section we shall prove that any DZ F-formula @ is satisfiable
if and only if its DZ-counterpart y(®) is satisfiable. We start by showing that if v(®)
is satisfiable then @ is satisfiable. We proceed as follows:

1. Given a model M of v(®), we build a tree-like model M* such that M?®, root =
¥(®) (root is the root of the tree-structure).
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2. Then, by suitably modifying M?, we construct a model M7, such that all func-
tional restriction requirements are satisfied —i.e., every state s in which A< q)
holds has at most one a-successor.

3. Finally, by eliminating the interpretation on the atomic propositions A< q)
and H(<14), we get a model M7 of ®.

We construct M* from M in two steps.

Step 1. Let < a; > ¥1,...,< ap > ¥p be all the formulae of the form < a > ¢/,
with a a simple program and ¢’ any formula, included in C'L(®).®> We consider an
infinite h-ary tree 7 whose root is root and such that every node x has h children
child;(x), one for each formula < a; > ;. We write father(z) to denote the father
of a node  in 7. We define two partial mappings m and [: m maps nodes of 7
to states of M, and [ is used to label the arcs of 7 by either atomic programs, or
the converse of atomic programs. For the definition of m and [, we proceed level
by level. Let s € S be any state such that M,s | y(®). We put m(root) = s,
and, for all arcs (root, child;(root)) corresponding to a formula < a; > ¢; such that
M,s E< a; > ¢;, we put I((root, child;(root))) = a;. Suppose we have defined m
and [ up to level £, let & be a node at level k + 1, and let {((father(x),z)) = a;
— this implies M, m(father(z)) =< a; > v¥;. We choose a minimal path (ie. a
path with minimal length) in M satisfying < a; > v;, say (so, s1,...,84), such that
so € ES(father(x)); we put m(z) = s; and for every < a; > ¢; € C'L(®) such that
M,t E< a; > ¢; we put {((z, child;(x))) = a;.

Step 2. For each P, let R = {(z,y) € 7 | l((z,y)) = P or I((y,x)) = P~ }. We
define the structure M* = (8, {R%}, II*) as follows:

St={z €T |(root,x) € (Up(Rp URF))"}
RL =R N (S x 8
Ht(x) = H(m(x)) for all x € St).

Observe that the structure M? is a generally infinite tree. However the set of states
St is countable.

Next we construct the structure M7, satisfying all the functional restrictions re-
quirements.

Step 1 Let us enumerate level by level the states » € S* such that M » = A<t a)
for some simple program a.*

Step 2 From this enumeration, we define a sequence of structures M! =
MO MY M? .. 1 where each M* is obtained from M*~1) by considering the k — th
state #* € 8 such that M, z* |= A(<1q) for some simple program a and proceeding
as follows:

o If 2# ¢ S then M* = M(F-1),

3Notice that the formulae 1; may be of the form < r > ¢, and that ; € CL(®).

4In this way states at level (depth) ¢ are all enumerated before states at level 7 + 1.
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o If 2% € 8 =1 then for each simple program a such that M* z* E Aia)
— if (2%, father(z*)) ¢ ng_l), we define
ng_l)/ = RUF=D — (&, child;(x)) € RF~Y) except one};
— if (2%, father(z*)) € ng_l), we define
RUE=D" = U= _ £(z child;(x)) € RE-D}.
We define M* = (8%, {R%},11%) as follows:

St ={x € 8| (root,x) € (Up(RE U(RE)7))}
RE =RE N (SF = 8
Hk(x) = Ht(x) for all z € S*.

Observe that M* satisfies the functional restriction requirements for the first k states.
Observe also that root € S* for all k, and that

St=8">28'"028%D ...
RL=RLDODREDORELED ...

Step 3 We define M7/ = (87, {pr}, I17) as follows:

S = ﬂkZOSk

RfP = ﬂkzoleD
nf (z) = M'(z) forall z e ST,

Intuitively, the model M7 is a (generally infinite) tree, obtained by “visiting” level by
level M and eliminating, for each state z, all the states in F\S(x) except one (which
must be connected to the root). Observe that, in general, M/ contains many states
satisfying the same formulae, wrt those in C'L(7;(®)). Hence, M/ is not a filtration®
of M by CL(y1(®)). We will come back to this point at the end of the chapter.

Finally, we define M7 = (8%, {R%},117) as follows:

ST =57

7 (z) = Hf(l‘) — {A(Sla)’ H(gla) | A(Sla), H(gla) S Ht(l‘)} for all x € §7.
The following three lemmas state the basic properties of M?, M/ and M7 .

Lemma 7 Let M be a model of v(®). Then, for every formula ¢ € CL(y(®)) and
everyx € SY, MY,z E ¢ iff M,m(z) E ¢.

5See for example [60] for the definition of filtration in Modal Logic.
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Proof We prove the lemma by induction on the formation of ¢ (called formula in-
duction in the following). We assume, without loss of generality, V,[-] to be expressed
by means of =, A, < - >, and that the converse operator is applied only to atomic
programs.

e ¢ = A.
M,m(z) E Aiff A € T(m(x)) iff (by construction of M*) A € () iff M,z =
A.

® =01 ¢

M, m(z) E 1A iff M, m(z) E ¢1 and M, m(z) = ¢2 iff (by formula induction
hypothesis) M*,z | ¢1 and M' z |E ¢o iff M' 2 |E ¢1 A ¢s.

L ] d) = —|¢)/,
M,m(z) | —¢" iff M, m(x) £ ¢ iff (by formula induction hypothesis) M*, x [£
¢ iff Mo = ¢,

o p=<ry>...<r > ¢ with ¢’ not of the form < " > ¢".

Let r be ri;...;7. Werecall that < r > ¢’ is equivalent to <7y > ... <1 > ¢,
and that, by Proposition 3, for all ' € Post(r), < v’ > ¢’ is equivalent to some
YpeCL(<rm>...<rn>¢).

Let M,m(z) E< r > ¢', we prove that M* x =< r > ¢'. We proceed by
induction on the length of the path in M satisfying < r > ¢ (called path
induction in the following)

If (m(z)) € Pathsy(r) and M, m(z) |= ¢', then, by Proposition 4, there exists
a formula < ¢17;...; 6,7 > ¢', with ¢ > 0, such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';
— M,m(z) E< $17;...; 0,7 > ¢';
— < P17 0,7 > ¢ =>< > ¢ s valid.

By formula induction hypothesis, for every ¢ € {¢1,...¢,,¢'}, M, m(z) | ¢ iff
Mt x =, and hence M* 2 =< r > ¢'.

Otherwise, let (m(z) = sg, s1,...,5,) be a path in M satisfying < » > ¢’. By
Proposition 5, there exists a formula < ¢17;...;¢,7;a >< v > ¢/, with g > 0,
such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— v/ € Post(r), and hence by Proposition 3, the formula < v’ > ¢’ is equiva-
lent to ¢ for some ¢ € CL(< r1 > ... <r; > ¢') C CL(v(D));

— (s0,51) € Ra;
— (s1,...,8¢) € Pathsy(7');
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40

— < P17 g T a><r > ¢ =< r > ¢ s valid.

By formula induction hypothesis, for every ¢; € {¢1,...¢,}, M, m(x) E ¢; iff
Mt, X ': (f)z

By construction of M?, there is a minimal path (s}, s/, . .., Sqr) satisfying <
a >< v > ¢ such that s; € ES(m(x)) and s{ = m(child;(x)), which is
shorter or of the same length as (sg,s1,...,5,). Therefore, by path induction
hypothesis, M, m(child;(z)) E< r' > ¢' implies M?, child;(z) E< r' > ¢’ and
so Mz =< a><r' > ¢'. Hence we can conclude that M x =< r > ¢'.

Let M,z E<r > ¢, we prove M, m(z) E<r > ¢'.

If (z) € Pathsy(r) and M' z | ¢, then, by Proposition 4, there exists a
formula < ¢17;...;¢,7 > ¢, with g > 0, such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— M a E< ¢175. 50,7 > ¢

— < P17 0,7 > ¢ =>< > ¢ s valid.
By formula induction hypothesis, for every v € {¢1,...¢,, ¢}, M', & = ¢ iff
M, m(z) = ¢, and hence M, m(z) E<r > ¢'.
Otherwise, let (z = @, #1,...,24) be a path in M? satisfying < r > ¢’. By
Proposition 5, there exists a formula < ¢17;...;¢,%;,a >< v > ¢’ | with ¢ > 0,
such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— v/ € Post(r), and hence by Proposition 3, the formula < v’ > ¢’ is equiva-
lent to ¢ for some ¢ € CL(< r1 > ... <r; > ¢') C CL(v(D));

— (20, 21) € Ra;

— (21,...,24) € Pathsyp(');

— < P17 g T a><r > ¢ =< r > ¢ s valid.
By formula induction hypothesis, for every ¢; € {¢1,...¢,}, M',z |E ¢; iff
M, m(z) = ¢i.
By path induction hypothesis M* z1 E< 1’ > ¢’ implies M, m(z1) E< v’ > ¢'.

If z1 = child;(z) then, by construction of M’ there is an s € ES(m(z)) such
that (s, m(child;(z))) € R,. Hence we have M,s E< a >< r’ > ¢/, and in
turn M, m(z) E< a >< 7/ > ¢, since < a >< 1 > ¢ € CL(< r > ¢) C
CL(y1(®)), and s € ES(m(x)).

If x1 = father(z) then, by construction of M7, there is an s € F.S(m(z1)) such
that (s,m(x)) € Ry and M,s E< ' > ¢, since < v > ¢ € CL(<r > ¢') C
CL(y1(®)) and m(z1) € ES(s). Hence we have M, m(z) =< a >< ' > ¢'.

Hence in both cases we can conclude that M, m(z) =<r > ¢'.
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Observe that, by inspecting the proof above, it is easy to verify that for all « of
M? and for all < r > ¢’ € CL(y1(®)), if M',x E< r > ¢’ then there exists a path of
the form (x, child; (x) = x1,...,child; (...child; (x)...) = x4) € Pathsy(r) with
g > 0 such that M' z, E ¢’

Lemma 8 Let M = (S,{R,}, 1) be a model of v1(®), and M* = (S*",{R,}, 1) be
the structure defined as above. Let < r > ¢ be a formula such that

o ¢ is not of the form < r' > ¢';
o < v > ¢ is equivalent to some p € CL(y1(9)).

Then, for all x € 8, if there is a path (x = xo,...,xy) on M satisfying < r > ¢
then there is a path (z = xy, .. .,x;,) in M satisfying < r > ¢ which is shorter or of
the same length as (x = xy, ..., 2,), and such that: for all &} € {5, .. .,x;,}, for all
simple programs a:

(€j_9, xi_y, 27) € Pathsyp(a; A<y a—7;a7) implies zj_y = xj.
Proof By induction on the length of the path (xzo,..., ).
If such a length is less than 3, then the thesis holds vacuously.

Let the length of (2o, ..., 2,) be greater or equal to 3.
By applying Proposition 5, we can conclude that, there exists a formula <
(607;...5047);a;7" > ¢, with ¢ > 0, such that:

e all tests ¢;7 occur in r;

e ' € Post(r), and hence by Proposition 2, the formula < ' > ¢ is equivalent to
Ve CL(1(®));

(an $1) € sza

(21,...,24) € Pathsyp(v');
o < (075 047) a7 > ¢ =< v > ¢ s valid.
L If (wo, 21, 22) € Pathsye(a; Ai<1a-)7;a7) or g = 23, then by induction hy-
pothesis there exists a path (z1 = 21, ..., z,) satisfying < r’ > ¢ such that: for
all &} € {f, ..., J:f],}, for all simple programs a

(€j_9, x5_y, 27) € Pathsyp(a; A(<1a—)7;a7) implies z;_y = ;.

Hence the path (zg =z, #, ..., z,) satisfies < r > ¢ and is such that: for all
z; € {z}, ...,z }, for all simple programs a

(Ti_9, xi_y, ;) € Pathsyri(a; Ai<1a—7; a7 ) implies z;_y = ;.
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2. If (zo,®1,22) € Pathsyi(a; Ai<14-)7;a7) and xg # 2, then by Proposition 5,
there exists a formula < (¢07;...;¢,7);a7 ;7" > ¢, with g > 0, such that:

e all tests ¢;7 occur in r;

o " € Post(r'), and hence by Proposition 2, the formula < " > ¢ is
equivalent to ¢/ € C'L(y1(®));

* (xlaxz) ERZ_’
o (z9,...,24) € Pathspp(v"');
o < (¢07; .. .;(Z)g?);a_;r// > ¢ =<1 > ¢ is valid.

Since (xo,x2) € R, and < r” > ¢ is equivalent to ¢/ € C'L(y1(®)),

<1a-)7307

we have that M, zg |(:_< 7“3’ > @it MY zs =< > ¢.

Moreover, by construction of M, we have that m(z2) € F.S(m(zg)), and this
implies that there exists a path (zo = 2%,...,z},) satisfying < v > ¢ which
is shorter or of the same length as (z2,...,2,). Now consider the path (zy =
zg, 71 = af, w0 = x4, ...,x)u): it satisfies < r > ¢, it is shorter or of the same
length as (zo,...,2y), (xo,x1,%2) € Pathsyi(a; A<14-y7;a7), and zg = z7.
Hence applying the reasoning at item 1. we get the thesis.

O

Lemma 9 For cvery formula ¢ € CL(71(®)) and every v € S, MYz
b iff Mzl o.

Proof Consider that M7 is the limit of the (infinite) sequence of models M?! =
MO M, .... We prove that for each h >0, M' 2 = ¢ iff M" x|= ¢, for all x € S*
and all ¢ € CL(y1(®)). We proceed by induction on & (called state induction in the
following).

e h=0. Since M% = M?, the thesis holds trivially.

e h = k+1. Tt suffices to prove that, for all # € S¥*! and all ¢ € CL(71(®)), M* z |
¢ iff M*tl z = ¢. Indeed, by state induction hypothesis, for all ¢ € CL(v1(®))
and all z € $¥(D &), M* 2z ¢ iff M z = ¢.

We proceed by induction on the formation of ¢ (called formula induction in the
following). We assume, without loss of generality, V,[] to be expressed by means of
=, A\, < - >, and that the converse operator is applied only to atomic programs.

e ¢ = A.
M* z |= Aiff (by construction of M*+1) M+ 2 = A
® =01 ¢

M* 2 |E ¢y A ¢y iff M* 2 = ¢y and M* z | ¢ iff (by formula induction
hypothesis) M**! z |= ¢y and M**! z |= ¢y iff M*H 2 = 61 A ¢o.
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L ] d) = —|¢)/,
M* 2 | =¢' iff M* 2 [£ ¢ iff (by formula induction hypothesis) M**+1 z [£ ¢/
iff MEHL x = =g

o p=<1r>¢".
Let M**t! 2 =< r > ¢/, we prove that M* 2 =< r > ¢'.
MLz =< r > ¢/ iff for there is a path (z = zq,...,2,) € Pathsyx+:1(r) such
that M*+! z, = ¢'. By construction of M**! (2 = zq,...,x,) € Pathsyx(r),

while, by formula induction hypothesis M*, z, = ¢'. Hence, we have M* x =<
r> ¢

Let M* x =< r > ¢, we prove that M**! z =< r > ¢

If (z) € Pathsyx(r) and M* z = ¢, then, by Proposition 4, there exists a
formula < ¢17;...;¢,7 > ¢', with ¢ > 0, such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

~ MF r < ¢17;...50,7> ¢, and hence M', 2 E< ¢17;...5¢,7 > ¢';

— < P17 50,7 > ¢ =< r > ¢ s valid.

By formula induction hypothesis, for every v € {¢1,...¢,,¢'}, M* z | ¢ iff
M*+1 % |= 4, Therefore M**! x =< r > ¢'.

Otherwise, there is a path (x = 2, ...,2,) € Pathsyx(r) such that M* z, |
¢'. By applying Proposition 5 ¢ times and Proposition 4 once, we can conclude
that there exists a formula

< (Po175 -5 Poge?)an; -
(¢(q—1)1?; ceey ¢(q—1)g(q_1)?); Qg
(@175 049,7) > ¢

with g; > 0, such that:

— all tests ¢;;7 occur in r, and hence all ¢;; are subformulae of < r > ¢;
— (wi_1,25) € R’Zl, fori=1,...,q;

— The following formula is valid:

< (o175 5 PogeT)s a; - -
(¢(q—1)1?; cey ¢(q—1)g(q_1)?); Qg;
(0175 1 0gg,7) > & =< > ¢

If, for #; = zg,...,x,, ¥; € S¥*1 then, by construction of M*+1 (z;_y, 2;) €
R’Zl implies (#;_1,%;) € Rg:“l By formula induction hypothesis, for every ¥ €
{G0go, - bagy, &'}, M* x; |E o iff M*+! 2; | 4p. Therefore we can conclude
MM 2 E<r > ¢l
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Otherwise, let 41, with (m > 0), be the first state in (zo,...,2,)
such that z,41 €& S+l — je., z, is the state of M* whose succes-
sors have been modified in order to get M**t!. By applying Proposi-
tion 5 m times only, we can conclude that, there exists a formula <

(00175 3B0g07) @15 -5 @m (Sm—1175 3 Brmgry) T)s Amy1; 7 > ¢, with g; >
0, such that:

— all tests ¢;;7 occur in r, and hence all ¢;; are subformulae of < r > ¢;

— v/ € Post(r), and hence by Proposition 2, the formula < v’ > ¢’ is equiva-
lent to ¢ for some ¢ € CL(< r > ¢') C CL(71(®P));

— (wi_1,25) € R’Zl, fori=1,...m+1;

— (Tm+1,--.,2¢) € Pathsyp(r');

=< (90T 5 d0ge )@t am (Sm—11T5 - By D)i Qs >
¢ =< r> ¢ is valid.

By definition of M**! we have:

- M* x, = A(<1a), With @ = @y
— &1 = father(zy)

— Zyy1 = child;(zp).
Therefore, one of the following two cases holds:

— (@m, father(zm)) € RE —ie., am # a~. Then, M**! is obtained from
M* by removing all (z,,, childi(r,,)) from RE | except one, say child;(z,,).
By 72(®), for every ¢ € C'L(y1(®)) we have that M*, child;(z,,) = v iff
M* childj(r,,) = . Furthermore, by Lemma 8, we can conclude that
there is a path (child;(z,,) = #1,..., %) € Pathsy(r'), with M*, Ty =
@', such that child;(2,,) is the only child of 2, occurring in it. Hence, as
shown above, we have that M**! 2/ =< v > ¢'. Therefore it is easy to
see that M**! z =< r > ¢’

— (@m, father(zm)) € RE —ie., am = a~. Then, M*+! is obtained from
M* by removing all (z,,,child|(zy)) from RE. By 72(®), for every
Y € CL(y1(®)), we have that M* | father(z,) = ¢ iff M*, child;(z,,) =
¥.  Furthermore, by Lemma 8, can conclude that there is a path
(father(zm) = 2, ..., J:f],) € Pathsy(r), with M*, J:f], E &', that
does not include any child;(zy,). Hence, as shown above, we have that
M*+1 ) =< v > ¢'. Therefore it is easy to see that M*+! z =< r > ¢/

We have proved that, for each h > 0, M z |= ¢ iff M' x |= ¢, for all € S* and
all € CL(y1(®)). By considering the definition of M7 it is now easy to conclude
that M7z = ¢ iff M' x |= ¢, for all z € S* and all ¢ € CL(y,(®)). O

Note that M7 is a model of 7(®), since, on the one hand, by Lemma 9, M7 root |=

v1(®), and on the other hand M/ root = v2(®), because whenever M/ z |= A<1a)s
there exists at most one z’ such that (z,z) € RS.
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Lemma 10 M7 root = v, (®) implies M7  root = ®.

Proof Observe that, if M/ z |= A(<1a) then, by construction of M7 there exists
at most one 2’ such that (z,z’) € R{, implying that M7 z |= (< 1 a). On the other
hand, if M7z = (< a > H<1a)) AN(< @ > =H(<14)), then there are at least two states
z1, 25 such that (z,2;) € RI and (z,22) € RI, implying that M7 = | =(< 1 a).
The proof is easily completed by induction on the structure of ¢. O

By Lemma 7, Lemma 9, and Lemma 10, we can state the following result.

Theorem 11 A DIF-formula ® is satisfiable only if its DI-counterpart v(®) is
satisfiable.

Next we turn to the converse of Theorem 11. We remark that transforming a
model of ® into a model of y(®) is not always possible, since conflicts may arise in
assigning the extensions of the atomic propositions H(<1 4). For example suppose that

M = (8,{Rp}, ) is a model of a given DT F-formula & such that:

{s1,52,83,t1,12,13} C S
{(s1,t1), (51,12), (51,13), (52, 1), (s2,13), (53,12), (53,t3)} C Rp.

The states s1, sa, s3, s4 satisfy =(< 1 P). Nevertheless it is impossible to assign suit-
ably the atomic proposition H < py to t1,t2,13.

One way to overcome this problem is to prove the tree model property for DZF,
i.e. that any model can be transformed into a tree-like model. Indeed for tree-like
models the above conflicts cannot arise. We can construct tree-like models, following
the construction of M? shown above as a blueprint.

In fact, in proving the converse of Theorem 11, we exploit a weaker property.

Theorem 12 A DIF-formula ® is satisfiable if its DI-counterpart v(®) is satisfi-
able.

Proof Let M = (S,{Rp}, ) be amodel of &. We assume, without loss of generality,

that Hi<14) € [I(s) and A< 4) € ll(s), for all s € S, and for all (< 1a) occurring in

®. We also assume the converse operator applied only to atomic programs in @.
Starting from M, we build a model M’ = (§',{R%:}, II) of ¥(®) in two steps: first

we transform M into M, and then we transform M’ into M’.

Step 1 We transform M into M"' so as to assign the propositions H(<1 4) to states (or
equivalently states to the propositions H(<14)) in a suitable way. Let (< 1ap),..., (<
1 a;) be all the functional restrictions occurring in ®. M* is obtained inductively from
M | by applying the transformation below [ times.

[ = 0. No functional restrictions occur in ®, hence M = M.
[ > 0. Suppose that M has been transformed into M; = (S;,{R;p},II;) by applying

the transformation ¢ times, so that states are suitably assigned to propositions H <1 4),
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for a = ai,...,a;. We show how to get M;1 from M;, and we prove that M;; is
still a model of ®.

Let M} = (8}, {R}p},11}) and M? = (87, {R?p},11?) be two disjoint copies of
M;, ie. 8} NS? = 0. Given a state s € S;, we denote by s! € S} and s? € S? the
copies of s in M} and M2 respectively.

Now, let M}!“? be the disjoint union of M} and M2, defined as:

St =8l us?
1w2
RiPU :R}PURZZP )
_ I}(s) ifseS}

11;%%(s) = { lZ(s) ifseS?

Observe that M1¥? is a model of @, since M;,s = @ if and only if M1¥? s! = @, if
and only if M}!¥2 52 = ®.
From M!%? we get Mit1 = (Sit1, {Ri+1p}, Hit1) by defining S;41 and 1I;1; as:

Sip1 = 87

. _f WH(s)U{H(<1a,y,)) ifseS)
Hz-l—l(S) _{ HZZ(S) ifse SZZ

and by defining R; 41 p as follows:
o if ajy1 # P, then Rip1p = Rip’%

o if a;41 = P, then R;41p is obtained from Ri};)z as follows: for all s € 5;

such that M;, s = =(< 1 P) we choose one of its P-successors, say ¢, and we
replace (s',t!) with (s',¢?) and (s?,t%) with (s%,¢!) in R;5’?. Note that, for
every simple program a, the number of a-successors of all states in M;41, and
in particular of s1, s% ¢!, ¢? remains unchanged wrt M}!%2.

o if a;41 = P~ then R;;1p is obtained from RZMZP as follows: for all s € 5;
such that M;,s = —=(< 1 P7) we choose one of its P~ -successors, say ¢, and we
replace (t',s') with (t2,s') and (¢2,5%) with (t',s%) in R;5’?. Note that, for
every simple program a, the number of a-successors of all states in M;41, and
in particular of s!, 52, t1, ¢2, remains unchanged wrt M}"¥2.

By construction, M;y1,s | =(< 1ay) implies Miy1,s < a; > Hi<14)A < aj >
—H<ia;) for aj = a1 ...a;41.

Next we verify that M;y1 is a model of ®. Specifically, we prove that, for any
s €8, any ¢ € CL(®), and h = 1,2, M;,s = ¢ if and only if M;y,,5" = ¢. We

proceed by induction on the formula ¢ (called formula induction in the following).

e ¢ = A.
M, sl Aiff A € ;(s) iff A€ Iyqy(s?)iff My, s" = A
® ¢ =0d1 A ¢

Mi,s = ¢1 A2 iff My, s = ¢1 and My, s |= ¢2 iff (by formula induction hypoth-
esis) Mit1,s" = ¢1 and My, s" | ¢o iff Migy,s" |= 61 A ¢a.
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L ] d) = —|¢)/,
M;,s | —¢' iff M;, s [~ ¢’ iff (by formula induction hypothesis) M;y1,s" (£ ¢/
iff M;q1,s" =g’

e o= (< 1la).
M;,s = (< 1a) iff M;qq,s" = (< 1a) by construction of M;;.

o p=<r>¢.

Let M;,s E< r > ¢/, then there exists a path (s = so,...,s4) € Pathsa,(r),
with ¢ > 0, such that M;,s, = ¢'. We prove M;41,s" < r > ¢ by induction
on the length ¢ of the path (called path induction).

If ¢ = 0, then (s) € Pathsy,(r), and, by Proposition 4, there exists a formula
< P17 .. 047 > ¢, with g > 0, such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';
= My, s E< @175 5047 > ¢
— < P17 0,7 > ¢ =>< > ¢ s valid.

By formula induction hypothesis, for every ¢ € {¢1,...¢4,0'}, My, s | ¢ iff
M;y1,s" =, and hence M;yq,s" E<r > ¢'.

If, ¢ > 0, then, by Proposition 5, there exists a formula < ¢17;...;¢,7;a ><
' > @', with ¢ > 0, such that:
— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— v/ € Post(r), and hence by Proposition 3, the formula < v’ > ¢’ is equiva-
lent to ¢ for some ¢ € CL(< r > ¢') C CL(P);

— (s0,51) € Rig;

— (s1,...,8¢) € Pathsy,(r');

— < P17 g T a><r > ¢ =< r > ¢ s valid.
By formula induction hypothesis, for every ¢, € {¢1,...¢,}, M;, s |E ¢, iff
Mit1,s" E ¢o.
By path induction hypothesis, M;,s; <1’ > ¢’ implies M, 41,51 < v’ > ¢/
and Miy1,s E< v > ¢/, since (s1,...,8,) € Pathsy,(r') is shorter than
(s0,...,8g)
While, by definition, (so, s1) € R;, implies that:

—if @ # a;41, then (sf,s?) € Rijp1,;

—if @ = a;41, then (sf,s¥) € Riz1,, with k=2ifh=1and k =1if h = 2.
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Hence we can conclude that M;1,s" =< r > ¢'.

Let M;y1,s" < r > ¢/, then there exists a path (s* = sg”,...,sg") €
Pathsy,, (r) such that Mi+1,52" E ¢'. We prove M;,s E< r > ¢’ by in-

duction on the length ¢ of the path.

If ¢ = 0, then (s") € Pathsyy,,, (r), and, by Proposition 4, there exists a formula
< P17 .. 047 > ¢, with g > 0, such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';
= Miy1,s" E< 17 50,7 > ¢;
— < P17 0,7 > ¢ =>< > ¢ s valid.

By formula induction hypothesis, for every ¢ € {¢1,...¢,,¢'}, Miy1,s" = ¢
iff M;,s =1, and hence M;,s =< r > ¢'.

If, ¢ > 0, then, by Proposition 5, there exists a formula < ¢17;...;¢,7;a ><
' > @', with ¢ > 0, such that:
— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— v/ € Post(r), and hence by Proposition 3, the formula < v’ > ¢’ is equiva-
lent to ¢ for some ¢ € CL(< r > ¢') C CL(®);

~ (5%, 817) € Rigiys

— (si“ s .,SZ") € Pathsyr,,, (r');

— < P17 g T a><r > ¢ =< r > ¢ s valid.
By formula induction hypothesis, for every ¢, € {¢1,...¢,}, Mit1,s" = ¢, iff
M;, s E ¢
By path induction hypothesis, M;y1,s" =< > ¢’ implies M;, s =</ > ¢/,
since (5{“, e SZ") € Pathsyy,,, (') is shorter than (sg”, e SZ").
While, by definition, (58”,5?1) € Rit1, implies that (so,s1) € Riq, either in
the case hg = hy or kg # hy (ko = h).
Hence we can conclude that M; s E<r > ¢'.

Finally, as M"” = M;, we have that all states of M’ are suitably assigned to the
propositions H(<14), for a = a;...a;, and M" is a model of ®.

Step 2 We transform the model M" = (8" {R%}, ") of ® into a model M’ =
(8" {Rp},II') of y(®). Considering a state s € S” such that M",s £ &, we define
M’ as follows:

S'= {t| (5,) € (Up(RY URY )Y}
b=RLENS xS
() = ) U {A(Sla)} it M" tE(<1a)
I otherwise.
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It is easy to verify that M’ s = v1(®), and (trivially) M', s = v2(®). Therefore, M’
is a model of y(®). O

We can now formulate the main result of this chapter.

Theorem 13 Satisfiability tn DIF is an EXPTIME-complete problem.

Proof The satisfiability problem for DZ is EXPTIME-complete, and by Lemma 6
the size of the DZ-counterpart v(®) of a DIF-formula ® is polynomially related to
the size of ®. O

As an immediate consequence we can characterize the computational complexity of
reasoning in CZF.

Theorem 14 Satisfiability of CLF concepts, satisfiability of CIF TBozes, and logical
wmplication in CIF TBozes, are EXPTIME-complete problems.

3.3 Discussion

We did not use a standard filtration argument to prove our result. In fact, the standard
filtration argument does not work in proving Theorem 11. Here is an example: Let
the DIF formula ® be A A[P*]((£ 1 P7)A < P > —A), where A is an atomic
proposition and P an atomic program (® is already in negation normal form).

The DZ formula v1(®) is A A [P*](A<1p-)A < P > —A) and its Fisher-Ladner
Closure, CL(y1(®)), is formed by

A

[P*](A(SIP_)/\ < P > _‘A)
[PI[P](Aicip-)A < P > —4)
A(Slp_)/\ < P > _'A

A<ipo)
<P™>-A

and their negations.

The DI counterpart of @ is v(®) = v1(P) A v2(P) where v2(P) assures that in
every model of v(®) if a state satisfies A(<1p-y then all its P-successors satisfy the
same formulae, wrt those that are members of C'L(7y1(®)).

Now consider the structure M = (S, Rp,1I):

S = {dl, dz, d3}
Rp = {(d1, d>)(d>, d3), (ds, d3) }
I(A) ={d1}, W(A<ip-)) = {d1,da,d3}

It is easy to verify that M is a model of 4(®), but not of & since ds, has two (P~ )-
successors, and therefore does not satisfy (< 1 P7).
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The states dy and d3 satisfy the same formulae, wrt those that are members of
CL(y1(®)). Hence a filtration technique would allow us to merge them into a single
state df, getting the new structure M’. In M, the state d’ has two (P~ )-successors
so it does not satisfy (< 1 P7) and, as a consequence, again M’ is not a model of
®. Moreover M’ is not even a model of v(®), since dy has one (P~ )-successor, dj,
satisfying A € CL(71(®)) and one, ds, satisfying =4 € CL(y1(®)), therefore v2(P) is
not satisfied anymore.

In general, the ability to get a filtration of a model by a finite set of formulae
(as C'L(71(®))) leads to a finite model property. But PZF does not have the finite
model property. Indeed, the above @ is an example of a formula having only infinite
models®. So we can conclude that filtration techniques are not suitable to prove the
decidability of DIF.

The construction we have described in this chapter, builds, from a given model of
(@), a model of @ that can be an infinite tree. In the example above, our construction
gives as a result a new structure M7 which is an infinite chain of P such that all
the states along the chain satisfy (< 1 P7) while only the first state satisfies A. Tt
is easy to verify that M7 is indeed a model of ®. We find it quite surprising and
interesting that satisfiability in DZF, which is a logic that does not have the finite
model property, can be reduced, in a natural way, to satisfiability in DZ, a logic that
does have it.

We have already mentioned that the formula v2(®) can be thought of as a finite
instantiation of the axiom schema (A<1)A < a@ > ¢) = [a]$, which is sufficient to
guaranty that the DT formula v(®) is satisfiable if and only if DZF formula @ is
satisfiable. The methodology of reducing satisfiability in a given logic to satisfiabil-
ity in a target logic by constraining structures of the target logic, through a finite
(polynomial) number of instances of an axiom schema, can be exploited to establish
decidability (and complexity) in many situations. In fact, it is the central element
behind many of the results in this thesis.

It is worth noting that, since DZF subsumes Converse Deterministic PDL, also
formulae of that logic can be encoded in DZ. This fact gives us an optimal procedure”
to decide the satisfiability of Converse Deterministic PDL formulae that does not rely
on techniques based on automata on infinite structures as those in [129, 131].

Observe also that the mapping v can be easily restricted to encode Deterministic
PDL formulae in PDL. Though, in this simpler case there is no need of a sophisticated
technique, as the one above, to build a model of a Deterministic PDL formula from its
PDL counterpart, a standard filtration argument being sufficient. Indeed, the method
adopted in [7] to study satisfiability of Deterministic PDL, can be rephrased making
use of a mapping similar to ~.

6Such a formula is a variant of the Converse Deterministic PDL formula AA[(P7)*] < P~ > —A
(see for example [131]).
"Note that satisfiability of Converse Deterministic PDL is an EXPTIME-complete problem.
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Chapter 4

Qualified Number

Restrictions

In this chapter we study the description logic CZN and the propositional dynamic
logic DIN obtained from CZ and DZ by adding the qualified number restriction
constructs (< na.C') and (> na.C') with n > 1. In the setting of description logics,
qualified number restrictions where first considered (without inverse and reflexive-
transitive closure of roles) in [65]. The qualified number restriction (< n a.C') denotes
the set of objects that have links with at most n objects in C', and (> n a.C) the set
of objects that have links with at least n objects in C', where a is either an atomic
role or the inverse of an atomic role.

4.1 The logics CZN and DIN

Concepts of CZN are formed according to the following abstract syntax:

C = T|J_|A|Cl|_|02|01L|02|01:>02|—|C|
AR.C'|VR.C | (£ na.C)| (> naC)

a == P|P~

R = a|R1I_|R2|R10R2|R*|R_|id(C)

where A denotes an atomic concept, C' (possibly with a subscript) a generic concept,
P an atomic role, a a simple role, 1.e. either an atomic role or the inverse of an atomic
role, R (possibly with a subscript) a generic role.

The semantics of CZA is the same as for CZ, except for qualified number restric-
tions (< na.C) and (> na,C) with n > 1, whose meaning in an interpretation 7 is
the following (recall a = P | P7):

(<na.C)y = {de AT | there exists at most n d’ such that
(d,d') € a* and d’ € C*}
(>na.C)y = {de AT | there exists at least n d’ such that

51



CHAPTER 4

(d,d') € a* and d’ € C*}

Observe that the two kinds of qualified number restrictions are interdefinable
since (> 1a.C) is equivalent to Ja.C' and (> na.C) with n > 2 is equivalent to
(< n—1a.(). A functional restriction (< 1a) is expressible by (< 1a.T), hence
CIN is a generalization of CZF. Similarly the well-known constructs called number
restrictions (< na) and (> na) are expressed in CZN by (< na.T) and (> na.T)
respectively. Indeed qualified number restrictions are the most general kind of cardi-
nality constraints, while functional restrictions can be considered the simplest ones.
Note that in CZA, as in CZF, there is complete symmetry between atomic roles and
inverse of atomic roles.

The corresponding propositional dynamic logic is called DZN and its syntax is as

follows:
¢ = TIL|A|d1NG2| 1V da|dr= 2|0
<r>e¢|[rlel(<nag)|(>nag)

n= P| P~
ron= almUry | eyt e | @7

where A denotes a propositional letter, ¢ (possibly with a subscript) a formula, P an
atomic program, a a simple program, 1.e. an atomic program or the converse of an
atomic program, and r (possibly with a subscript) a generic program.

Consistently with its interpretation in CZA the new construct is interpreted as
follows: given a structure M = (S,{R,},1) and a state s € S,

M,s E(<nag) iff there are at most n states t such that
(s,t) ERg and Mt = ¢

M,sE(>Znag¢) iff there are at least n states ¢ such that
(s,t) € R4 and Mt = 6.

The rest of the constructs are interpreted as in DZ.

Intuitively, if s is a state satisfying (< n a.¢) (respectively (> n a.¢)), then
there are at most (at least) n a-successors of s satisfying ¢. By means of qualified
number restrictions we can control the nondeterminism of simple programs in a quite
sophisticated way. Local determinism of a simple program a can be imposed by
(£1aT).

Qualified number restrictions are sometimes called graded nondeterminism con-
structs. Indeed, as such a name suggests, they are strongly related to graded modalities
in modal logic (see the final section of this chapter).

4.2 Reasoning in CAN and DN

Before discussing reasoning in CZN and DZN, we discuss some of the issues involved
in the simpler logics CA” and DA obtained by dropping the constructs for inverse
roles and converse programs respectively. This will allow us to gain some intuition

about results for CZN and DZIN.
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The decidability and complexity of both satisfiability of CA” concepts and logical
implication in CA” TBoxes can be derived by exploiting the correspondence between
CN and DN, Hence it suffices to establish decidability and complexity of satisfia-
bility for DA'. We do so by translating DA formulae in Deterministic Propositional
Dynamic Logic formulae whose satisfiability is known to be decidable and EXPTIME-
complete [7].

Let us ignore for a moment the qualified number restriction constructs. Formulae
of DN without qualified number restrictions are, in fact, formulae of the basic PDL.
It is well-known (see [87]) that such formulae can be reduced to Deterministic PDL
formulae: we replace each atomic program P in a formula ® by Fp; (Fp)* where Fp
and Fp are new atomic programs that are (globally) deterministic. Let us call the
resulting formula ®', we have that ® is satisfiable if and only if ® is so.?

We briefly sketch the reasoning behind the proof of this statement. The if direction
is straightforward. The only if direction is as follows. We recall that both PDL and
Deterministic PDL have the tree model property: if a formula has a model it has a tree
model, i.e. a model having the form of a tree.®> So we can restrict our attention to tree
models only without loss of generality. Now there 1s a one-to-one transformation from
tree models M7 of @ to (tree) models M P of ®'. Indeed, we put S¥ = §7 TI¥ =117,
and given a state x of M7 having as P-successors zy, ..., z,* we put (z,21) € R?P,
and (z;,z41) € R?},D, for i = 1,...,0 — 1. In this way we have (z, ) € R% if and
only if (z, z;) € R?p;(F}g)*f’

We remark that M7 is required to be a tree because once we get M? we need to
recover the “original” P-predecessor z of a state z;, namely we need (Fp;(Fp)*)~ to
be determunistic, otherwise, given a state z;, we would not know which of the various

(Fp;(Fp)*) -successors is its original P-predecessor z, and therefore we would not
be able to reconstruct M7 from M7,

Representing atomic programs P as Fip; (Fp)*, where Fp and F} are deterministic,
makes 1t easy to express qualified number restrictions as constraints on the chain of
Fp; (Fp)*-successors of a state. For example, let us denote the transitive closure of »
as rt —ie. rt = r*:

(< 3 P.¢) can be expressed by

[Fp; (Fp)*5 07 (Fp) 5075 (Fp) Y5075 (Fp)T]-6

1The correspondence is realized by modifying straightforwardly the mappings § and §1 described
in Chapter 2 so to consider the absence of inverse roles and the presence of qualified number
restrictions.

?Note that while it is necessary to introduce one Fip for each P, we could introduce just one Fy,
instead of all FJ/‘_’;' Here we have preferred to be slightly redundant, for the sake of clarity.

3Given a model of ® we get a tree model simply by “unfolding” the original one.

#We implicitly assume that M7 is a finite branching tree model. This can be done without loss
of generality since PDL has the finite model property, and hence unfolding a finite model we get
a finite branching tree model. Note however that it would suffice to assume M7 to be a countable
branching tree model.

5Note that this construction is similar to the one often used in programming to reduce n-ary trees
to binary trees by coding children of a node as the combination of one child and its siblings.
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that is equivalent to

[Fpi (Fp) (¢ = [(Fp)* (¢ = [(Fp)T1(¢ = [(Fp)T]-9)))

and can be read as “everywhere along the chain Fp; (Fp)* there are at most three
states in which ¢ holds” | that corresponds exactly to the intended meaning.

(>3 P.¢) can be expressed by
< Fpi(Fp) 07 (Fp) 1675 (Fp)T > ¢
that is equivalent to
< Fpi(Fp)™ > (0N < (Fp)T > (67 < (Fp)T > 9))

and can be read as “somewhere along the chain Fp;(Fp)* there are at least three

states in which ¢ holds” | that again corresponds exactly to the intended meaning.
The above discussion leads to the following results. Let ® be a DA formula. We

call the Deterministic PDL counterpart v(®) of ® the formula obtained as follows:

1. We replace every atomic program P by Fp;(Fp)*, where Fp and Fjp are new
deterministic atomic programs.

2. We replace every qualified number restriction

(< n (Fp;(Fp)*).0) by [(Fp; (Fp)*; (87; (Fp)*)" ]9,
(= n (Fp;(Fp)")-¢) by < Fp;(Fp)": (67 (Fp)F)" ™ > ¢,

where the notation #” stands for n repetitions of r.°

Theorem 15 A DN formula ® is satisfiable if and only if the Deterministic PDL
formula v(®) is satisfiable.

Theorem 16 Satisfiability in DN is @ EXPTIME-complete problem.

Observe that we are translating DA to Deterministic PDL. As a special case we
can translate DF to Deterministic PDL by expressing (< 1 P) as [Fp][Fp]L.

4.3 Reasoning in CZN and DIN

Let us go back to CIN and DIN. The decidability and computational complexity
of both satisfiability of CZN concepts and logical implication in CZN TBoxes can be
derived by exploiting the correspondence between CZA and DZN7. Hence it suffices
to establish decidability and computational complexity of satisfiability in DZN .

6Note that, in accordance with (> n P.¢) = =(< n — 1 P.¢), we have
S[Fps (Fp)*5 (67 (Fp) 1) =g =< Fp; (Fp)*5 (6% (Fp)T)" ™ > 6.

"The correspondence is realized by extending straightforwardly the mappings § and §1 described
in Chapter 2 in order to deal with qualified number restrictions.
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Let us ignore once again qualified number restrictions for the moment, i.e. we cut
DIN down to DI. The presence of converse programs in DZ makes its structures
no longer reducible to tree structures as above®, making the technique shown in the
previous section inapplicable. Nonetheless we are able to obtain essentially the same
results, by developing a more involved reduction.

Indeed, we are going to prove that for any DZN formula ® there exists a DIF
formula ®’, whose size is polynomial wrt the size of ®, that is satisfiable if and only if
®’ is so. Since we have proved in Chapter 3 that satisfiability in DZF is EXPTIME-
complete, this guarantees that satisfiability in DZN is EXPTIME-complete too. In
order to carry out this reduction we first need to reify the relations associated with
atomic programs, then we can exploit a technique similar to the one used in the
previous section.

4.3.1 Reification of binary relations

Atomic programs are interpreted as binary relations. Reifying a binary relation means
creating an object for each tuple in the relation. The set of such objects represents the
set of tuples forming the relation. However the following problem arises: in general,
there may be two or more objects referring to the same tuple. Obviously in order to
have a faithful representation of a relation such a situation must be avoided.

Given an atomic program P, we call its reified form the following program

fiiAp? fo

where Ap is a new proposition denoting objects representing the tuples of the relation
associated with P, and f; and f; denote two functions that, given an object in Ap,
return the first and the second component respectively of the tuple represented by
the object. In other words, given a running of an atomic program starting in s and
ending in ¢, we replace it by adding an intermediate state z and two deterministic
atomic programs f; and f> starting from z and ending in s and ¢ respectively. We
call states such as z pseudo states since they denote the materialization of tuples such
as (s,t) and not real states.

Note that there is a clear symmetry between the program f; ; Ap?; fo and its
converse fy ; Ap?; f1.

After the reification of P, formulae of the form (- n P.p)/(- n P~ .¢) assume the
form (- n f{ ; Ap?; fa.0)/(- n £33 Ap7; f1.6), thus denoting qualified number restric-
tions of complex programs. Yet, since the programs f; and f> denote partial functions,
the following equivalences hold:

(< n (f7;AP7; f2).9) (<n fl(<Ap?5 fa > ¢)),
(>n (f7;AP7; f2).9) (>n fi (< Ap7; fa > ¢)

(< n (f7; AP f2)".9) (<n fy (< Ap?5 fi > ¢)),
(>n (f7;Ap7; f2)".9) (>n fy (< Ap7; f1 > ¢)).

Definition Let ® be a DIN formula. We define the reified-counterpart vi(®) of ®
as the conjunction of two formulae, v1(®) = vo(P) A Oy, where:

NP

)
)a
)
)

#Indeed the presence of converse programs makes the structures reducible to “two-way” tree
structures, as opposed to the “one-way” tree structures needed here.
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o vp(®) is obtained from the original formula & by replacing

— every atomic program F;, ¢ = 1...m, by the complex program f; ; Ap,7; fa,
where f1, fo are new atomic programs (the only ones present after the
transformation) and Ap, is a new atomic proposition;

— and then every qualified number restriction

(Sn(fi;Ap7 f2).6) by  (<n fl(<ApTfa> ¢)),
(>n (fi;Ap? f2).6) by (>0 fr.(<ApTfa> ¢)),
(Sn(fi;Ap7 f2)70) by  (<nfy (< ApTfi > ¢)),
(>n(fi;Ap7 f2)"6) by (>n fy.(<Ap?fL>¢))

¢ 01 =[(LULUF UL TAIAL 1 f))°

O

Lemma 17 Let ® be a DIN formula, and vy (®) its reified-counterpart. Then vi(P)
is a DIN formula, and its size is polynomially related to the size of ®.

Proof Straightforward. O

Observe that ©; imposes the global determinism of both f; and fs, that is, in
every model M = (S8, {Rs,, Rz, }, II) of vg(®P), the relations Ry, and Ry, are partial
functions.

The next lemma guarantees us that, without loss of generality, we can restrict
our attention to models of v1(®) that faithfully represent relations associated with
atomic programs, i.e. models in which each tuple of such relations is represented by a
single (pseudo) state. This is an essential property and guarantees the soundness of
our reified representation of relations associated with atomic programs.

Lemma 18 If the formula v1(®) has a model M = (S,{Rys,, Ry, }, 1) then it has
a model M' = (8" {R},, R}, }, ') such that for each (z,y) € R;‘f;AP,T’;fz there
is exactly one zpy such that (zqy,z) € R}l and (zzy,y) € R}2. That is, for all
21,29, ¢,y €8’ such that 21 # zo and x # vy, the following condition holds:

(Apl € H/(Zl) A AP, S H/(Zz)) =
(21, %) ERY, A (22,2) € R A(21,y) € R, A(22,9) € RY,).

Proof Suppose that the condition is not already satisfied by the model M, we show
how to build a model M’ in which the condition is satisfied.

Let us introduce some notation. Given a pseudo state z denoting a tuple (z,y) €
Rff ap7.5, We denote x by fi(z) and y by fa(2), this is in agreement with R, and
R, being functional. We call conflict the presence of more pseudo states referring
to the same tuple. Let (z,y) € Rff Ap?ifar if there is more that one pseudo state z

referring to (#,y) — that is, if there is more that one (pseudo) state z in M such that

9Observe that fi, fo are the only atomic programs occurring in vo (2).
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Ap € lI(z) and (z,2) € Ry, and (z,y) € Ry, — then we randomly choose one such
pseudo state to represent (z,y) and we say that the others induce a conflict. We call
Conf the set of all pseudo states inducing a conflict.'?

We start our construction, by defining a structure Mycons as the disgjoint union of
|2€97F| copies of M, one copy, denoted by M¢, for every set £ € 2¢°*/. We denote
by s the copy in M? of the state s in M. The structure Mycons is trivially a model
of v1(®) as M is.

Let M€ and M€ be two copies of M in Macons, we call “exchanging fo(t€) with
fz(tgl)” the operation on Mycons consisting of removing the tuple (t°, f2(¢f)) from
R?Q replacing it with (¢¢, fz(tgl)) and, at the same time, removing (tgl, fz(tgl)) from
R?; replacing it with (1€, f2(t¥)) '*. By exchanging fo(t€) with fo(t€'), we resolve
for both M¢ and M¢', in the sense that t€ and ¢£ no longer induce conflicts.

Note that given a t € Conf, we can univocally associate to a set £ € 29/ such
that ¢ € &, the set & — {t}. The set of all £ and & — {t} such that & € 2°°*/ and
t € & for some t € Conf, is equal to 2¢°7/

Now we can complete our construction. We get a model M’ with the desired
property by modifying Mocons as follows: For each state t € Conf, for each & € 2¢°n/
such that t € £, we exchange fo(17) with fo(t€11).12

Indeed proceeding in this way, on the one hand all conflicts present in the original
model M are eliminated from all its copies in Mycons. On the other hand no new
conflicts are created as shown in the following. New conflicts could be created only by
resolving two ¢,#' € Coonf in the same £ € 2¢°%f | since otherwise we are guaranteed
by definition of Mycons that f(t%) # fi (tgl) if £ # & However, given two pseudo
states ¢,/ € Conf and a set £ € 297/ following the construction proposed we have
that:

o if 1,1/ € £, we exchange f>(t%) with fo(t°=11}) to resolve t and fo((¢)) with
F2((t)E= 11 to resolve t/;

o if 1,1 & £ we exchange fo(t°) with fo(t91H) to resolve t and fo((¢)) with
F2((t)EUH) to resolve t/;

e ift € £ andt' ¢ &, we exchange fo(t%) with fo(t°~ 1) to resolve ¢ and fo((t')¢)
with fo((t)E91'}) to resolve t'.

Observe that in all cases we resolve ¢,1' by acting on different copies on the original
model M, so no conflicts can be introduced.

Finally, M’ is indeed a model of vy (®), since by construction ©; is satisfied ev-
erywhere in M’ and it is straightforward to check by induction on vg(®), that, for
all £ € 2977 M, s |= vo(®) if and only if M’, s |= v(®). O

By using Lemma 18 we can prove the result below, which constitutes the prelim-
inary step of our reduction form DZN to DIF.

10Note that Conf can be uncountable.

" Obviously the same thing can be done acting on f1 (%) and f; (t‘gl).
12Note that the transformation leading from Mycony to M’ does not change the number of tuples
in which a state occurs.
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Lemma 19 A DIN formula ® is satisfiable if and only if its reified-counterpart
v1(®) is satisfiable.

Proof = Let M = {S,{Rp}, 11} be a model of &. We define a model of M’ =
18" ARG R, 'Y of vi (@) as follows:

o &' =8U{zpy | (z,y) € Rp, for some F;},
i R}l = {(Zl‘y’x) | (l‘,y) € RPz}a R;‘Q = {(Z@'yay) | (l‘,y) € RPz}a

() forte S
/ —_
o II'(1) = { {Ap, | (z,y) € Rp,} fort = zgy.
The construction above implies (z,y) € Rp, iff (z,y) € R}_.A e
1 AR T f2
Since R}l , R}Q are partial functions, it follows that ©; is satisfied all over M’ and
by induction on ®, it is easy to verify that M, s |= @ if and only if M’, s |= vo(®).
< Let M' = {S',{R},,R},},1I'} be a model of v1(®), By Lemma 18 we can

assume that for each (z,y) € R}f A ifs there is exactly one 2z, such that (z,,,2) €

b and (z0y,y) € R},. This guarantees that qualified number restrictions holding

in the states # and y, restrict correctly the number of (f; ; Ap,?; f2)-successors and
(f5 ; Ap,?; f1)-successors, respectively.!3 -
We define a model M = {S,{Rp}, I} of & as follows. First we define Rp, =

R}_.A 2t Then, let s € 8’ be a state such that M’ s | v (®), we define
1 AR T f2

S={t](s,t) € (U;(Rp, URp))},
Rp, =Rp, N (S X S),
() ='(t) — {Ap, for any F;}, forallteS.

Finally it is easy to verify by induction of vy(®) that M’ s = ve(®) if and only if
M,s =®. O

4.3.2 Reducing DIN to DIF

By Lemma 19, we can concentrate on the reified-counterparts of DZN formulae. Note
that these are DIN formulae themselves, but their special form allows us to convert
them into DZF formulae. We adopt a technique resembling the one exploited for
reducing DN to Deterministic PDL, in the previous section. Intuitively the tech-
nique works as follows. We represent a reified program f; ; Ap7; fo by the program
Frs Ap s (B Ap?)*s (B ApT; (Fg; Ap?)™) ™, where Fy, Fy (with j = 1,2) are new de-
terministic atomic programs. In this way the program f;; Ap? (j = 1,2) which is
not deterministic in general, is expressed by chain Fj; Ap?; (F[; Ap?)* of determinis-
tic programs, and qualified number restrictions can be encoded as constraints on such
a chain. The only cardinality constraints that are present in the resulting formulae

2 Otherwise we could get something like: (zzy, ), (Z'my,ac) € R}l, (zzy+ ), (Z'my,y) € R}2, Ap €
IT'(23y) and Ap € H'(Z'my). In this case (> 2(f; ;Ap,?; f2).T) holds in z, but actually there is only
one tuple (z,y) € R’ .
ple (2,9) AR f2
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are functional restrictions. Hence by first transforming a DZAN formulae into their
reified-counterpart and then applying the technique sketched above we reduced DIN
to DZF which has been studied in Chapter 3.

Formally we define the DZF-counterpart of a DZA formula as follows.

Definition Let ® be a DZN formula and vy (®) = vo(P) A Oy its reified-counterpart.
We define the DZF-counterpart va(®) of & as the conjunction of two formulae,
(@) = v (P) A Oz, where:
o v(®) is obtained from vg(P) by replacing
— every occurrence of program f; ; Ap,7; fo by
Py Ap 5 (F Ap 7)™ (Fos Ap, 75 (B3 AR 7)),
where Fj, Fj (j = 1,2) are new atomic programs;
—every (< n fi.<Ap,? fa > ¢) by
[Fu; Ap, 75 (F5 Ap.?)5 (07 (FY; Ap, 1) 7)1,
and every (> n f; . < Ap,7; fa > ¢) by
< Fuis Ap 7 (F3 Ap )55 (/7 (P Ap, )T )7 > o,
where ¢' =< (Fa; Ap,7; (F4; Ap,?)*)™ > ¢;14
—every (<n fy . <Ap7; fi > ¢) by
[Fo; Ap, 75 (F33 Ap, )" ("7 (Fgs Ap,7)¥)"] 6",
and every (> n f; . < Ap,7; f1 > ¢) by
< Fos Ap, 75 (Fh; Ap, )% (8775 (Fy; Ap, )T ™1 > ¢
where 8" =< (Fy; Ap,?; (Ff; Ap,7)")" > 61

o Oy =[(Ujy o(F5 UFJUFT UF]»I_))*]Hl A8y, with each conjunct 8; of the form:

(STF)A(STE AL LF)A(STF7)A
(< FT >TA<(F)™>T).
O

Lemma 20 Let ® be a DIN formula, and va(®) its DLF-counterpart. Then va(P)
1s a DIF formula, and its size is polynomially related to the size of @.

14 As before the notation rt stands for r; 7%, and the notation »” stands for n repetitions of r.
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Proof Straightforward. O

Observe that O, constrains the models M = (S, {Rr},I) of va(®P) so that the
relations Rp;, Rp-, Rp:, R, s~ are partial functions, and each state cannot be
i g ;

7
linked to other states by both RFj_ and R(F;)_. As a consequence we get that
R(F;ap 7y (Fl;Ap,7))- 18 a partial function. This condition is required to prove the
s AP,
lemma below.

Lemma 21 Let ® be a DIN formula and vi(P) s reified-counterpart. vi(P) is
satisfiable if and only if vo(®) is satisfiable.

Proof = Let M = {S,{R;,,Rs,}, I} be a model of v1(®). Then we build a

model M’ = {8 {R%},II'} of v2(®) as follows. First, we define {ﬁ;ﬂ} For each
state © € S such that M,z =< f{; Ap,?;f2 > T, let z1,22... be the states such

that (z,z;) € R;- and M,z E< Ap,7;f» > T.1% We put (z,21) € ﬁ%l, and
for all k = 1,2,... we put (zx, zk41) € ﬁ%{ Similarly, for each # € S such that
M,z E< fy;Ap,?; f1 > T, let 21, 29,. .. be the states such that (z,z;) € R ;- and
M,z E< Ap,7;f1 > T. We put (z,21) € ﬁ;y and for all £ = 1,2,... we put
(zn, zk41) € ﬁ;g Then, let s € S be such that M, s | v1(®), we define

— — i _ .
S'={t](s:0) € (Ujo1 o(Rp, URp URE, URR))"},

Rp=Rp0 (S x 8,
'(t) =1(t) forallteds.

Note that since Ry, is a partial function, REF"AP (P Ap, 7)) is a partial function
MR T INT g0 [

as well. By this construction we have that
(@,9) €Rymapogy W0 (2,9) € Ry ap viryiap, 2y i(Faidp, 7y AR, 7))

Moreover, @5 is satisfied all over M’.
Considering that REF]';AP,?;(F;;AP,?)*)— is a partial function, and that
[Fy; Ap, 75 (Ff; Ap.7)*5 (07 (F); Ap,T)T)" -6
< Fy Ap T (Ff AR 7Y (07 (Ff Ap7)F)" =0 > 6

specify that there are at most, at least respectively, n states satisfying ¢, along the
chain Fj; Ap,7; (F; Ap,7)", it is easy to verify by induction on vg(®) that M,s |=
vg(®) if and only 1f M’, 5 = v} (D).

< Let M/ = {8, {R%},II'} be a model of v3(®). We can define a model M =

{8 {Rs, Ry, }, 11} of vi (@) as follows. First we define Ry, = REF]';AP,”;(F;;AP,?)*)—

15Without loss of generality, we implicitly assume that each state # € S has a countable number
of f; -successors, = 1,2.
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(j = 1,2). Then let s € S’ be such that M’ s | va(®), we define

S={t|(s;t) e (Ry, UR;, UR;, UR L)),
Rfj = Rfj N (S X S),
() =1'(¢t) foralltes.

Note that, by O, REF"AP (P Ap, 7)) is a partial function, and hence Ry, is a
7 RS 5

partial function as well, thus ©; is satisfied all over M.
Considering again the meaning of

[Fj; Ap, 75 (F} )

(07 (F]";APZ’)J’)"]W
< F]';Apl?;( )*

(67 (F; Ap)H)" 1 > ¢

it is easy to verify by induction on v{(®) that M’ s = v{(®) if and only if M,s |
Uo(q)). (]

Now we are ready to state the main results of this section.

Theorem 22 A formula ® of DIN is satisfiable if and only if the formula v2(®) of
DIF s satisfiable.

Proof By Lemma 19 and Lemma 21. O
Theorem 23 Satisfiability in DIN is an EXPTIME-complete problem.

Proof The satisfiability problem for DZF is EXPTIME-complete as shown in Chap-
ter 3, and, by Lemma 20 the size of the DZF-counterpart vs(®) of a DIN formula
® is polynomially related to the size of ®. O

As an immediate consequence we can characterize the computational complexity of
reasoning in CZN .

Theorem 24 Satisfiability of CIN concepts, satisfiability of CIN TBoxes, and log-
ical implication in CIN TBozes, are EXPTIME-complete problems.

4.4 Discussion

Let us illustrate with an example the basic relationships between models of DIN
formulae and those of their reified-counterparts and DZ F-counterparts.
Consider the following DZN formula:

=< P>(=2P (=2PT))

where the notation (= n a.¢) stands for (< na.¢) A (> na.¢).

Figure 4.1 shows a model M of ® such that M,a E ®.

In Figure 4.2 the model M of ® is transformed in a model M’ of its reified-
counterpart vy (®) as done in the proof of Lemma 19.
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Figure 4.1: A model of a DZF formula &

Figure 4.2: A model of the reified-counterpart vy (®) of @
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o

Figure 4.3: A model of the DZF-counterpart va(®) of
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Discussion

Finally, in Figure 4.3 the model M’ of vy (®) is transformed into a model M* of
the DI F-counterpart va2(®) of & as in the proof of Lemma 21. Notice that from M"
we can easily reconstruct M’, and from it the model M of the original formula.

The other direction, transforming models of v2(®) first into models of vy (®) and
then into models of @ is slightly more involved in general, for two reasons. First we
are not imposing any explicit distinction between states and pseudo states in both
models of v1(®) and v2(®P). Indeed nothing prevents a state, which is not intended
to represent a relation, from satisfying < f; > T in models of v1(®) and similarly
< (Fj; ApT;(F}; Ap?)*)”™ > T in models of v2(®). However starting from a state sat-
isfying v1(®) (respectively vy(®)) we can isolate the component, connected by means
of programs f; Ap7; fo (vespectively Fi; Ap?; (FY; Ap?)™; (Fa; Ap7; (Fy; Ap?)*)™) or
their converse. In such a connected component, formulae < f; > T (respectively
< Fy; Ap?; (Ff; Ap?)™ > T) are satisfied only by states that are intended to represent
a relation. The second difficulty is that in general models of vy (®) may contain more
pseudo states referring to the same tuple of a relation, however by Lemma 18 we can
restrict our attention to models in which this difficulty does not arise, without loss of
generality.

We remark that the only condition required by the proof of Lemma 18 is that,
given a model of a formula, the disjoint union of copies of this model is still a model.
This condition is very general, and most modal logics satisfy it. Note, however, that
in the following we will introduce a family of propositional dynamic logics in which it
is possible to denote a property satisfied by exactly one state. Because of this, such
logics violate the condition above.

We end the chapter with a few words about the tight relation between quali-
fied number restriction and graded modalities in modal logic [128, 127, 54, 55]. The
graded modal operator < a >, ¢ (with n > 0) is equivalent to the qualified number
restriction, (> n+1a.¢), and its dual [a],¢ = = < a >, ¢ is equivalent to (< na.¢)
for n > 1 and to [a]¢ for n = 0. The decidability and computational complexity of a
propositional dynamic logic comprising graded modal operators on atomic programs
and converse of atomic programs, were not known. Since such logic is straightfor-
wardly polynomially reducible to DZN, as an immediate consequence of the results
on DIN, we can state its decidability and characterize its computational complexity
as EX PTIM E-complete.t®

16Note that even for the much simpler basic PDL augmented with graded modalities on atomic
actions, decidability and computational complexity were not known. Such logic is essentially DN,
whose decidability and computational complexity has been discussed in the section on reasoning in

CN and DN.
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Chapter 5

Boolean Properties and
Assertions on Atomic Roles

In this chapter we add to CZN the possibility of expressing boolean combinations of
atomic roles, in particular the intersection of atomic roles P, M Py, and the negation of
atomic roles =P interpreted as “any role but P”. We also allow for stating inclusion
assertions on atomic roles, thus expressing hierarchies of roles, disjointness of roles,
etc. The corresponding propositional dynamic logic is introduced and studied at the
same time.

5.1 The logics CZN'B and DINB

The abstract syntax of the description logic CZA B is as follows:

c = T|J_|A|Cl|_|02|01L|02|01:>02|—|C|
AR.C'|VR.C | (£ na.C)| (> naC)

p u= any|P|piNps|piUps|pt=p2|-p

a u= plp”

R = a|R1I_|R2|R10R2|R*|R_|id(C)

where A denotes an atomic concept, C' (possibly with a subscript) a generic concept,
any “the most general” atomic role, P an atomic role, p a basic role, i.e. a boolean
combination of atomic roles, a a simple role, 1.e. either a basic role or the inverse of a
basic role, R (possibly with a subscript) a generic role. Note that wrt CZN qualified
number restrictions are extended from atomic roles and their inverse to basic roles
and their inverse.

The semantics of CZN B is similar to that of CZN except for the basic roles which
are not present in CZA. To such roles an interpretation Z = (AZ,.7) assigns meaning
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as follows:
any? C AT x A7
PT C any?
(p1 Mp2)® = pi O p3
(p1Up2)* = pf Up3
(pr=> p2)f =—pf Up3
—p% = any? — 7.

Observe that any? # AZ x AZ in general. As a consequence —P is to be in-
terpreted as “the set of pairs of individuals that are linked (by any) but not by P”
(=P? = any? — P%) as opposed to “the set of pairs of individuals that are not linked
by P” (=PT = AT x AT — PT). The following example should further clarify the
difference between the two interpretations. The concept V—P.C', wrt the first inter-
pretation, means: “ the class of individuals such that all their successors, that are
not P-successors, are in (”; wrt the second interpretation, it means: “the class of
individuals such that all individuals, that are not their P-successors, are in C”. We
shall return to this point at the end of the chapter.

The basic role P; M P; denotes the intersection of P; and Ps, i.e. the pairs of
individuals that are both in P; and in P;. So, for example, AP; M P,.C' denotes
individuals which have a Pj-successor in C' that is also a Ps successor. Similarly
(< n PN P.C) denotes individuals which have at most n Pj-successors in C' that
are also P successors. While VP, M P.C denotes individuals of whose P;-successors
that are also Po-successors are in C.

Differently from what is usually assumed, we allow for directly specifying inter-
dependencies between basic roles. In other words, besides of inclusion assertions on
concepts, CZN B TBoxes allow for inclusion assertions on basic roles. Analogously
we are also interested in checking for subsumption between basic roles wrt a TBox.
Simple examples of inclusion assertions on basic roles are:

father C parent

mother C parent

parent C mother U father
father C —~mother

specifying that both the roles father and mother are specializations of the role parent,
that parent is in turn a specialization of motherU father, and that father and mother
are disjoint, i.e. their intersection is empty."? Obviously inclusion assertions on roles
must be taken into account in logical inference: for example, from father C parent
and human C Yparent.human we infer human C VY father.human.

Formally we define a CZN' B TBox to be a set of inclusion assertions both on con-
cepts (C1 E C3) and on basic roles (p1 E p2). As usual we say that an interpretation
7 is a model of an inclusion assertion on concepts C; T Co, if Cf C Cf. Similarly
we say that an interpretation 7 1s a model of an inclusion assertion on basic roles
p1 C po, if pf T pZ. We say that an interpretation Z is a model of a TBox, if it is
a model of all inclusion assertions in it (both on concepts and basic roles). We say

INote that these inclusion assertions affirm that the role parent is partitioned into the roles
father and mother.
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that a TBox K logically implies an inclusion assertion on concepts or on basic roles,
written as K = Cy C Cs, K | p1 E p2 respectively, if all models of K are models of
the inclusion assertion.

We also introduce the notion of satisfiability for basic roles, besides the usual
satisfiability of concepts. A basic role p is satisfiable, if there exists an interpretation

7 such that p? # 0.

The corresponding propositional dynamic logic is called DZNB. Formulae of
DINB are of two sorts: program formulae and state formulae.

Program formulae are boolean combinations of atomic programs and their syntax is
as follows:

pu=any | P|piNpa|prUps|pr=p2|-p
where any is “the most general” atomic program, P an atomic program, and p a

generic program formula also called basic program.

State formulae (the usual sort of propositional dynamic logic formulae), describing
property of states, have the following abstract syntax:

¢ = T|L|A|d1 A1V do|d1= ¢a|9|
<r>¢|[rl¢|(<nad)|(>nag)
= plp”
rou= al|lrmUrg|rgre | et r | @7

where A denotes a propositional letter, ¢ (possibly with a subscript) a state formula, p
a basic program, i.e. a boolean combination of atomic programs, a a simple program,
i.e. a basic program or the converse of an basic program, and r (possibly with a
subscript) a generic program.

Consistently with the interpretation of basic roles in CZAN B, basic programs are
interpreted as follows: for all structures M = (S, {R,}, 1),

Rany g Sx8

Rp C Rany

Rplﬂm = Rpl N Rm
RplUM = Rpl U sz
Rprzps = Rapy URp,
R—.p == Rany - Rp.

The rest of the constructs are interpreted as in DZN .

Intuitively a program P; N Ps denotes the concurrent execution of P; and Py, while
—P denotes the non-ezecution of P. In general program formulae (basic programs)
denote a set of atomic programs executed concurrently and a set of atomic programs
not executed at all. Note that nothing is said about atomic programs that are not
contained in one of these sets, they could be executed or not, 1.e. we are adopting an
open semantics for program formulae.

By forcing validity of program formulae (which correspond to state inclusion asser-
tions on roles in CZN B) we can represent hierarchies of basic programs, for example by
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forcing validity of resize_icon = resize_picture we can represent that resize_icon is a
specialization of resize_picture. In the same way we can represent mutual exclusion,
for example by forcing the validity of =(open_window A close_window) we represent
that the program open_window and close_window cannot be executed together.

Formally, we say that a program formula p is valid in a structure M = (S, {R, }, ),
if R, = Rany, while a state formula ¢ is valid in M, if for all s € 5, M, s |= ¢. We
call azioms formulae (either program or a state formulae) that are assumed to be
valid. Formally, we say that a structure M is a model of an axiom 1, if ¢ is valid in
M. We say that an axiom is satisfiable, if it has a model. We say that a structure
M is a model of a finite set of axioms I', if M is a model of all axioms in I'. We say
that a finite set of axioms is satisfiable, if it has a model. We say that a finite set
T' of axioms logically implies a formula ¢ (either program or state formula), written
I' & ¢ ,if ¢ is valid in every model of T.

Note that CZN B inclusion assertions are analogue to DZN B valid formulae, and
CIN B TBoxes are analogue to sets of DINB axioms. Hence satisfiability of CZN B
TBoxes correspond to satisfiability of finite sets of DIAN B axioms,and logical impli-
cation in CZN B corresponds to logical implication in DIN B.

We also introduce the notion of satisfiability for program formula (the analogue
of the notion of satisfiability for a basic role). A program formula p is satisfiable, if

there exists a structure M = (S, {R,}, ) such that R, # 0.

5.2 Reasoning in CIN' B and DINB

The CIN B reasoning services we are interested in are satisfiability of concepts, sat-
isfiability of basic roles, satisfiability of TBoxes, and logical implication in TBoxes.

It 1s easy to check that satisfiability of basic roles is reducible to satisfiability in
propositional logic, hence it is computational characterized as NP-complete.? The
other reasoning services are EXPTIME-hard since CIN'B contains CIN, and their
decidability and computational complexity is to be established yet.

We can derive such results for CZA'B by exploiting the correspondence between
CIN B and DINB. The correspondence is realized by suitably extending the mapping
6 in Chapter 2 to deal with basic roles and qualified number restrictions. Note that
the mapping 6T, reducing logical implication in the description logic to satisfiability
in the correspondent propositional dynamic logic, cannot be extended because of the
presence of inclusion assertions on basic roles. Hence logical implication in CZN B
is directly mapped, by the extension of §, to logical implication in DZN B and vice
versa.

In the following we concentrate on logical implication in PZAB 3, proving that
it can be polynomially reduced to logical implication in DZA (which in turn can be
reduced to satisfiability of a single formula as usual). As corollaries of this result we
establish decidability of both CZNB and DIZN B and characterize the computational

2Similarly, satisfiability of DIN B program formulae is NP-complete.
3Observe that satisfiability of a state formula ¢ as well as satisfiability of a finite set of axioms I"
can be reformulated by means of logical implication as § £ —¢ and I" j£ L, respectively.
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complexity of satisfiability and logical implication in both the logics as EXPTIME-
complete.

The reduction from logical implication in DZN'B to logical implication in DZN
is based on reifying relations associated with basic programs, similarly to what was
done in Chapter 4. Intuitively, the key idea underlying the reduction is to represent
each pair of states (z,y) associated with the program any by a (pseudo) state zgy,
introducing two deterministic programs f; and f> linking each pseudo state z,, to
the first component z and the second component y of the corresponding pair (z, y).
In this way, we can translate program formulae that hold for a pair (z,y) into state
formulae that hold in the corresponding pseudo state z,.

We start presenting the reduction, by defining two mappings: 7, from DINB
program formulae to DZIN (state) formulae, and 7, from DZNB state formulae to
DIN formulae.

Definition We define a mapping 7, from DZN B program formulae p to DIN (state)
formulae 7,(p) as follows:

(any) = Tany

(P) = Tany /\ AP

T(p1 O p1) = 1p(p1) A7p(p2)
Tp(p1 Up1) = 1p(p1) V 7p(p2)
T(p1 = p1) = 1p(p1) = mp(p2)
7(=p) = Tany A =7p(p)

where Tany and Ap are new propositional letters. O

Note that 7,(P) = 7,(any) is equivalent to (Tany A Ap) = Tany which is an
instance of a propositional tautology.

Definition We define a mapping 75 from DZN B state formulae ¢ to DZN formulae
75(¢) as follows:

TS(T) =T,

TS(J_) =Ty

s(A)=A

To(01 A @2) = To(d1) A Ts(¢2)

T (01 V ¢2) = Te(61) V T (92)

Ts(—¢) = =7:(9)

ms([r]e) = [ri(r)]7s(9)

(<> @) =< 7i(r) > 15()

T((-np.0) =(n fi - <7p(p?); f2 > 75(9))
(- p70) =(n fy. <7p(p?); f1 > 75(9))

where f; and f; are two new atomic programs, and 7/ is a mapping from DZN B
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programs r to DIN programs 7,(r) defined as follows:

m(p) = Jiim(p); fo
m(p7) = fosm(p)
To(r1;ra) = 7(r1); To(r2)
Ti(riUry) = 7l (r) UTi(ra)
T (r*) = 7 (r)”

T(¢7) = 75()7

T (r7) = 7(r)".

Note that f; and fa are the only atomic programs occurring in 75(¢). Note also
that DZN B basic programs are transformed into their reified form, similarly to what
was shown in Chapter 4.

Making use of the above mappings, we define a mapping 7 from DZAN B formulae
to DZN formulae, and a mapping 7' from finite sets of DINB axioms to finite sets
of DIN axioms.

Definition Let ¢ be a DZN B formula. We define 7(¢) as the following DZN formula:
o if ) is a state formula, then 7(¢) = T, = 7(¢)
o if ¢ is a program formula, then 7(¢)) = Tany = 7,(¢).

O

Lemma 25 Let ¢ be a DINB formula, and 7 the mapping defined above. Then (1)
is a DIN formula, and its size is polynomially related to the size of 1).

Proof Straightforward. O

Definition Let T be a finite set of DZN B axioms. We define T'(T') as the set 77 (I)UT5
of DIN axioms, where:

e i(l) ={r(¢) | €T}
e T5 18 the set composed by the following three axioms:

Tany = _|Ts A (< fl > TS) A (< fz > TS)
(<1AT)
(< 1f.T).

O

Lemma 26 Let T be a finite set of DINB avioms, and T the mapping defined above.
Then T(T) is a finite set of DIN axioms, and its size is polynomially related to the
size of T'.
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Proof Straightforward. O

Intuitively, in the models of T(T') we distinguish states satisfying T, which represent
states in the models of I', and (pseudo) states satisfying Tany, which represent pairs
of states of any in the models of I'. Such pseudo states have exactly one f;-successor
and one fy-successor, both satisfying T,.

Next, by showing that models of a finite set T’ of DZA B axioms can be transformed
into models of T(T'), we prove the following lemma.

Lemma 27 Let T be a finite set of DINB azioms, ¥ a DINB formula, and T and
T the mappings above. Then T' = if T(T) = ().

Proof By contradiction: suppose that T(T') &= 7(¢) and there exists a model M =
(S,{R,},I) of T, in which ¢ is not valid.
From M we define the structure M’ = (8", {R},, R, }, ') as follows:

o §'=8U{zy | (z,y) € Rany}

o for each (x,y) € Rany, we put Tany € II'(2zy), (2ey,2) € R}l, and (zey,y) €
R/
f2

o for each P, for each (z,y) € Rp, we put Ap € II'(zyy)
o for each state # € S, we put I'(z) = M(2) U{T,}.

Observe that for each pair (x,y) € Rany there is exactly one element z,, € S’
Moreover, by construction, M’ is a model of T5.
Next we prove that for all program formulae p, (z,y) € R, if and only if
(x,y) € R}_.T ()75t We proceed by induction on the formation of p (without loss
1 57p )2
of generality we skip the cases p = p1 U py and p = p1 = po).

o (7,y) € Rany iff Tany € I'(zzy), (22y,7) € R}, (22y,y) € R, by construc-
tion.

o (x,y) € Rp iff Tany, Ap € W' (24y), (2y,2) € R}, (2uy,y) € RY,, by con-
struction.

o (z,y) € Rpinp, it (2,y) € R,, and (x,y) € R,,, iff (by induction hypothesis)
To(p1) € W(zey), (zey,2) € RY, (2ay,y) € RY,, and 7, (p2) € I (20y), (20, %) €
R}l, (nya y) € R}2, ie. Tp(pl N Pz) S H/(ny)a (ny,l‘) € R/fla (nya y) € R/2~

o (z,y) € R-, iff (x,y) € Rany and (z,y) ¢ R,, iff (by induction hypothesis)
Tany € W(%ey), (209, #) ERY,, (Zay,y) € RY,, and 7(p) E W (2py), (20y, 2) €

[y (2zy,y) € RY,, ie. T (—p) € I'(20y), (2ey, ) € RY,, (2zy,y) € RY,.
Observe that by definition of M’ (z,y) € R}_.T (o)1 if and only if M’ 2.y = 7(p).

Proceeding again by induction, it is easy to prove that for all state formulae ¢
and all z € 8, M,z = ¢ if and only if M’z | 75(¢). For example, let us consider
a state formula of the form (< np.¢). By definition, M,z = (< np.¢) if there are

71



CHAPTER 5

at most n states y such that (z,y) € R, and M,y | ¢. We have already proved
that (z,y) € R, if and only if (z,y) € R};;Tp(p)?;h, and by inductive hypothesis
we can assume M,y = ¢ iff M’y | 7(¢). Considering that fo is functional
we have, {y | (z,y) € R};;Tp(p)?;h and M',y |E 7(¢)} is equal to {y | (,2zy) €
R}l_,(zxy,y) € Ry, and M', 2oy < 1(p)7; fo > 75(¢)}. Thus we conclude that
MazE (<np¢)ifandonly if M z = (<nfl.<7m(p)?; f2 > m:(¢)).

Let ¢ be a DINB state formula, ¢ is valid in M if and only if for all s € S,
M,s | ¢. Considering the definition of M’ this holds, if and only if, for all s € &'
such that M’ s |= T;, we have M’ s |= 75(¢), i.e. if and only if 7(¢) is valid in M’.

Similarly, let p be a DINB program formula, p is valid in M if and only if for
all x,y € S such that (x,y) € Rany, we have (x,y) € R,. Considering again the
definition of M, this holds if and only if, for all z € §" such that z € Tany, we have
z € 7(p), 1.e. if and only if 7(p) is valid in M'.

Hence M’ is a model of T(T') and yet 7(¢) is not valid in M’, contradicting the
hypothesis. O

In order to prove the converse of Lemma 27, we show that, given a model M =
(S,{R s, Ry, }, ) of T(T'), we can construct a model of I' on the basis of M. However
such construction can be carried out only starting from models of T(T') satisfying the
following condition: for each pair (z,y) € Rff ()T there is a single pseudo state
Zey such that (zpy,2) € Ry, and (zsy,y) € Ry,. The next lemma guarantees that
we can assume such condition to be satisfied in the models of T(T'), without loss of
generality.

Lemma 28 Let T' be a finite set of DINB avioms, and T the mapping defined
above. If T(T') has a model M = (S,{Rs,,R¢,}, 1), then it has a model M' =

(8" RS, R, 1 T) such that, for each (x,y) € R};;Tp(p)?;h there is exactly one zpy

such that (zgy, ) € R}l and (zgy,y) € R}Q. That is, for all 21,29, x,y € S’ such that
21 £ 22 and x £ y, the following condition holds:

M' 21 | 1p(p) and M', 25 = 7,(p) implies
(21, %) ERY, A (22,2) € R A(21,y) € R, A(22,9) € RY,).

Proof The proofis almost identical to that of Lemma 18 in Chapter 4. We sketch it
here for completeness. Suppose that the condition is not already satisfied by M. We
show how to build a model M’ in which the condition above is satisfied. Given an
pseudo state z referring to a pair (z,y) € Rfl‘;rp(p)?;fQ we denote x by f1(z) and y by
f2(z) (this is in agreement with Ry, and Ry, being functional). We call the presence
of more pseudo states referring to the same pair, conflict. Let (z,y) € Rfl‘;rp(p)?;fQ'

If there is more than one pseudo state z referring to (z,y), then we randomly choose
one such pseudo state to represent (z,y) and we say that the others induce a conflict.
We call Conf the set of all pseudo states inducing a conflict. Note that C'onf can be
uncountable.

We define a structure Mscons as the disjoint union of |2€°%f| copies of M, one
copy, denoted by M?, for every set & € 2¢°%f. We denote by s the copy in M¢ of
the state s in M. Trivially, Mycons is a model of T(T') as is M.
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Let M€ and M€ be two copies of M in Macons, we call “exchanging fo(t€) with
fz(tgl)” the operation on Mycons consisting of removing the pair (¢©, f2(¢¢)) from
R?Q replacing it with (¢¢, fz(tgl)) and, at the same time, removing (tgl, fz(tgl)) from
R?; replacing it with (tgl, f2(t%)). By exchanging f2(t%) with fz(tgl), we resolve t for
both M€ and M¥¢', in the sense that t€ and ¢£' no longer induce conflicts.

We get a model M’ with the desired property by modifying Mycons as follows: for
each state t € Conf, for each & € 29°%f such that t € &£, we exchange f»(t°) with
fo(E10),

Indeed, proceeding in this way, on the one hand all conflicts present in the original
model M are eliminated from all its copies in Mscons. On the other hand no new
conflicts are created.

Finally, M’ is a model of T(T"), since by construction 7% is valid in M’, and it is
straightforward to check by induction that for every ¢ € Ty(T), for all £ € 2¢°%/,
M,s = ¢ if and only if M’ s = ¢. O

Lemma 29 Let T be a finite set of DINB azioms, ¥ a DINB formula, and T and
T the mappings defined above. Then T(T) = 1(¢) if T = ¢.

Proof By contradiction: suppose that ' = ¢ and there exists a model M’ =
(S’,{R’I,R}Q},H’) of T(T') such that 7(¢) is not valid. As a consequence of

Lemma 28, we can assume that, in M’, for each pair (z,y) € R'._ there
foiTany %/2

exists a single pseudo state z, such that (z,,,2) € R}l and (zzy,y) € RY,.
From M’ we define a structure M = (S, {R,}, 1) as follows:

e S={sc8|M skET,}

o (z,y) € Rany if and only if (z,y) € R'._ ., and similarly for all atomic
friTany 7 f2
programs P, (z,y) € Rp if and only if (z,y) € R’ (note that

I (Tanyrde)?fz
z,y € T, by definition of T(T))

o II(x) =1'(z), for all z € S.

We prove that for all program formulae p, (z,y) € R if and only if

/
f;%Tp(P)7§f2
(z,y) € R,. We proceed by induction on the formation of p (without loss of generality
we skip the cases p = p1 U ps and p = p1 = p2).

. . , .
¢ (z,y) € Rany if and only if (x,y) € Rff%Tany7%f2’ by construction of M.

. . , .
o (z,y) € Rp if and only if (z,y) € Rff;(TanyAAp)f’;fz’ by construction of M.

/ . / / .
* @) ER G oy, @Y ER ey, 20 (2 0) ER -y,
by inductive hypothesis (2, y) € R,, and (z,y) € R,,, 1.e. (2,¥) € Rpiaps-

/

/ : , .
(@) € Rff;fp(-'p)f’;fz’ e (#,y) € Rff;Tany7;fz and (z,y) ¢ Rff;fp(p)f’;fz ift
by inductive hypothesis (z,y) € Rany and (x,y) € R,, i.e. (z,y) € R-,.
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Observe that (x,y) € R}_.T (o)1 if and only if the single (pseudo) state zz,, such

that (zzy,r) € RY, and (2sy,y) € RY,, satisfies 7,(p).

It is easy to prove by induction that, for all state formulae ¢, for all states z € §
M,z |E ¢ if and only if M’z = 75(¢).

Let ¢ be a DIN B state formula. Then 7(¢) is valid in M’ if and only if for all
se S8, M' s |E Ts = 75(¢). Considering the definition of M this holds if and only
if, for all s € S, M, s |E ¢, i.e. if and only if ¢ is valid in M.

Similarly, let p be a program formula. Then 7(p) is valid in M’ if and only if for

all s € 8" M',s |= Tany = 7,(p), i.e. if and only if for all (x,y) € R;‘_'Tany7'f2’ we

have (z,y) € R}_ Considering again the definition of M this holds if and

1 ?TP(P)?§f2.
only if, for all (x,y) € Rany we have (x,y) € R,, i.e. if and only if p is valid in M.

Hence M is a model of T' in which ¥ is not valid, contradicting the hypothesis. O

Putting together the Lemma 27 and Lemma 29 we can state the following theorem.

Theorem 30 Let T be a set of DINB azioms, ¥ a DINB formula, and T and T
the mappings above. Then T = if and only if T(T) = 7(¢).

Thus we can reduce logical implication in PZAN B to logical implication in DZN
which in turn is reducible to satisfiability in PZAN and hence is decidable and com-
putational characterized as EXPTIME-complete, as established in Chapter 4. As a
consequence, we can assert the following complexity results for DINB.

Theorem 31 Logical implication in DINB is an EXPTIME-complete problem.

Proof By Theorem 30, considering Lemma 25, and Lemma 26, and considering that
logical implication in DZN is EXPTIME-complete. O

Theorem 32 Satisfiability of DINB state formulae is an EXPTIME-complete prob-
lem.

Proof Considering that satisfiability of DZAN B state formulae is EXPTIME-hard,
being DINB an extension of DZA | by Theorem 31, the thesis follows. O

As an immediate consequence we can characterize the computational complexity of
reasoning in CINB.

Theorem 33 Satisfiability of CIN B concepts, satisfiability of CIN'B TBoxes, and
logical implication for CIN'B TBoxes, are EXPTIME-complete problems.

5.3 Discussion

Let us comment on the semantics of negation on basic roles. Given an interpretation

T = (A%, 7)), there are two ways to assign semantics to such a construct; the one
adopted by CZN'B, namely to interpret a basic role —p as —p? = any? — p where
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any? C A7 x A7 with any? # A x A in general; and a stronger one, namely to
interpret it as —pf = AT x AT — p7 4

In order to see when the extra power of the stronger interpretation comes in, let
us present an example: “A problem is EXPTIME-complete if and only if it is in
EXPTIME and every problem in EXPTIME is polynomially reducible to 1t”. In first
order logic we can express this sentence as:

Vp(EXPTIME _comp(p) =
EXPTIME(p) A\YP(EXPTIME(p') = P_red_to(p,p))).

Adopting the stronger interpretation of negation on basic roles we can express the
same sentence in a description logic as

EXPTIME comp=FEXPTIMENY-P_redto~EXPTIME

1.e. “A problem is EXPTIME-complete if it is in EXPTIME and all problems, that
are not linked by the role P_red_to to it, are not EXPTIME”.

Observe that to get the desired meaning we need to refer implicitly to the uni-
versal role (the one interpreted as AT x AZ). In fact the extra power of the stronger
interpretation of negation on basic roles is tightly connected with the ability to refer
to a basic role that is universal, an ability that CZA'B does not have®.

It is our opinion that, interpreting negation on basic roles as in CZN B suffices for
most uses. Indeed, it captures the (set-theoretic) difference of atomic roles (actually,
of conjunction and disjunction of atomic roles). Tt allows for expressing implications
between role expressions involving conjunction, disjunction and difference. It suffices
for expressing inclusion assertions on basic roles. We believe that the only strong
limitation it has is that it cannot be used to express the Cartesian product of the
domain — i.e. the universal role — (or of concepts).

The possibility of denoting a basic role which is universal within CZNB would
allow us to express constraints on the cardinality of the domain of interpretation,
by means of qualified number restrictions. For example by adopting the stronger
interpretation of negation on basic role the concept (< 5P LI =P.T) would express
that there are at most 5 individuals in the domain.

Now, we have seen that a fundamental step in devising decidability of CZA B is
Lemma 28. To carry out the proof of this lemma it is only required that the logic
fulfills very general conditions (see the discussion on the similar Lemma 18 at the end
of Chapter 4). Such conditions are actually violated exactly when constraints on the
cardinality of the domain of interpretation can be expressed.

We can conclude that the technique developed in this chapter to establish the
decidability of CZN B cannot be applied, if the stronger interpretation of negation on
basic roles is adopted. Indeed, to the best of our knowledge, decidability in this case
remains an open problem.

4 This interpretation is stronger, in the sense that it can represent —p as interpreted in CZA'B (as
any M -p) while the other way round is not true.

5Note that CIA B does have the ability to denote the universal role (through the role (any U
any~ )*, essentially), it lacks the ability to denote it by means of a basic role.
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We close the chapter mentioning the possibility of using DZN B for representing
and reasoning about situations evolving as a result of performing actions, in line with
the literature on Situation Calculus in Artificial Intelligence. In such respects DZN B
offers a formal framework with a clean semantics and a precise computational charac-
terization that in our opinion makes it a kind of Principled Monotonic Propositional
Situation Calculus. By exploiting the features of DZA B, many advanced issues can
be investigated, including complex actions, concurrent actions, hierarchies of actions,
etc.5 In [42) and [44] a preliminary account of this line of research is reported.

6In particular, a basic program —p expresses the performance of an action which is different from
p. This way of interpreting negations of programs is well suited for reasoning on actions.
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N-ary Relations

In this chapter we study the description logic CZA BR obtained from CZN B by means
of suitable mechanisms to aggregate individuals into tuples. Each tuple has an asso-
ciated arity which is the number of individuals constituting the tuple. Tuples of the
same arity n can be grouped into sets forming n-ary relations.! The corresponding
propositional dynamic logic, DIN BR, can easily be defined, however we will not
explicitly introduce it here.

6.1 The logic CINBR

An n-ary relation is described by a name and n relation roles (r-roles in the following).
Each r-role names a component of the relation, i.e. a component of each of its tuples.
For each relation R the set of its r-roles is denoted by rol(R). The cardinality of this
set is greater than or equal to 2, and implicitly determines the arity of R. We call
“U-component” the component of R corresponding to the r-role, U € rol(R).

In CZN BR, relations having the same set of r-roles Uy, ..., U, can be composed
by means of boolean constructs according to the following abstract syntax:

R = AHYUl,...,Un | P | RiMR, | R UR, | Ri = R» | -R

where Any;;, ; denotes the most general relation having as set of r-roles
Ur,...,Us, P an atomic relation, and R (possibly with a subscript) a generic re-
lation. We remark that CZA BR allows for composing relations R; and Rz only in
case rol(R1) = rol(Ray).

A relation R can be projected onto two of its components U, U’ € rol(R) getting
a binary relation denoted by R[U,U’]. In CZNBR such projections play the part
that basic roles play in CZN'B. Projections can be composed into navigation paths
by means of nondeterministic choice, chaining, reflexive transitive closure, identity
binary relation projected on concepts, namely:

R:u=R[U,U']| RiURy | Rio Ry | R* | R™ | id(C).

1We remark that extending description logics with n-ary relations, has already been proposed in
[114, 21].
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Note that the application of the inverse construct can be restricted to only R[U, U]
projections, without loss of generality. Furthermore, since (R[U,U’])” is equivalent
to R[U’, U], we could actually do without the inverse construct at all in CZN BR.

Next we introduce the constructs to build CZN BR concepts. Concepts in CZAN BR
have the following abstract syntax:

c = T|J_|A|Cl|_|02|01UCQ|01:>02|—'C|VRC|E|RC|
VR[U]Tl 101,...,Tm ZCm | E'R[U]Tl 101,...,Tm ZCm
(SlR[U]Tl Cl,,Tm Cm) | (ZlR[U]Tl Cl,,Tm Cm)

where A denotes an atomic concept, C' (possibly with a subscript) a concept, R a
navigation path, R a relation such that U, Ty, ..., T, € rol(R) and m < |rol(R)|.

The intuitive meaning of the new concept constructs is explained below (the other
constructs have the usual meaning).

o VRIU|.Ty : C4,..., T, : Cyy, represents the set of individuals & such that for
each tuple » in R with « as U-component, the T;-component of r belongs to the
extension of C; (i =1,...,m).

e JR[U].Ty : C1,..., Ty : Oy, represents the set of individuals @ such that there
is a tuple r in R with x as U-component and z; (¢ = 1,..., m) as T;-component,
such that z; belongs to the extension of Cj.

o (KIR[U)VTY : Cy,..., Ty : Cp,) represents the set of individuals # such that
there are at most { tuples r in R with  as U-component and »; (i = 1,...,m)
as T;-component, such that z; belongs to the extension of Cj.

o (> IR[U)TY : Cy,..., Ty : Cp,) represents the set of individuals # such that
there are at least [ tuples » in R with « as U-component and z; (i = 1,...,m)
as T;-component, such that z; belongs to the extension of Cj.

The semantics of CZNBR is given, as usual, through an interpretation 7 =
(AT, T), now extended to interpret relations and the new constructs. In particu-
lar, if R is a relation whose set of r-roles is rol(R) = {Uy,...,Uy,}, then R? is a set
of labeled tuples of the form < Uy : dq,...,U, : d, > where di,...,d, € AT. We
write #[U] to denote the value associated with the U-component of the tuple r.

Relations R with rol(R) = {Uy,...,U,} are interpreted by 7 as:

(Anyy,, o ) F C{<Uridy, ... Uy idy >|dy, ... dy € AT}
P’ C (Anyy,  u,)*

(R NRy) = RINRE

(Ri URy) = RTURZ

(Ry = Ry)f = -RTURZ

R’ = (AHYUl,...,Un)I - R%.

Projections R[U,U’] of R onto its U-component and U’-component (U,U’ €
rol(R)) are interpreted by 7 as follows:

RU, U ={(d,d') e AT x AT |Ir e RE.d=r[UIAd = ¢[U"]}.
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The other constructs for navigating paths have the usual meaning in 7.
Finally the new constructs for concepts are interpreted by 7 as follows:

(YR[UL.T, : Cy,.. ., Ty - Cp)F = {d € AT |
VreRIF[U]=d= ([T € CEA---Av[T] € CL)}
BR[ULTy : Ch,y. .., Ty - Cp)F = {d € AT |
FreRIF[U=dAr[N] € CEA---Ar[T] € CTY
(SUR[UVTY : Cy, .o T s G ) = {d € AT |
there are at most [ tuples » € R” such that
rUl=dAr[TY] € CTA---Ar[T] € CEY
(CUR[U)TY :Cy, .. T s Cp)E = {d € AT |
there are at least { tuples r € R” such that
rUl=dAr[TY] € CTA---Ar[T] € CEY

An interpretation Z is a model of a CZA'BR concept C, if CT # (. Similarly, Z
is a model of a CZNBR relation R, if RZ # (. A CZNBR concept is satisfiable, if it
has a model. Similarly a CZN BR relation is satisfiable, if it has a model. In CZN BR,
we allow for inclusion assertions on both concepts, C7 C (s, and relations, Ry C R,
with rol(R1) = rol(Rz). An interpretation 7 is a model of an inclusion assertions on
concepts C1 C Oy, if CT C Cf. Similarly, Z is a model of an inclusion assertion on
relations R; C R, if R C RZ.

CIN BR TBoxes are defined as a finite set of inclusion assertions on both concepts
and relations. An interpretation 7 is a model of a TBox K if it is a model of all the
inclusion assertions in it. A TBox is satisfiable if it has a model. A TBox K logically
implies an inclusion assertion k (either on concepts or on relations), if every model of
K is a model of k.

Let us show some examples of the use of CZABR. Consider the relation Parents,
with rol(Parents) = {child, father, mother}, denoting the set of tuples, child and
his/her (natural) parents (both father and mother). We may force the following
inclusion assertion:

Human C YParents[child].father : Human, mother : Human

stating that both the father and the mother of a child, who is human, must be
human as well (more precisely, every individual who is Human is such that, if (s)he
participates, as child-component, in a tuple r of the relation Parents, then both the
father-component of r and the mother-component of r are Human). Note that, in
order to represent the (natural) parents of a child, the relation Parent must be so
that any individual has at most one father and one mother in the relation Parents —
that is, individuals may occur as child-component in at most one tuple of the relation.
This fact can be represented in CZA BR by asserting that:

T C (< 1 Parents[child].child : T).
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6.2 Reasoning in CZNBR

We investigate the decidability and the complexity of the reasoning tasks for CZN BR.
Satisfiability of CZA BR relations is easily reducible to propositional logic and hence
is characterized as NP-complete. Satisfiability of concepts, satisfiability of TBoxes,
and logical implication in CZA BR TBoxes, are all EXPTIME-hard, being CIN BR
a superset of CIN'. However their decidability and computational complexity char-
acterization are yet to be established. In the following we concentrate on logical
implication? showing that logical implication in CZABR is polynomially reducible
to logical implication in CZA, which is decidable and EXPTIME-complete. In fact
the argument by which we prove the result follows quite closely the one adopted in
Chapter 5 to reduce logical implication in DZAN B to logical implication in DN .

For simplicity of exposition we will implicitly assume that in a logical implication
K [ k the atomic relations (including Anyg;, ) occurring in k also occur in K.

We start the reduction by defining two mappings: g, from CZNBR relations to
CIN concepts, and g, from CZN BR concepts to CZAN concepts.

Definition We define a mapping g, form CZNBR relations R having rol(R) =
{U1,...,Us} to CIN concepts g,(R) as follows:

Or AHYUl, n) = TAnyU1

(

or(P) = TAnyU1

or(RiMR2) = o, (R1) Mg (Rz)

or(R1 UR») = ¢,(R1) U ¢/ (Ra)

Qr(Rl = RZ) - Qr(Rl) = QT(Rz)
(-R) = TAny M-g-(R)

.....

r{™

where TAny and Ap are new atomic concepts. O

.....

Definition We define a mapping g, from CZN BR concepts C' to CZA concepts g.(C')

2We recall that satisfiability of concepts and satisfiability of TBoxes can be reformulated as
logical implications, namely, a concept C' is satisfiable iff § £ C' C L, and a TBox K is satisfiable iff
KETELC L.

3Observe that this will not limit the generality of the result, since if an atomic relation P occurs
in k£ but not in X, we may add the inclusion assertion P C P to K without changing its model.
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as follows:
QC(T) =T,
QC(J—) =T,
0.(A)=A
0.(C1 1 C5) = 0.(C1) Mo.(Co)
0:.(C1UCy) = 0.(Cy) U o.(Co)
0:(=C) = —e.(C)
0.(VR.C') = Vo.(R).0.(C)
0:(3R.C) = Fg,(R).0:(C)
0 (YRIULTY : Cyy .. Ty 1 Cpy) =

VfU (Qr( ) mn Elle-Qc(Cl) n...n ElmeQ(Cm))
0(AR[ULTY : Cyy .o Ty 1 Cpy) =

3fg (e (R) M3 fr0.(Cr) ... 1 3fr, .0(Cin))
0 ((SUIR[ULT, : Cyy ..\ Ty 1 Cp)) =

(< Ufgor(R)N3fr0:.(C) N . 3 fr,,.0(Cn))
0 (G UIR[ULT : Cyy.. .\ Ty 1 Cp)) =

(> Ufgor(R)N3fr0:.(C) M. 3 fr,,.0(Ca))

where fy are new atomic roles, and ¢/, is a mapping from CZN BR navigation paths

R to CZN roles ¢/(R) defined as follows:

o (R[U,U']) = fi7 o 0r(R) o fur

(R URy) = gl.(R1)Uo.(R2)
o.(Fa ORz) = 0.(R1) o 0(R2)
0. (R") = oL(R)”

(id(C)) = id(.(C))

(R7) =d.(R)".

I

/
c
/
c
/
c
/
c

e

Making use of the above mappings we define a mapping ¢ from CZAN BR inclusion
assertions to CZA inclusion assertions, and a mapping P from CZNBR TBoxes to
CIN TBoxes.

Definition Let k be a CZNBR inclusion assertions, we define g(k) as follows:
o if k=C1 C Cy, then (k) = T, Mg (C1) C 0:.(C2)
e if k =Ry C Ra, then g(k) = 0-(R1) C o, (R2).

O

Lemma 34 Let k be a CZNBR inclusion assertion, and ¢ the mapping defined above.
Then o(k) is a CZN inclusion assertion, and ils size is polynomially related to the
size of k.

Proof Straightforward. O

Definition Let K be a CZABR TBox. We define a CZA TBox P(K) as P(K) =
P1(K)U P2(K), where
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o Pi(K)={olk) | k €K}
e P5(K) is the set constructed by one

TAnyUl = —|Tc|_|E|fU1.TC|_| ~~~|_|E|fUn-Tc

TC(L1fr.T)
for each frr occurring in P1(K).

O

Lemma 35 Let K be CZINBR TBox, and P the mapping defined above. Then P(K)
is a CIN TBozx, and its size is polynomially related to the size of K.

Proof Straightforward. O

Intuitively, in the models of P(K), we distinguish individuals in T, which repre-

sent instances of concepts in models of K, and those in TAny , which represent
Uyq,..., Un

instances of the relation Anyy,  y in models of K. Individuals in TAnyU
have exactly one link for each fu,,..., fu,, and these links connect them to inldivid—
uals in T.. In general, a relation R, with rol(R) = {Uy ..., U,}, occurring in K, is
represented in P(K) by the concept g,(R), i.e. the tuples of R are represented by in-
stances of g.(R). Observe that this representation is accurate only in the models 7 of
P(K) where each tuple of R corresponds to a single individual, otherwise, in 7 there
would be two individuals representing the same tuple. However, we can show (by
using the same technique applied in proving Lemma 18 in Chapter 4 and Lemma 28
in Chapter 5) that if P(K) admits a model, then it admits a model satisfying the
above condition. Formally, the following lemma holds.

Lemma 36 The CZN TBoz P(K) obtained by the above construction has a model T
if and only if it has a model I' satisfying the condition:

d,d € o R =
~((d, dy) € f& A (' dy) € FE A
A dn) € fE N dn) € fF)

for every relation R, with rol(R) = {Uy,..., Uy}, occurring in P(K).

Proof The proof is almost identical to that of Lemma 18 in Chapter 4. We sketch
it here for completeness. Suppose that the condition is not already satisfied in the
model Z, we show how to build a model Z’ in which the condition above is satisfied.
Given an individual t € g,(R)%, we denote by fi(t) (U = Uy, ..., Uy,) the individual
u such that (¢,u) € fZ, this is in agreement with fZ being functional.
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We call conflict the existence of a non-singleton set S<,.4, ... 0,4, > of individuals
t, such that t € o.(R)?, and fy,(t) = dy,..., fu, = dn, for some fixed dy,. .., d,.
From S<v,.4,,.. U,.d,> we randomly choose one individual z, and we say that the
others induce the conflict. We call C'onf the set of all individuals inducing a conflict.
Note that C'onf can be uncountable.

We define a interpretation Zycons as the disjoint union of [2¢°"/| copies of Z, one
copy, denoted by Z¢, for every set £ € 2¢°*/ . We denote by d° the copy in Z¢ of the
individual d in Z. Trivially, Zycons is a model of P(K) as T is.

Let Z¢ and Zf' be two copies of Z in Zocons, we call “exchanging fr, (1£) with
Ju., (tgl)” the operation on Z,cens consisting of removing the pair (¢, fis, (t¢)) from
fgi replacing it with (¢, fi, (tgl)) and, at the same time, removing (tgl,fUn (tgl))
from fgil replacing it with (tgl, fu, (t%)). By exchanging fy, (t¢) with fy, (tgl), we
resolve ¢ for both Z¢ and Z¢', in the sense that ¢¢ and t€ no longer induce conflicts.

We get a model 7' with the desired property by modifying Zscons as follows: for
each state t € Conf, for each £ € 29°%/ such that ¢t € &, we exchange fy, (t¢) with
for, (1100,

Indeed proceeding in this way, on the one hand all conflicts present in the original
model 7 are eliminated from all its copies in Zycons. On the other hand no new
conflicts are created.

Finally, 7/ is a model of P(K), since by construction inclusion assertions in P2(K)
are satisfied in Z’, and it is straightforward to check by induction that for every

C € P(K), for all £ € 297 d € C7 if and only if d° € c*'. o

Now, we are ready to state the desired result.

Theorem 37 Let K be a CINBR TBozx, k a CZINBR inclusion assertions, and P
and ¢ the mappings defined above. Then K |= k if and only if P(K) = o(k).

Proof < By contradiction: suppose there exists a model Z of K which 1s not a
model of k.

From Z we can define an interpretation Z’ as follows:

o AT = AT U AT

7’ :
+, where A7 contains Ione element z<y,.q,,.. U.:.d,> for each
<Up:dy,... .Uy :dy >€ (Anyy, )7, for some Anyy, ¢

o forall Anyy, ¢ ,forall<Uy:dy,... .U, :dy >€ (AnyUl,...,Un)I, we put

T

ZgUyidy ..\ Upidn> € TAny
Uq,eons Up

(2<Uyds, . Unidn>> d1) € fE

(2<Uy:dy,  Upidy>,dn) € f}i
e for all P, for all < Uy :dy,..., U, : d, >€ PI, we put z<u,.d,,.. Un:dn> € A%,I
. Tfl = A?, and for all atomic concepts A4, we put AT = AT,
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First, note that by construction, 7’ is a model of Py(K).
Next it is easy to verify by induction that, given a CZNBR relation R with
rol(R) = {Uy,..., Uy}, for all dy, ..., d, € AT,

<Up:idy, ... Uy :dy >ERT G 20,4, v, an> € Qr(R)II
and that, given a CZNBR concept C, for all d € AT,
de CT iff deg.(C).

Let C1 C C5 be a CZN BR inclusion assertion on concepts. The interpretation 7
is a model of Cy C (s iff for alld € A%, d € C¥ = d € Cf. Considering the definition
of Z’ this holds if and only if: for all d € T, d € g.(C1) = d € g.(C5)T ,ie. I’ is a
model of T, M g.(C1) C 0.(C2).

Similarly, let R; C Rz be a CZNBR inclusion assertion on relations . The inter-
pretation 7 1s a model of Ry C Ry iffforall < Uy : dy, ..., U, : dp >€ (AHYUI,...,U,L)I’
<Uj:dy,...,Up:dy >ERT =< Uy 1 dy,...,U, : d >€ REZ. Considering the def-

inition of Z’ this holds if and only if: for all z € Tg Lz € gr(Rl)Il =z €
nyy,.,. .vn

QT(RQ)II, which is equivalent to: for all z € AT z € gr(Rl)Il =z € QT(RQ)II, le.
7' is a model of g,(Rq) C or(Ra2).

Hence 7’ is a model of P(K) and yet is not a model of g(k), contradicting the
hypothesis.

~~~~~~

= Again by contradiction: suppose there exists a model Z' of P(K) which is not
a model of g(k). Without loss of generality we assume that 7’ satisfies the condition
in Lemma 36.

From 7’ we can define an interpretation Z as follows:

o AT=TF

o for all Anyy, g, forall z € Tiny with (z,dy) € fgi, oo (z,dy) €

fg;, we put < Uy :dy,..., U, :dp >€ (AUYUI,...,U,L)I

e for all atomic relations P with rol(P) = {Uy,...,U,}, for all z €
(TAnyU B I_IAP)I with (z,d1) € fgl,...,(z,dn) € fgn, we put < Uj :

dl,...,Un 2 d, >€ | 223
o for all atomic concepts A, we put AZ = AT N AL

It is easy to verify by induction that given a CZNBR relation R with rol(R) =
{U1,...,Un}, ,
<Uy:dy,...\Uy:dy >€RT iff 2 € g, (R)?

where dy, ..., d, are the individuals such that (z,d;) € fgi, oo (z,dy) € fg; (observe
that by Lemma 36 dy, ..., d, univocally determine z). Similarly we can verify that
given CINBR concept C, for all d € Tfl

de T iff deo.(C)F
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Let C1 C C5 be a CZN BR inclusion assertion on concepts. The interpretation 7’ is
amodel of T,.Mg.(C1) T 0.(Cy)iffforalld € AT d € (T .M. (C1)F = d € 0.(Co)*,
that is equivalent to: for all d € Tfl, de QC(C’l)II =de QC(CQ)II. Considering the
definition of Z this holds if and only if: for all d € AT, d € Cf = dec Cf ie T isa
model of C; C (.

Similarly, let Ry C Ry be a CZA'BR inclusion assertion on relations. The inter-
pretation 7’ is a model of g.(R1) C g,(Rz) iff for all z € AT € gr(Rl)Il =

2z € QT(RQ)II, that is equivalent to for all z € TinyU Lo E € Qr(Rl)II =
1

z € QT(RQ)II. Considering the definition of 7 this holds if and only if: for all
< Uy :dy,...,Uy : dy >€ (Anyy, )5, < Uy tdy,... Uy @ dy >€ Ry =<
Uy :di,..., Uy dy >€ Ro, 1.e. 7 1s a model of R; C R.

Hence 7 is a model of K and yet is not a model of k, contradicting the hypothesis.

.....

O

Theorem 38 Satisfiability of CINBR concepts, satisfiability of CZINBR TDBozes,
and logical implication in CINBR TBoxes, are EXPTIME-complete problems.

Proof Considering that, by Lemma 35 and Lemma 34, P(K) and g¢(k) are poly-

nomially bounded to K and k, the decidability and the complexity of reasoning in
CINBR are an immediate consequence of the results on CZN in Chapter 4. O
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Chapter 7

Individuals

In this chapter, we study reasoning involving knowledge on individuals expressed in
terms of membership assertions. Given an alphabet O of symbols for individuals, a
membership assertion is of one of the following forms:

C(Oél), R(Ozl,az)

where C' is a concept, R is a role, and a1, @y belong to (3. The semantics of such
assertions is stated as follows. An interpretation 7 is extended so as to assign to each
a € O an element o € A? in such a way that different elements are assigned to
different symbols in @. Then, 7 satisfies C(a) if aZ € C%, and 7T satisfies R(ay, as)
if (af,aZ) € RZ. An extensional knowledge base (ABox) M is a finite set of mem-
bership assertions, and an interpretation 7 is called a model of M if 7 satisfies every
assertion in M.

A knowledge base is a pair B = (K, M), where K is a TBox, and M is an ABox.
An interpretation 7 is called a model of B if it is a model of both K and M. B is
satisfiable if it has a model, and B logically implies an assertion 5 (B = /), where 3
is either an inclusion or a membership assertion, if every model of B satisfies 3. Since
logical implication can be reformulated in terms of unsatisfiability (e.g. if 8 = C(«),
then B = g iff BU {—=C(«)} is unsatisfiable, similarly if 8 = Cy C Cy, then B = 3
iff BU{C1 M —=Ca(a’)} is unsatisfiable, where o does not occur in B), we only need a
procedure for checking satisfiability of a knowledge base.

We study the satisfiability problem for knowledge bases expressed in two descrip-
tion logics CA (Section 7.1) and CZ (Section 7.2).

7.1 Knowledge bases in CN

The description logic CA is obtained from CZ by dropping inverse roles and adding
qualified number restrictions (see Chapter 4). We show that satisfiability of a CA
knowledge base B can be polynomially reduced to satisfiability of a DA formula
¢(B), where DN is the PDL obtained from DZ by dropping converse programs and
including qualified number restrictions.
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We start the reduction by defining a mapping ¢y form CA knowledge bases to
DN formulae.

Definition Let B be a CA knowledge base. We define the DA formula ¢q(B) as
the conjunction of the following formulae (there is a new letter A; in ¢o(B) for each
individual «; in B):

e for every individual «;,
A; = AjzimAj

o for every membership assertion of the form C(«;) (4 is the mapping introduced
in Chapter 2),
A= 5(0)

e for every membership assertion of the form R(«, o),

AZ':><R>A]'

e for every inclusion assertion C'; C Cs in K,

We call r;,: the program obtained from r by chaining the test (A;—A;)7 after
each atomic program occurring in r, 1.e. the program defined inductively as:

Py = P;(N—A4)?
(r1;72)mine = (P1)mint; (P2)mint
(rrUra)aing = (r1)=int U (r2)—int
(] )=int = (")%ine

(67)=int = o

The size of both Post(r) and Pre(r) is polynomial in the size of r.
Next we define the DA -counterpart of a CA” knowledge base.

Definition Let B be a CN knowledge base, ¢y the mapping from above, create a new
atomic program, and u an abbreviation for (PyU. ..U Pp)*, where Pp, ..., Py are all
the atomic roles in B. We define the DN -counterpart of B as ¢(B) = ¢1(B) A ¢a(B),
where:

o 01(B) = p(B)A- - AT (B)A[ereate]([u]po(B)), with one ¢! (B) =< create > A;
for each individual «; in B.

e 3(B) is the conjunction of the following formulae:

— for all A; and for all P occurring in ¢o(B):

[create][u](< 1 P.A;) (7.1)
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— for all A; in ¢o(B), for all ¢ € CL([u]po(B)):
[createl(<u > (A; A @) = [u](A; = ¢)) (7.2)
— for all A; in o(B), for all < r > ¢ € CL([u]pe(B)):

[create](<u> (AN < Tojna > ) = (7.3)
[u](AZ' =< Taind > ¢)) ’
— for all 4;, 4; and for all P in ¢o(B), for all programs ' € Pre(r), with r

occurring in C'L([u]po(B)):
[ereate](<u> (AN < vl P > Aj) =

—ind»

u](4; =<7l ;s P> A45)).

—ind?

(7.4)
O

Lemma 39 Let B be a CN knowledge base, and o(B) its DN -counterpart. Then
o(B) is a DN formula, and iis size is polynomially related to the size of B.

Proof Straightforward. O

The role of (7.1),(7.2),(7.3) and (7.4) is to allow us to collapse all the states where
a certain A; holds, so as to be able to transform them into a single state corresponding
to the individual «;.

In the following, without loss of generality, we will implicitly restrict our attention
to models M = (S,{Rp}, M) of ¢(B) such that § = {s} U {s’' | (5,5') € Rereate ©
(Up Rp)"} and M, &= o(B).

We call states ¢ of a model M of ¢(B), individual-aliases of an individual «; iff
M,t = A;. The formulae (7.3) and (7.4) allow us to prove the technical lemma below.

Lemma 40 Let M be a model of p(B), let t be an individual-alias of «;, and let
<r>¢ € CL([u]pe(B)). If there is a path from t that satisfies < r > ¢ and contains

N andividual-aliases t =11, ... tn, of oy = vy, ..., a4y Tespectively, then from every
individual-alias ' of o; in M, there is a path that satisfies < r > ¢ and contains N
individual-aliases t' =1}, ...,y of ..., q;, in the same order as t1,... 1x.

Proof By induction on the number N of individual-aliases.
Base Case: N =1, i.e. the only individual-alias is t. Then, by (7.3), we have

[ereate](<u > (AiA < Paing > ¢) = [U](A; =< rajng > 6)).

So from every individual-alias ¢’ of «; there is a path satisfying < r > ¢ in which no
individual-aliases, other than the initial ¢', occur.
Inductive Case: N > 1. Assume that from ¢ there is a path satisfying < r > ¢

in which k& + 1 individual-aliases of oy, ..., a4, 41 occur. Let such a path be (t =
50, ..., 5w,...,8¢), where M, sq = A;,, M, s, E Aji,, and no individual-aliases occur
in (s1,...,80w-1). This implies that there exists a program r'; P € Pre(r) and a
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program " € Post(r) such that (so,...,s4) € Pathsy(r'; P), and (su,...,54) €
Pathspy (r'"), and < r'; P >< " > ¢ =< r > ¢.
Note that < " > ¢ € CL([u]po(B)) thus, since the path (s, ...,s,), satisfying

< 1" > ¢ contains k individual-aliases of «;,, ..., «;,, by inductive hypothesis we can
conclude that from each individual-alias of «;,, there is a path satisfying < v > ¢
which goes through one individual-alias for each one of the individuals «y,, ..., a4,
in the same order as in (sy, ..., $q).

On the other hand, by (7.4), we have:
[ereate](<u > (A A< v 0 P> An) = [u)(A;, =<rl,uP > AL)).

So for any individual-alias ¢’ of «;,, there is a path satisfying < »'; P > A;, in which
no other individual-aliases occur. Thus combining these two arguments we get the
thesis. O

Given a model M = (S8, {Rp},M) of ¢(B), we can obtain a new model M’ =
(8", {R%s}, @) of ¢(B) in which there is exactly one individual-alias, for each individ-
ual in B. Let s € § be such that M, s = ¢(B). For every individual «;, we randomly
choose, among its individual-aliases « such that (s, ) € Rereate, a distinguished one
denoted by so,. We define the relations R’

Heare and R, for every atomic program
P in ¢y(B), as follows:

° R//

create

e R = (Rp —{(x,y) € Rp | M,y = A; for some A;}) U {(x,s4;) | (x,9) €
Rp and M,y = A; for some A;}.

= {(5,8a;) € Rereate | i is an individual};

Now, we define M’ as:
o S'={s}U{r eS| (s,x) € Rlca o (Up RE)"}
® Rireate = Ripeare N(S" x 5')
P=REN(S x§)

o II'(x) = MI(x), for each state z € §’.

Observe that, for every atomic program P, the number of P-successors of all states
in M’, remains unchanged wrt M. The following two lemmas concern M’.

Lemma 41 Let M be a model of o(B), and M’ be defined as above. Then for every
formula ¢ € CL(p1(B)), for every state x of M': Myx =¢ iff M x = ¢.

Proof By induction on the formation of ¢ (called formula induction in the following).
We assume, without loss of generality, V, = [],(< n-) to be expressed by means of
A <> (> ).

e ¢ = A (atomic formula). M,z |E A ifft M’z | A, by construction of M.

4 ¢ = ¢1/\¢2~ Ma$ ': ¢1/\¢2 lﬁMa$ ': ¢1/\Ma$ ': ¢2 iﬂM/a$ ': ¢1/\M/a$ ': ¢2
(by formula induction hypothesis) iff M’z = ¢1 A ¢a.
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e ¢ = ¢ Muax | ¢ iff Mz [ ¢ ifft M,z [£ ¢’ (by formula induction
hypothesis) iff M/, z = —¢’.

e o= (>nP.g¢).
=. M,z |E (> n P.¢') if there are at least n states 21, ..., #, such that M, z; =
¢’. We distinguish two cases.

— x; is not an individual-alias. Then (z,2;) € Rp implies (z,z;) € R,
whereas by formula induction hypothesis M’ z; = ¢'.

— x; is an individual-alias for ;. Then, by (7.1), either x; = 54, or (z,54,) €
Rp. In both cases, by construction of M’, (x,x;) € Rp implies (x,s4,) €
R'p. Now, M,z; |= ¢' implies M, s, |= ¢’ by (7.2), and thus, by formula
induction hypothesis M’ s, |= ¢'.

Hence we can conclude that M,z |= (> n P.¢").

<. M,z E (> nP.¢') if there are at least n states x1,...,2, such that
M’ x; = ¢'. We distinguish two cases.

— z; is not an individual-alias. Then (z,#;) € R implies (z,z;) € R,
whereas by formula induction hypothesis M, 2; |= ¢'.

— ¥; = Sq,. Then, by construction of M’ and by (7.1), (, s4,;) € R’p implies
that there exists (exactly) one t in M such that (x,t) € Rp (possibly
t = sq;). Now, M’ s, |= ¢' implies M, s,, |= ¢', by formula induction
hypothesis, and thus, by (7.2), M’ t = ¢'.

Hence we can conclude that M,z |= (> n P.¢').
e p=<r1>¢.

=. Let M,2 E< r > ¢’ then there is a path (¢ = xo,...,2,) € Pathsy(r)
such that M, z, = ¢'. We prove M’z =< r > ¢, by induction on the number
k of individual-aliases along the path (=zo,...,z,), starting the count from the
first non-chosen individual-alias (we call this induction, path induction).

k = 0, this means that for all the states x; along the path, z; € §’. By applying
Proposition 5 ¢ times and Proposition 4 once, we can conclude that there exists
a formula

< (00175 500,407) P (0117 501,90 7)5 5 Pys (601755 04,0,7) > &
with g; > 0, such that:

— all tests ¢; ;7 occur in r, and hence all ¢;; are subformulae of < r > ¢/;
— (wi—1,2) ERp,, fori=1,...,¢;
— the formula
< (G075 5 00,907); P
(1175 501,0.7)5 -5 Py
(Gg175- - 504,9,7) > ¢ =<7 > ¢

1s valid.
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92

By formula induction hypothesis we have that, for all ¢,;, M,z; E
¢i; Mt M' 2z = ¢y, and M, x, = ¢" iff M’ x, = ¢’. While by construction
of M', (;_1,%;) € Rp, implies (z;_1,x;) € Rp,. Hence M,z =<1 > ¢'.

k> 0. Let (zo,...,24) = (20,...,2u,...24) where z,, such that M,xz, E A4;,
is the first non-chosen individual-alias along the path (g, ..., z,). By applying
Proposition 5 m times only, we can conclude that, there exists a formula

<(P0,175 - 500,407); Pri (0117 501,075 s P ><v! > ¢
with g1 > 0, such that:

— all tests ¢; ;7 occur in r, and hence all ¢;; are subformulae of < r > ¢/;

— v/ € Post(r'), and hence by Proposition 2, the formula < v’ > ¢’ is equiv-
alent to ¢ for some ¢ € CL(< r > ¢') C CL(p1(B));

— (wi—1,25) ERp,, fori=1,.. . u;
= (Zu,...,2y) € Pathsy (r');

- < (¢071?; .. ~;¢0,gg?);P1;(¢1,1?; .. .;¢>17g1?); .. ,Pu >< ' > ¢>/ =>r > ¢>/
1s valid.

The path (2, ..., %) contains k individual-aliases thus, by Lemma 40, from
each individual-alias on «; there is a path satisfying < ' > ¢’ which goes
through exactly the “same” k individual-aliases in the same order. Let (so, =
Ty .-, Ty) be such a path from s,,. This path contains strictly less than &
individual-aliases, excluding «,, thus by path induction hypothesis, M’  s,, E<
> ¢

Now, by construction of M’, (zy—1,%y) € Rp, implies (xy_1,54,) € iju thus
M’ xy_1 E< Py >< 7' > ¢'. Whereas, by formula induction hypothesis, for all
¢ij, M, z; = ¢;; it M' #; |E ¢; ;. Hence considering that for i =1,...,u—1
(r;_1,%;) € Rp, implies (x;_1,%;) € Rp., we get M', 2 |=<r > ¢'.

bl

<. Let M,z E< r > ¢/, then there is a path (¢ = yo,...,y,) € Pathsy(r)
such that M’ y, | ¢'. We prove M,z =< r > ¢, by induction on the number k
of individual-aliases along the path (yo, ..., y,) excluding z, if z is an individual-
alias (we call this induction, path induction).

k = 0, this means that for all the states y; along the path, y; € S. By applying
Proposition 5 ¢ times and Proposition 4 once, we can conclude that there exists
a formula

< (00175 500,407) P (0117 501,90 7)5 5 Pys (601755 04,0,7) > &
with g; > 0, such that:

— all tests ¢; ;7 occur in r, and hence all ¢;; are subformulae of < r > ¢/;

- (yi—layi) S R/Pla for ¢ = 1aaQa
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— the formula
< (G017 -500,4,7); Pr;
(6117 501.0.7);- -3 Py
(Gg175- - 504,9,7) > ¢ =<7 > ¢

1s valid.

By formulainduction hypothesis, for all tests ¢; ; M’ y; = ¢, ; iff M,y = ¢,
and M’ y, = ¢ iff M, y, = ¢'. While by construction of M’, (yi_1,%:) € Rp,
implies (y;—1,y;) € Rp,. Hence M’ z E<r > ¢'.

k > 0. Let (yo,...,Y) = (Yo, Yu,-..Yg) where y, = s,, is the first
individual-alias along the path. By applying Proposition 5 m times only, we
can conclude that, there exists a formula

<(P0,175 - 500,407); Pri (0117 501,075 s P ><v! > ¢
with g1 > 0, such that:

— all tests ¢; ;7 occur in r, and hence all ¢;; are subformulae of < r > ¢/;

— v/ € Post(r'), and hence by Proposition 2, the formula < v’ > ¢’ is equiv-
alent to ¢ for some ¢ € CL(< r > ¢') C CL(p1(B));

= (Yi-1,¥) ERp,, fori=1,.. .y
— (Yu, ..., Yq) € Pathspyp (r');

- < (¢071?; .. ~;¢0,gg?);P1;(¢1,1?; .. .;¢>17g1?); .. ,Pu >< ' > ¢>/ =>r > ¢>/
1s valid.

Notice that M', s,, E< v’ > ¢', and along y,, . .., y, there are k — 1 individual-
aliases, excluding y,,. Thus, by path induction hypothesis M, s,, E< v > ¢,
and by (7.2) the same is true for all the individual-aliases of «; appearing in M.

Now, by construction of M’, (yu—1,9%.) € Rp, implies that there exists an
individual-alias ¢ of «; such that (yy—1,t) € Rp,. Thus M,y,—1 E< P, ><
7" > ¢'. Whereas, by formula induction hypothesis, for all ¢; ;, M’ z; E
¢i; it M z; |E ¢;;. Hence considering that, for i =1,... u—1, (yic1,%) €
R’ implies (y;—1,y:) € Rp,, we get M, x =<1 > ¢

Lemma 42 Let M be a model of o(B) such that M,s = @o(B), and let M’ be a
structure derived from M as specified above. Then M' s = ¢(B).

Proof By Lemma 41 M,s = ¢1(B) implies M’ s = ¢1(B). On the other hand,
we trivially have M’ s = ¢2(B), since it has one individual-alias of each individual.
Hence the thesis holds. O

We can now state the main theorem on reasoning in CA knowledge bases.
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Theorem 43 A CN knowledge base B is satisfiable iff its DN -counterpart o(B) is
satisfiable.

Proof = Let 7 be an interpretation satisfying the knowledge base B. Then we can
define a model M = (S, {Rp},1I) of ¢(B) as follows: § = AT U {sncw}, Rsp) = PZ,
Rereate = {(Snew,al) | a; € O}, U(s) = {6(A) | s € AT} U{A4; | s = af}. Ttis
easy to see that M, spey | ¢1(B). Furthermore since, by construction, in M there
is exactly one individual-alias of each individual, we have trivially M, speq = @2(B).
Hence M, spew | ©(B).

< If there exists a model M of ¢(B) then by Lemma 42 we can construct a
model M’ such that for each individual there exists exactly one individual-alias. Let
M' s | ¢(B), we can define an interpretation Z as follows: AZ = {s' | (s,5) €
Reveareo(Up Rp)*}, RE = ’5(3), CT ={s'| M' s = 6(C)}, and for each individual
ai, af = {sa, | M’ s, = Ai} (please notice that this set is a singleton).

Now for each inclusion assertion €y C C in B, we have that §(C1) = §(C2) holds
in every state of M’, thus C¥ C CZ. For each membership assertion «; : C' in B,
we have M, s,, | 6(C). Finally for each membership assertion «; Rey;, we have that
M’ 54, E< 6(R) > A, and there is only one state in M’ in which A; holds, thus
(@i, aj) € Rs(ry. Hence 7 satisfies B. O

Theorem 44 Satisfiability and logical implication for CN knowledge bases (TBox
and ABox) are EXPTIME-complete problems.

Proof By Theorem 43, satisfiability for CN knowledge bases is polynomially related
to satisfiability in DN, which is EXPTIME-complete, by Theorem 16. O

7.2 Knowledge bases in C7

Analogously to the case of CA, satisfiability of a CZ knowledge bases can be polyno-
mially reduced to satisfiability of DZ-formulae.

We define a mapping no(5) from CZ knowledge bases to DT formulae, as identical
to o introduced in the previous section. Then we define the DZ-counterpart of a CZ
knowledge base as follows.

Definition Let B be a CZ knowledge base, 19 the mapping defined above, ecreate a
new atomic program, and u an abbreviation for (P, U...U P, UP U...UP_)*,
where Py, ..., P, are all the atomic roles in B. We define the DZ-counterpart of B as
n(B) = 91 (B) A n2(B), where:

o ni(B) = nl(B)A---An}(B)Alereate]([u]no(B)), with each 0 (B) =< create > A;
for each individual «; in B.

o n2(B) = ni(B) A--- Anh(B), where we have one n%(B) of the form
[createl(<u > (A; A @) = [u](A; = ¢)), (7.5)
for each A;, and for each ¢ € C'L([u]no(B)).
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O

Lemma 45 Let B be a CT knowledge base, and n(B) its DI counterpart. Then n(B)
1s a DI formula, and its size 1s polynomaally related to the size of B.

Proof Straightforward. O

Again, the role of (7.5) is to make all the states where a certain A; holds, equivalent,
so as to be able to collapse them into a single state corresponding to the individual «;.
By reasoning similarly to the case of CA/, we are going to show that B is satisfiable
iff n(B) is satisfiable.!

We again use the notion of individual-aliases of an individual in the models of
n(B).
Let M = (S,{Rp}, ) a model of n(B), such that M,s |= n(B), for some state
s € 8. We show how to obtain a new model M’ of n(B) in which for every individual
in B there is exactly one individual-alias in M’.

For each individual «;, we randomly choose among the individual-aliases & such
that (s,2) € Rereate, a distinguished one denoted by s,, and we define RY., ... =
{(8, 84,) | @; is an individual}. For each atomic program P we define RY% as follows:
o if (x,y) ERp, M,z = N—A;, and M,y |E Aj—A;, then we put (z,y) € RY;
o if (x,y) ERp, M,z |= N\;—A;, and M,y |= A; then we put (z,s4,) € R%;
o if (
(

x,y) E Rp, M,z |= A;, and M,y = A\;—A;, then we put (so,,y) € Rp;

)
)
)
o if (2,9) € Rp, M,z |= A;, and M,y |= A;, then we put (sa,, 5q,;) € Rp.
The structure M’ = (§',{R:}, 1) is now defined as follows:

o 5= () U(r €8] (5.2) € Rlyoan, o (Up(RH URE))

- R

create

e R/

create
e Rp=REN(S x8)
o II'(x) = MI(x), for each state z € §’.
Note that, in contrast to the construction in the previous section, the one above
does not preserve the number of edges involving the chosen individual-aliases, hence

it does not preserve either local or global functionality. The main properties of M’
are stated in the following two lemmas.

Lemma 46 Let M be « model of n(B), let M' be defined as above, and let f : S — &'
be a mapping defined as follows:

| sa, M,z EA; (for some A;)
) = { x otherwise.

1The proof is much simpler in this case, witness the absence of constraints analogous to (7.3) and

(7.4).
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Then for every formula ¢ € CL(n(B)), for every state x of M:

M,z E¢ iff M',f(x) E ¢.

Proof We prove the lemma by induction on the formation of ¢ (called formula in-
duction in the following). We assume, without loss of generality, V,[-] to be expressed
by means of =, A, < - >, and that the converse operator is applied only to atomic
programs.

96

e ¢ = A.

M,z E A ifft M',f(z) = A by construction of M.

¢ =91\ ¢
M,z |E ¢1ANgaiff M,z = ¢1 A M,z |= ¢2 iff (by formula induction hypothesis)
M f(x) |E ¢ A M, f(z) | ¢ iff M/, f(2) |E 61 A 2.

a—r

M,z = ~¢" iff M,z [£ ¢ iff (by formula induction hypothesis) M’, f(x) [ ¢’
it M/, f(z) E—¢'.

p=<r>¢.

=. Let M,z E< r > ¢ and let (z = zo,...,24) € Pathspy(r) such that
M z, = ¢'. We prove M, f(z) E< r > ¢, by induction on the length ¢ of the
path (called path induction, in the following).

¢ = 0. By Proposition 4, there exists a formula < ¢:17;...;¢,7 > ¢', with ¢ > 0,
such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';
— Mz E< 175 50,7 > ¢
= < P17 507 > ¢ =< > ¢ is valid.

By formula induction hypothesis, for ¢ = {¢1,...,¢,,¢'}, M,z = ¢; implies
M, f(z) E ¢

g > 0. By Proposition b, there exists a formula < ¢17;...;¢,7;a >< v > ¢/,
with ¢ > 0, such that:
— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— ¢/ € Post(r), and hence the formula < r' > ¢’ is equivalent to ¢ for some

be CL(<r>¢") CCL(m(B));

— (2o, 21) € Ra;
— (21,...,24) € Pathsy(v');
— < P17 g T a><r > ¢ =< r > ¢ s valid.
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By formula induction hypothesis, for ¢; = {¢1,...,¢,}, M,z E ¢; implies
M’, f(z) |E ¢;. By construction of M’ (#,21) € R, implies (f(), f(x1)) € RY,.
By path induction hypothesis, since (x1,...,2,) € Pathsar(r') is shorter then
(zo,...,24) € Pathspy(r), we can conclude that M, 2z, E< # > ¢’ implies
M, fx1) E< v > ¢'. Hence M2 =< r > ¢,

<. Let M/, f(z) E< r > ¢' and let (f(2) = yo,...,y;) € Pathsyr () such that
M' y, E ¢'. We prove M,z E< r > ¢, by induction on the length ¢ of the
path (called path induction, in the following).

¢ = 0. By Proposition 4, there exists a formula < ¢:17;...;¢,7 > ¢', with ¢ > 0,
such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— M, f(x) E< ¢1?;...5047 > ¢';
= < P17 507 > ¢ =< > ¢ is valid.

By formulainduction hypothesis, for o = {¢1,...,¢,,¢'}, M’, f(z) E ¢; implies
Ma T ': ¢Z

g > 0. By Proposition b, there exists a formula < ¢17;...;¢,7;a >< v > ¢/,
with ¢ > 0, such that:

— all tests ¢;? occur in r, and hence all ¢; are subformulae of < r > ¢’;
— ¢/ € Post(r), and hence the formula < r' > ¢’ is equivalent to ¢ for some
V€ CL(<r>¢") CCL(m(B));

~ (yo0,y1) € RG;

—(y1,-..,Yy) € Pathsyr (v');

— < P17 g T a><r > ¢ =< r > ¢ s valid.
By formula induction hypothesis, for ¢; = {¢1,...,¢,} , M’ f(¢) |E ¢; implies
M,z = ¢;. By construction of M’ if (f(x),y1) € R’ then there exists a state
z1 such that f(z1) = 1 and (2,21) € Re. By path induction hypothesis,
since (y1,...,Yyy) € Pathsyr (') is shorter then (yo,...,y,) € Pathsy(r), we

can conclude that M’, f(x1) E< v > ¢’ implies M, z; =< v > ¢'. Hence
M,z E=E<r>¢.

Lemma 47 Let M be a model of n(B) such that M,s = ®, and let M’ be derived
from M’ as specified above. Then, M' s = n(B).

Proof By Lemma 46 M,s = n1(B) implies M’ s = n1(B). On the other hand,
M’ s = n2(B), since it has one individual-alias of each individual. Hence the thesis
holds. O

We can now state the main theorem of this section.
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Theorem 48 A CI knowledge base B is satisfiable iff its DI-counterpart n(B) is
satisfiable.

Proof Similar to the proof of Theorem 43. O

Theorem 49 Satisfiability and logical implication for CI knowledge bases (TBox and
ABoz) are EXPTIME-complete problems.

Proof By Theorem 48, satisfiability for CZ knowledge bases is polynomially related
to satisfiability in DZ, which is EXPTIME-complete. O

7.3 Discussion

Observe that in devising the results in Section 7.1 and Section 7.2, we did not exploit
the fact that knowledge about individuals is organized in membership assertions. We
exploited only the fact that the number of individuals occurring in a knowledge base
1s finite.

This observation allows us to rephrase the results in those sections in a more
general form. Let us introduce the description logics CA'O and CZO, which are
obtained by adding to CA and CZ special atomic concepts A, called names, having
exactly a single instance «, i.e. the individual they name. Names may occur in
concepts exactly as atomic concepts, and hence constitute one of the most flexible
way to express knowledge about single individuals.

By using names we can capture the construct ONE-OF, having the form
{aq,...,a,}, denoting the concept made of exactly the enumerated individuals
ai,...,ap, 2 as well as the construct FILLS, having the form R : «, denoting those
individuals having the individual « as a role filler of R ® (see [107] and references
therein for further discussion on these constructs).

The result in Section 7.1 can be generalized as follows: satisfiability in CAO
knowledge bases can be polynomially reduced to satisfiability of CA" formulae, hence
is decidable, and EXPTIME-complete. Similarly, the result in Section 7.2 can be
generalized as follows: satisfiability in CZO knowledge bases can be polynomially
reduced to satisfiability of CZ formulae, hence is decidable, and EXPTIME-complete.

It is straightforward to define the propositional dynamic logics DA'@ and DI,
corresponding to the description logics CA'O and CZ O respectively. It is also straight-
forward to define CFQO and DFQ, the description logic and propositional dynamic
logic obtained from CA'@ and DN O by allowing only functional restrictions, instead
of full qualified number restrictions.

The notion of names introduced above has a correspondent in modal logic in the
notion of nominals. Nominals have a tradition in modal logic that dates back to
[96, 17], recent papers on nominals are [11, 58, 10]. Nominals have also been studied

2 Actually, names and the ONE-OF construct are essentially equivalent, since a name A, is
equivalent to {a} and {a1 ...,an} is equivalent to Aq, U...UAq,.
3The FILLS construct R : o is captured by 3R.Aq.
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within the setting of propositional dynamic logics in [89, 59, 90]. In the following, we
focus on two such logics.

The first 1s called deterministic combinatory propositional dynamic logic, DcPDL,
and 1s essentially deterministic propositional dynamic logic augmented with nominals.
In [89] its decidability is established, by a finite model argument, and it is proved that
satisfiability can be checked in nondeterministic double exponential time, i.e. it is in
the complexity class 2NEXPTIME. Since that paper, this upper bound hasn’t be
improved (see [90]). Obviously since DcPDL contains deterministic PDL, its satisfi-
ability is EXPTIME-hard. Thus the computational complexity of satisfiability is not
fully characterized yet. Now it is easy to check that every DcPDL formula can be
polynomially translated into a PFQO formula. From the discussion above we know
that satisfiability in DFQO is EXPTIME-complete. Hence the results in this chapter
allow us to precisely characterize the complexity of satisfiability (and thus of validity
and logical implication) of DcPDL as EXPTIME-complete, closing the previous gap
between the upper bound and the lower bound.

The second logic we consider is called converse combinatory propositional dynamic
logic, CcPDL, and is essentially converse propositional dynamic logic with nominals.
Such logic is not known to be decidable yet, see [90]. Now it is easy to check that
every CcPDL can be polynomially translated into a PZO formula, preserving satisfia-
bility, where DZ O is the propositional dynamic logic corresponding to CZQO. From the
discussion above we know that satisfiability in DZ0O is EXPTIME-complete. Hence
the results in this chapter allow us to establish the decidability of CcPDL and to pre-
cisely characterize the computational complexity of satisfiability (and hence validity
and logical implication) as EXPTIME-complete.

Finally, we remark that, to the best of our knowledge, DA'O is the first logic
in which both nominals and graded modalities (qualified number restrictions) are
present.
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Chapter 8

Recursive Definitions:
Fixpoints

There are basically two ways of using and describing classes (concepts). In the first
one, which we can call the prescriptive approach, the description formalism allows for
expressing several properties of a class, thus prescribing constraints that the instances
of the class must satisfy. In the second one, which we can call the definitional approach,
the formalism allows for providing the definition of a class, i1.e. a set of properties that
precisely characterize the instances of the class. While the prescriptive approach is
quite well understood and established, the definitional approach is still the subject
of an interesting debate, regarding both its nature and its semantic foundation. In
particular, it 1s well known that there are various possibilities of assigning a meaning
to a class definition when it contains some sort of recursion [2, 3, 84, 8, 5].

In this chapter, we are concerned with the semantical problems related to the
definitional approach, arguing that, instead of choosing a single style of semantics for
the knowledge representation formalism, we achieve better results by adopting a more
general formalism that allows for different semantics to coexist.

8.1 Fixpoints

In this section, we briefly recall some notions on fixpoints. The reader is referred to
[33] for an introduction to the subject.

Consider the equation X = f(X) where f is an operator from 2% to 25 (2%
denotes the set of all subsets of a set §). The solutions £ of such an equation are
called fizpoints of the operator f. In general an equation as the one above may have
either no solution, a finite number of solutions, or infinite number of them. Among
the various solutions, the smallest and the greatest solutions (with respect to set-
inclusion) have a prominent position, if they exist. A fundamental result due to
Tarski [123] guarantees the existence and the uniqueness of both such solutions in
case f is monotonic wrt set-inclusion (C), where f is monotonic wrt C whenever

81 g 82 implies f(gl) g f(gz)
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Theorem 50 (Tarski) Let S be a set, and f an operator from 25 to 2° that is
monotonic wrt C. Then, there is a unique least fixrpoint of f given by

(ecs| f&) cel

and a unique greatest fizpoint of f given by

H{ecsT ec ey

8.2 Concept definitions as equations

It is widely recognized that the notion of TBox as introduced in Chapter 2 can be
made more powerful if we allow some sort of concept definitions to be expressed. Let
us call definition statement (or simply definition), statements of the form:

A=g; C

where A is an atomic concept and C' is a concept expression (A cannot occur in the
left-hand part of more then one definition). Intuitively, the above definition statement
is intended to provide a precise account of A in terms of C. When we specify the
semantics of definitions, we need to distinguish between two different types of atomic
concepts, namely, primitive concepts and defined concepts: given a set D of definitions,
primitive concepts are the atomic concepts that do not appear on the left of any
definition of D, whereas defined concepts are those that have an associated definition
in D. An interpretation 7 satisfies a set of definitions if, for each A =4.; C'in the set,
T assigns the same subset of AZ to the defined concept A and to concept C.

We call recursive definition statements' (or simply recursive definitions), definition
statements of the form

A =gey F(4),

where F(A) stands for a concept that has A as a subconcept?. From a semantical
point of view, a recursive definition A =45 F'(A) is a sort of equation specifying that,
for any interpretation Z, the subset of A% that can be tied to the concept A must
satisfy the equation AT = (F(A)), i.e. must be one of its solutions. Notice that,
in general, either none, one, or several subsets of A? may exist which are solutions
of the above equation. For example, it is easy to see that two interpretations that
satisfy the statement A =g4.; P M VYR.A and that agree on both the concept P and
the role R, may differ in the extension assigned to the defined concept A. Notice also
that we can associate to a definition statement an operator from subsets of AZ to
subsets of A7, such that the solutions of the equation correspond to the fixpoints of
the operator. For example to the definition A =;4.; PMVYR.A we can associate, for any
interpretation Z, the operator AS.{s € AT | s € PT and Vt.(s,t) € R? implies t € S}.

In the literature on concept languages, three semantics for recursive definitions,
have been proposed (see [84]):

ITerminological cycles in [2, 3, 84]. Note that, for the moment, we do not consider mutual
recursive definitions, as A =g.¢ F'(B), B =gy F'(A).

2 A subconcept of a concept C' is any substring of C (including C itself) that is a concept, according
to the syntax rules.
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e the descriptive semantics,
e the least fixpoint semantics,
e the greatest fixpoint semantics.

Let us recall their properties using some examples. According to the descriptive
semantics, a recursive definition A =4.; F(A) is a constraint stating that, for any 7
satisfying the definition, AZ has to be any solution of the equation AZ = (F(A4)). In
other words, the meaning assigned to A =4.; F(A) is the same as that assigned to
the equivalence assertion A = F(A4). In our example, A =;.; PMVR.A states that
the individuals in the class A are those in the class P that are related by means of R
to individuals in A itself, and vice versa, where A ts no better specified. In fact, the
descriptive semantics is not appropriate to properly define recursive concepts. Instead,
it 1s suitable to specify a set of necessary and sufficient conditions that individuals
must satisfy in order to be instances of a concept. For example [84], we can express
the fact that humans are mammals having two parents that are humans, and, on the
converse, that mammals having two parents that are humans are humans themselves,
in terms of the equivalence assertion

human = mam N (< 2par. T) N (> 2 par.T) 0 Ypar.human.

It is interesting to observe that we may state an analogous property for horses
horse = mamN (L 2par.T) (> 2 par.T)MNYpar.horse without implying any mutual
relationship between human and horse. We will see later on, this is not true if we
use a fixpoint semantics for defining these two concepts.

According to the least (greatest) fixpoint semantics, a definition statement of the
form A =g4.; F(A) specifies that, in any interpretation Z, A is to be interpreted as
the smallest (greatest) solution, if it exists, of AZ = (F(A4))?. In other words, in
order to consider an interpretation 7 adequate to give a meaning to 4 =45 F(A4),
any other interpretation 7, agreeing with Z on the primitive concepts and roles, must
assign to A a superset (subset) of AZ. Let us consider some examples illustrating the
differences in the two fixpoint semantics. In our running example A =4.; P MVYR.A,
the least fixpoint semantics leads to identify A with L, (indeed the empty set satisfies
the statement, and it is obviously the smallest solution), while the greatest fixpoint
semantics interprets A as the largest class satisfying the definition, which can be
proven to be equivalent to YR*.P, where R* denotes the reflexive and transitive
closure of R.

Although the least fixpoint semantics does not help in the above example, it is
particularly suitable for providing inductive definitions of concepts. Consider the case
of a single source finite directed acyclic graph (DAG) defined as follows>:

e an EMPTY-DAG is a DAG (base step);

3We assume that a leaf of a DAG is a NODE with all arcs leading to a special node called
EMPTY-DAG, as opposed to a NODE having no connection at all. Indeed, in the latter case, the
definition of dag would simplify to dag =g.; node MVarc.dag, hiding the general form of inductive
definitions, i.e. base case and inductive case.
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e a NODE that has connections and all connections are DAGs, is a DAG (induc-
tive step);

e nothing else is a DAG.

We can write a natural definition statement denoting the class of DAGs, namely
dag =g.¢ emptydag U (node N Jarce.T NVare.dag),

as long as we interpret it according to the least fixpoint semantics. Similarly, we
can model the class of LISTs (defined inductively as: an EMPTY-LIST is a LIST;
a NODE that has exactly one successor that is a LIST is a LIST; nothing else is a
LIST) by

list =405 emptylist U (node M (< Lsuce.T) M Isuce.list).

The greatest fixpoint semantics is well suited for defining classes of individuals
whose structure is non-well-founded or co-inductive. An example is the class of
STREAMs, modeling the well-known linear data structure having a NODE as first
element, and such that the rest of the structure is a STREAM itself. Note that
streams, differently from lists, are infinite sequences of nodes. A natural statement
for the definition of stream is

stream =g.5 node N (< 1suce. T) N Isuce.stream

with the proviso that, for every Z, we need to associate to stream’ the greatest
solution of the corresponding equation.
Notice however that, if we interpret the definition statements

human =g.¢ mam 0 (< 2par. T) O (> 2 par.T) N Ypar.human,
horse =g.p mam N (< 2par. T)O (> 2par.T)N Vpar.horse

by the greatest fixpoint semantics, as well as with least fixpoint semantics, we obtain
a rather non-intuitive result: for any interpretation 7 satisfying the above definition
statements, human® = horse”.

The above considerations show that the three semantics capture different intu-
itions, and hence we may need all of them in the same TBox in order to properly
model different concepts. Our proposal in this paper i1s exactly in the direction of
reconciling the various semantics in the same TBox. This is pursued by means of
a language that incorporates two constructs, uX.F(X) and v X.F(X) (the symbols
X,Y, ... stand for concept variables), denoting, respectively, the least fixpoint and the
greatest fixpoint of the operator associated with the definition X =4.; F(X), that is,
for every 7 satisfying the definition, the smallest solution and the greatest solution of
the equation X% = (F(X))Z.

In our approach, definition statements will never appear in a TBox. Instead, as
usual a TBox will be simply a set of inclusion assertions that may involve fixpoint
constructs. For example, in order to specify the properties of the concepts of human,

horse, dag, list and stream, we can use the equivalence assertions:?*

*Notice that, if we add to this TBox the equivalence assertion sm = vX . mam M (< 2 par. T)M(>
2par.T) M V¥par.X, defining the concept sm (sexual mammal), then it turns out that both human
and horse are subsumed by sm.
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dag =upX . emptydag U (node N Jare. T N Vare.X)
list =pX . emptylist U (node N (<L 1suce.T) N Isuce. X)
stream =vX.node N (< 1 suce. T) N Jsuce. X

human = mam N (< 2par.T)N (> 2 par.T) N Vpar.human
horse =mam N (< 2par.T)N (> 2par.T)N Vpar.horse.

The availability of least and greatest fixpoint constructs not only allows different
semantics to be used in the same TBox, but also increases the expressive power of
concept definitions. On the one hand, it makes it possible to model not only ab-
stract classes, but also inductively and co-inductively defined data structures, such
as dags, lists and streams. This is particularly important if our objective is to in-
tegrate class-based representation formalisms and programming systems (declarative
or procedural), in order to make these formalisms more useful in practice. On the
other hand, we have the possibility of nesting fixpoints, thus going beyond the simple
equational format by which we motivated their introduction. As an example, consider
the following: Among the inhabitants of the planet “Plonk”, a disease called “foo”
is quite common. Such a disease manifests itself in two forms: a “visible” one and
a “latent” (not visible) one, and it has a rather intricate hereditary pattern. Indi-
viduals that have the visible form transmit the visible form to at least one direct
descendant (obviously, if there is any direct descendant), these ill descendants in turn
do the same, and so on, until someone transmits the latent form of the disease. All
direct descendants (if any) of an individual that has the latent form inherit the visi-
ble form. The pattern goes on like this, generation after generation, forever. Notice
that, along any chain of descendants, the visible form of the disease sooner or latter
is interrupted, because either an individual has no direct descendant or an individual
transmits to some descendant the latent form. The hereditary pattern (foo_hp) of
the above disease can be defined as follows:

foo_hp = v X . puY . ((visible M (3ehild.Y U Vchild. L))U
(—wisible MYchild.(visible M X)))

where visible denotes the visible form of the disease, while —wisible denotes the latent
form.

8.3 The description logic uALC

The first description logic involving fixpoints that we shall study is called pALC, and
is obtained by adding the fixpoint constructs to ALC.

In the sequel we make use of notions of scope, bound and free occurrences of
variables, closed formulas, etc. The definitions of these notions are the same as the
analogues in first-order logic, treating p and v as quantifiers.

The primitive symbols in wALC are atomic concepts, (concept) variables (denoted
by X,Y,...), and atomic roles which are the only roles admitted in the language.

Concepts in pALC are formed inductively according to the following abstract
syntax:

Co=A|T|L|~C|CiNCy|CLUC,|IR.CIVR.C|pX.C|lvX.C|X
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where A denotes an atomic concept, R an atomic role, X a variable. We implicitly
assume the restriction that every free occurrence of a variable X is in the scope of an
even number of negation signs (—).

Not all the constructs introduced are independent. The following equalities hold:
1l ==T,VR.C = -3R~-C, T =vX.X, vX.C = ~puX.~C[X/-X] (where C[X/-X]
is the concept obtained substituting all free occurrences of X by the concept —X).

As usual, an interpretation Z = (AZ ) consists of a domain of interpretation AZ,
and a interpretation function -Z, which maps every atomic concept to a subset of AZ,
and every atomic role to a subset of AZ x AZ. But the presence of free variables does
not allow us to extend the interpretation function -Z directly to every concept of the
language. For this reason we introduce valuations. A wvaluation p on an interpretation
7, is a mapping from variables to subsets of AZ.

Given a valuation p, we denote by p[X/&] the valuation identical to p except for
p[X/EI(X) = E. In other words, for every variable V',

wam={ 5y v iy

Let 7 be an interpretation and p a valuation on Z. We assign meaning to concepts
of the language by associating to Z and p an extension function %, mapping concepts
to subsets of A7 defined as follows:

X7 = p(X)cAt
Ag = AT C AT
TL = A?
J_g = @

P

—C’)% = CI
cin Cz)% = (Cl) (Cz)
Cy U Cy) = (Cl) (Cz)

{SEAI|E|S (s,8') € RT and s EC’I}
{s € AT |Vs'. (5,5') € RT implies s EC’I}
M€ c Al C[Xg]cg}

U{ECAT] £C Chyel

TN SN SN TN TN TN N
LLl
oy
aQ
S’
T
|

We remark that, in the last two cases C'g[X/g] is interpreted as an operator from

subsets £ of A to subsets of AZ. By the syntactic restriction enforced on variables,
such an operator is guaranteed to be monotonic wrt C. Notice also that free variables
appearing in a concept are interpreted more or less as atomic concepts.

A concept C' is satisfiable, if there exists an interpretation Z and a valuation p on
7 such that Cg + ), otherwise the concept is unsatisfiable. A concept C is subsumed
by a concept Cy, written as C; T Cl, if for every interpretation Z and every valuation
ponZ, (Ci)l C(Cy)f.

A pALC TBox is a finite set (possibly empty) of inclusion assertions € C C4
where € and C5 are closed concepts of uALC. 3

5As usual, we use equivalence assertions of the form C7; = C5 as an abbreviation for {C1 C

Cy,C2 C C1}.
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An interpretation 7 satisfies an inclusion assertion C7; T Cy, if (01)% C (Cz)%,
where p is any valuation on 7 (being C; and C closed, and hence independent from
valuations). 7 is a model of a TBox K, if 7 satisfies all inclusion assertions in K. We
say that a TBox K 1is satisfiable, if it has a model. Observe that inclusion assertions
in K are interpreted according to the descriptive semantics.

We say that a TBox K logically implies an inclusion assertion Cy C (s, written
K | Oy C (s, if for every model Z of K and every valuation p on Z, (01)% C (C’z)%.

8.4 Properties of the fixpoint constructs

In the following, we use the notation C'(X) to indicate that the variable X occurs
free in the concept C' (other variables could occur free in C' as well), and the notation
C(D), where D is a concept, as a shorthand for C(X)[X/D]. In addition, we use the
symbol ¢ as an abstraction for either p or v.

Let us comment briefly on some simple properties of the logic. First, the con-
cept 0 X.C(X) is equivalent to the concept oY.C(Y), as long as Y is free for X in
C(X). Second, the extension function % gives to a closed concept a value which is
independent of the actual valuation p. Hence o X.C', where X does not occur in C,
is equivalent to C'. Third, since ¢ X.C'(X) is a fixpoint we have that C'(¢X.C(X)) is
equivalent to ¢ X.C(X). Furthermore, we have that the concept pX.C(X) is always
subsumed by the concept v X.C'(X).

The next property is more substantial. Consider a uALC TBox K containing the
two equivalence assertions

dag_of _student = pX . emptydag U (student N Jarce. T NVare. X)

dag_of _person = pX . emptydag U (person M Jare. T NVarce.X)

defining the concepts dag_of _student and dag_of _person as the classes of DAGs whose
nodes are students and persons respectively. Assuming that students are persons, we
want to be able to infer that DAGs of students are DAGs of persons as well. That is
we want

K | student € person implies K | dag_of_student C dag_of_person.

It turns out that for uALC such a property holds. To prove this we introduce the
following lemma, first.

Lemma 51 Let K be a pALC TBoz, and C and D two pALC concepts in which a
variable X may occur free. Then

KECCD implies KEocX.CLCoX.D.

Proof We proceed by contradiction.® Assume that C’g C D% holds for all models 7
of K and all valuations p on Z. And suppose that there exists a model 7 of K and a
valuation p on Z such that (¢X.C). Z (¢ X.D)].

6 For uniformity, we do not distinguish if X occurs free or not. Obviously if X does not occur
free, the result is trivial.
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First we prove the result for & = p. Let s be an individual in (/JX.C)% but not in
(/,LX.D)%. Now, we have

s € (uX.C)L iff VE C AT (Clx/e C € implies s € £) (8.1)
s @ (uX.D)7 iff 38 C AT (Dx/en CE and s ¢ &'). (8.2)

For the set £ in (8.2), the following expression holds:
Z Z /
Coxren € Dppxpen €€

hence by (8.1) we have s € £ and by (8.2) we have s ¢ &', which is impossible.

The proof for ¢ = v 1s similar. Let s be an individual in (I/X.C)% but not in
(I/X.D)%. Now, we have

s€(WX.O) iff 38" C AP (& C Clixjgn and s € £") (8.3)
s ¢ (vX.D)] iff VE C AT (£ C Dlyx/e) implies s & £). (8.4)

For the set £ in (8.3), the following expression holds:
I 7
£ C Coxyen S Dypxyeny
hence by (8.3) we have s € £” and by (8.4) we have s € £, which is impossible. O

By using this lemma we can prove the result we are looking for.

Theorem 52 Let K be a pALC TBoz, and D(X) a pALC concept such that every
occurrence of the variable X in D(X) is in the scope of an even number of negation
signs. Then, for any pALC concepts Cy and Cy:

K = Cy E Cy implies K | D(C) E D(Ch9).

Proof First, we transform D(X) in “negation normal form”, that is we push the
negations occurring in D(X) all way in, getting an equivalent concept D" (X) where
negations occur only in front of atomic concepts and no negation occur in front X.

Now we prove the result by induction on the formation of D”(X). Base case. If
D"(X) = X, the result holds trivially.

Inductive case. We assume that the result holds for every subconcept of D™(X),
and we show that X |= D"(Cy) C D"(C3) holds as well. Indeed this easily follows
from the semantics, for D™ (X) of the forms

DY X)nDy(X) | DHX)uDy(X)|3IR.D}(X) | YR.D}(X).

It remains to prove the result for D*(X) = oV.D7(X) (Y # X), but by Theorem 51
we have

K = D} (Cy) E DY (Cy) implies K | oYV.DF(Ch) C aY. DY (Cy),
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hence we are done. O

Going back to our the example, we can, in fact, infer that DAGs of students are
also DAGs of persons. Indeed, by Theorem 52, we have that K |= student C person
implies K = pX.emptydag U (studentNIare. T NVare.X) C pX.emptydag U (person
Jdare. T NVare.X).

Even though it does not include any role construct, pALC is actually an extension
of C. Indeed we can translate a C concept into a pALC concept by resorting to the
following equivalences:

E'Rl [} RQC = ElRlEleC

R U Re.C' = 3R1.CUTR,.C
3R*.C = pX.(CU3R.X)
3id(D).C = C N D.

Note that VR*.C' = v X (CNVR.X).

8.5 Reasoning in pALC

In this section, we focus on the problem of reasoning in pALC TBoxes. We start
our discussion by showing that logical implication in uALC TBoxes (thus also satis-
fiability of 4 ALC TBoxes) is reducible to unsatisfiability of « single pALC concept.
To prove this result, we introduce the notions of generated sub-interpretation and
sub-valuation.”

Let T = (AT, .7) be an interpretation, p a valuation on Z, and s € AZ an indi-
vidual. We define the interpretation Z° = (AIS, ~IS), and the valuation p® on ¢, as
follows:

o AT" = {s'e AT | (s,8') € (RTU...URL)*}.
e For each atomic role R;, we have RF" = Rf N (AT" x AT").

For each atomic concept A, we have AT" = AT N AT,

e For each variable X, we have p*(X) = p(X) N AT".

We call Z° the sub-interpretation of T generated by s, and p° the sub-valuation of p
generated by s.

For generated sub-interpretations and sub-valuations we can state the following
lemma.

Lemma 53 Let C be a pALC concept. Then for any interpretation I, any valuation
p on I, and any individual s € AT, we have: s € C’g iff s € C’gj.

Proof Without loss of generality, we consider concepts formed according to the

following simplified abstract syntax: C':= A | L |-C | CyNCy | AR.C | uX.C | X.

TTogether these notions play the same role as that of generated sub-model in modal logics.
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We prove the result by induction on the number of nested fixpoint constructs. Base
case. If in (' there are no fixpoint constructs, the thesis can be proven by induction
on the formation of C'.

Inductive case. We assume that the thesis holds for concepts C' with n nested
fixpoint constructs, and we prove it for concepts pX.C with n+ 1. We recall that, by
Tarski-Knaster Theorem on fixpoints [123], s € (/JX.C)% iff there exists an ordinal o

such that s € (/JQX.C')%, where (/JQX.C)% is defined by transfinite induction as

o (a1 X.O)f = Cg[X/(uC,X.C)f]
. (/J)\X.C)% = UQ<A(/JQX.C)%, if A is a limit ordinal.

Hence we proceed by transfinite induction on ordinals «.

Base case of the transfinite induction. pgX.C' is defined as L, thus trivially we
have s € (/JQX.C)% iff se (uoX.C)%s.

Successor case of the transfinite induction. We want to show that s €
(ua_HX.C')% if s e (/JQ_HX.C')%;, which reduces to

7 . 7°
$ € Chixy(uax.cymy 1T 8 € CpS[X/(uC,X.C)fSS]' (8.5)
To prove this, we start by showing that
z° . 7°
S € Coutxytuax.oyzy M5 € Clxyuax.onmye (8.6)

Notice that the two valuations above may differ only on the value of X. If it holds
that

7° ~ 7°
s € Xoixy(uax.cymy M5 € Xopwy(u, x 0z (8.7)

then by straightforward induction on the formation of C' we have that (8.6) holds as
well. Let us prove (8.7). We can write it as

s € p°[X/(1aX.C)21(X) s € (p[X/(1aX.C)7])*(X),
and since s € AT", this reduces to
5 € (haX.O)E iff s € (uaX.O)E.

which holds by transfinite inductive hypothesis.
Now, since (' contains n fixpoint constructs, by inductive hypothesis on n, we
have

T : T°
$ € Cuixypax.cymy M8 € Clopxyuax o)y

Hence, considering (8.5) and (8.6), it follows that indeed s € (ua_HX.C')% iff s €
(/,La+1X.C)%sS.
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Limit case of the transfinite induction. Let A be a limit ordinal, then s € (/J)\X.C)%
iff there exists an ordinal & < A such that s € (/JQX.C')%. By transfinite induction
hypothesis, it holds that s € (/JQX.C)% iff s € (/JQX.C)%:, and thus

s € (IX.C)E iff s € (mX.0)%.
This completes the transfinite induction. So for all ordinals « it holds that
5 € (1aX.O)F iff 5 € (naX.O)%.

The induction on the nesting of fixpoint constructs is completed as well, hence we
have proven the lemma. O

Now we are ready to state the result mentioned above.

Theorem 54 Let K = {C1 C Dy,...,C, C D,} be a pALC TBoz, and C and D
two pALC concepts. Then K | C E D if and only if the nALC concept

vX.(VR1.XN...NVR,.XNCx)NC =D (8.8)

1s unsatisfiable, where Ry, ..., Ry, are all the atomic roles appearing in K, and Cx =
(=CLU D) 0...N(=Cy U Dy).

Proof If part. By contradiction. Assume that (8.8) is not satisfiable, and suppose
that K £ C' C D, i.e. there exists an interpretation Z, and a valuation p on Z, such
that Z is a model of K and C’g Z D%. It follows that, there exists an individual s € A
such that s € C’g and s € (—|D)%. On the other hand, the fact that Z is a model of K
implies that (C’K)% = A% and thus that (¢ X.(VR.X M ... MVR,;,. X M C’K))% = AL,
So we have s € (v X.(VR1. X M...MVR,. XN Cr)NCN —|D)%, i.e. (8.8) is satisfiable,
contradicting the hypotheses.

Ounly If part. Again we proceed by contradiction. Assume K = C C D. And
suppose that (8.8) is satisfiable, i.e. there exists an interpretation 7, a valuation p on
7, and an individual s € A7 such that s € (vX.(VR.XT1.. .I_IVRm.XI_ICK)I_ICI_I—'D)%.

Now consider the sub-interpretation 7° = (AIS, %ss) and the sub-valuation p°® on
7Z° generated by s. On the one hand, we clearly have that (C';C)%: = AT’ hence I*
is a model of K. On the other hand by Lemma 53 s € (v X.(VR,.X M ...NVR,.X N
Crx)yncn —|D)%§, so it follows that 7°¢ and p® do not satisfy the subsumption C'C D,
contradicting the hypotheses. O

This result allows us to limit our attention to concept unsatisfiability only. In
order to devise a method to check a pwALC concept for unsatisfiability, we exhibit
a correspondence between pALC and a well-known logic of programs called modal
mu-caleulus ([71, 73, 121, 122]), which has been recently investigated for expressing
temporal properties of reactive and parallel processes ([118, 75, 28, 132, 31]).

Formulas &, ¥, ... of modal mu-calculus are formed inductively from atomic for-
mulas A, ... and variables X ... according to the following abstract syntax:

U =A|T|L|-®|PAY|OVY |<a>d|[a®|puX.®|vX.®|X
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where a is the generic element of a set of labels £, and every occurrence of any variable
X must be in the scope of an even number of negation signs. The semantics of modal
mu-calculus is based on the notions of (Kripke) structure and valuation. A Kripke
structure M is a triple (8,{R; | i € L}, V), where § is a set of states, each R; is a
binary relation, and V is a mapping from atomic formulas to subsets of §. A wvaluation
p on M is a mapping from variables to subsets of §. To a Kripke structure M and
a valuation p on M, we associate an extension function ~;\/‘ defined inductively as
follows:

XM = pX)cs
AM = V4)cCcS
O
(~@)M — 5 aM
oor = o

vV = U

P

(<a><I>);,V‘ = {se8|3. (s, )ER and s’ E<I>M}
([a]q));w = {se€8|Vs. (s,5) € R, implies s E<I>M}
(uX.q));V‘ = (HECS| <I>[X£]CS}
(I/X.CI));M = UY{Ecs| €c aM Tx/e 1

A formula & is satisfiable if there exists a Kripke structure M and a valuation p on
M such that &M # 0.

The following theorem is the basis for the correspondence between pALC and the
modal mu-calculus.

Theorem 55 There erists a one-to-one linear-time function ¢ mapping concepts of
nALC to formulas of modal mu-calculus such that for any pALC concept C, C is
satisfiable if and only if ¢(C') is satisfiable.

Proof We can define ¢ in the following way: ¢(A) = A (atomic concepts are mapped
to atomic formulas), ¢(X) = X, ¢(T) =T, ¢(L) = L, ¢(=C) = =¢(C), ¢(IR.C) =
R > ¢q(C) (atomic roles are mapped to labels), ¢(VR.C) = [R]q(C), ¢(pX.C) =
#X.q(C), and ¢(vX.C) = vX.q(C).

An interpretation 7 = (AZ,.7) is equivalent to a Kripke structure M = (S, {R; |
i € L},V) such that: § = AZ; {R; | i € L} is equal to the part of - interpreting
atomic roles; and V is equal to the part of -Z interpreting atomic concepts. We also
have that a valuation p on 7 is equivalent to a valuation p/ on M. Now both the
extension function associated with 7 and p, and the extension function associated
with M and p’ map, respectively, any concept C' and the corresponding formula ¢(C')
to the same subset of A7 = &. Hence the thesis follows. O

It follows that we may transfer both decidability and complexity results ([73, 51,
106]) for the modal mu-calculus to 4 ALC. Thus, we can immediately state what is
the complexity of reasoning with pALC concepts and pALC TBoxes.

Theorem 56 Satisfiability of pALC concepis, satisfiability of pALC TBoxzes, and
logical implication in pALC TBoxes are EXPTIME-complete problems.
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Proof Since the satisfiability problem for modal mu-calculus is EXPTIME-complete
([51]), by Theorem 55 the satisfiability of pALC concepts can be checked in deter-
ministic exponential time (tight bound). Hence, by Theorem 54, the thesis follows.
O

8.6 The description logic pALCN

In this section, study the description logic pALCN, obtained from pALC by including
qualified number restrictions (see Chapter 4).

Concepts in pALCN are formed inductively according to the following abstract
syntax:

c = A|T|J_|—|C|Cl|_|02|01UCQ|3RC|VRC|
(<nRC)|(>nRC) | pX.CvX.C|X

where A denotes an atomic concept, R an atomic role, X a variable. We implicitly
assume the restriction that every free occurrence of variables X is in the scope of an
even number of negations, considering concepts C' in (< n R.C') in the scope of one
negation.

Qualified number restrictions are interpreted as follows. Let 7 be an interpretation
and p a valuation on Z, and % the extension function associated with Z and p.

(<n R.C’)g = {s & AT | there exists at most n s’ such that
(s,s')€ RT and s’ € C’g},
(>n R.C’)% = {s & AT | there exists at least n s’ such that

(s,s') € R and s’ € C]}

The other constructs are interpreted as in pALC.

Next we investigate the decidability and the complexity of satisfiability of uALCN
concepts and logical implication in uALCN TBoxes (and thus of satisfiability of
wALCN TBoxes). As for pALC these two reasoning tasks are not distinct. Indeed,
we can prove the analogue of Theorem 54.

Theorem 57 Let K= {C1 C Dy,...,C, C Dy} be a pALCN TBoz, and C' and D
two pALCN concepts. Then K |= C T D if and only if the pALCN concept

vX.(YR1.X .. .NYR,y. X NCx)NCMN=D

is unsatisfiable, where Ry, ..., Ry, are all the roles appearing in K, and Cx = (-Cy U
Dyyn...n(—=C, U D,).

In order to devise a (effective) method for checking a uwALCN concept for un-
satisfiability, we exhibit a correspondence between pALCA and a variant of modal
mu-calculus, called deterministic modal mu-calculus, which has the same syntax as
the modal mu-calculus, but is interpreted on deterministic Kripke structures, that is
Kripke structures in which the relations R; are partial functions ([121]).

We show that there is a function ¢ mapping concepts of pALCN to deterministic
modal mu-calculus formulae, such that C'is satisfiable if and only if ¢(C) is satisfiable.

113



CHAPTER 8

The function ¢ is defined inductively. The mapping from A, X, CND, CUD, =C, and
oX.Cissimply t(A) = A, (X)) = X, t(CND) =t(C)AH(D), t(CUD) =t(C)ViD),
t(—C) = =t(C), (e X.C) = 0 X 2(C). The mapping form VR.C and FR.C is based on
a technique developed for propositional dynamic logic to map non-deterministic PDL
formulae to deterministic PDL formulae preserving satisfiability ([87, 121]), namely:

t(AR.C) = < R>pX.(HC) < Rpew > X)),
t(VR.C) [R](v X.(t(CY A [Rpew] X)),

where Rpeq is a new role. Finally, (< n R.C) and (> n R.C') are mapped to the
following formulae (we use the abbreviations [R*]® for v X.(® A [R]X), [RT]® for
[R][R*]®, < R* > ® for uX.(?V < R> X), and < Rt > ® for < R >< R* > ®):

H((< n R.C)) =[RI[R;, ., J(1H(C) = [R.,](H(C) =
[t ( - (C) = [RE,]-HC)) )

where the number of nested formulae of the form ¢(C') = [R},,]® is n, and
t((>nR.C)) =< R>< R}, > (tH(C)\ < R, > (#(C)A
<R, > (L HONW<RE, >1C))..)

new new

where the number of nested formulae of the form ¢(C)A < R}, > ® is n — 1. These
formulae express constraints on the number of states satisfying C' along the chain

RoRY ., . For example, consider the concept (< 2 R.A), where A is an atomic concept,

t((< 2R.A)) = [R][R}.,J(A = [RF.,J(A = [R}.,]-A4)) that means “everywhere
along the chain Ro R}, there are at most two states where 4 holds” (see Chapter 4).
Theorem 58 Let C' be a pALCN concept, and t the function defined above. Then,
C' is satisfiable if and only if t(C) is satisfiable.

It is known that satisfiability in deterministic modal mu-calculus is an EXPTIME-
complete problem ([121, 51, 106]). Since #(C') is clearly polynomial in the size of C
(assuming numbers in C' coded in unary), from the above theorem we can derive the
decidability and the computational complexity of reasoning with uALCN TBoxes.

Theorem 59 Satisfiability of pALCN concepts, satisfiability of pALCN TDBozes,
and logical implication in pALCN TBozes are EXPTIME-complete problems.

8.7 Discussion

We already noticed that fixpoint constructs allow for representing not only abstract
classes, but also several data structures extensively used in application programs. We
believe that this characteristic is an important step towards a satisfactory integration
of concept languages with both traditional and declarative programming systems.
Indeed the description logics introduced in this chapter provide powerful mecha-
nisms for data structure modeling. In particular, the properties stated in Section 8.4
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can be the base to formulate a notion of parametric concept®. For instance, the
expression (named dag_of[7])

uX . emptydag U (Z N Jare. T NVare. X)

where 7 i1s a formal parameter, denotes the class of DAGs whose nodes are left
unspecified. This class can be used in several ways in the TBox. For example, it can
be instantiated by binding the formal parameter to actual parameters, thus getting,
say, dag_of[student], dag_of[person], ..., which are concepts inheriting the properties
of dag-of[Z].

Our proposal of allowing for fixpoint construct explicitly in the formalism is shared
by a recent work independently carried out by Schild [109].° The main goal of that
work is to study both the expressive power and the computational complexity of
subsumption and satisfiability for TBoxes expressed in ALC (no fixpoint constructs),
that allow for mutually recursive definitions. To this end, a concept language is
defined that corresponds to a variant of the modal mu-calculus ([130]) in which mutual
fizxpoints are allowed but some restrictions on nested fixpoints are enforced. It is well
known that mutual fixpoints can be re-expressed by means of nested ones (see, for
example, [33, 109]). As a consequence of this observation it follows that both logics
introduced in this chapter, are actually more expressive than the one analyzed in
[109].

We conclude by noting that although the proposed language is very powerful, it
lacks the construct for tnverse roles which is needed for example to correctly capture
the notions of (finite) TREE, BINARY-TREE, etc. Indeed, to define the concept of
TREE (an EMPTY-TREE is a TREE; a NODE that has at most one parent, some
children, and all children are TREEs, is a TREE; nothing else is a TREE) we can
write tree = puX . empty_tree U (node N (< 1child™.T) N 3child. T NVehild. X . Notice
that the introduction of inverse roles does not pose any difficulty from the semantical
point of view; however, its impact on the reasoning method needs to be investigated.

#Note that parametric concepts can be introduced also in simpler logics which do not include
fixpoint constructs.
9In [109] number restrictions are not considered.
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Eliminating 7 from DI

In this appendix we consider two well known propositional dynamic logics, namely D
and DZ. D is the original propositional dynamic logic defined in [56], whereas DZ,
also defined in [56], extends D by including the construct to denote the “converse” of
a program.

We show that is possible to eliminate the “converse” operator from DZ, without
compromising the soundness and completeness of inference for it. Specifically we
present an elegant reduction of DZ formulae into D formulae that eliminates the con-
verse programs from a DZ formula but adds enough information so as not to destroy
its original meaning with respect to satisfiability, validity, and logical implication.
Notably the resulting formula, which is a D formula, is polynomially related to the
original one.

This reduction on the one hand helps in better understanding the nature of the
converse operator. On the other hand it puts the basis to build efficient -in practical
cases- inference procedures for DZ. In fact the reduction, being polynomial, allows
one to build efficient inference procedures for DZ, by translating DZ formulae into D,
and then running an efficient inference procedure for D. We discuss this issue further
at the end of the appendix.

The general technique used for deriving the reduction is analogous to the one
introduced in Chapter 3 and used to prove many results in this thesis. However the
present reduction is probably the best illustration of the technique, since every step
is intuitive, and proofs go through without major complexities, thus exhibiting the
key features of the technique in a neat way.

A.1 Reducing DI to D

We now show the reduction from DZ to D. More precisely, we exhibit a mapping ¢
from DZ formulae to D formulae such that, for any DZ formula ®, ® is satisfiable if
and only if (@) is satisfiable. The formula {(®), whose size is polynomial in the size
of @, is said to be the D-counterpart of ®.

We assume without loss of generality that in @ the converse operator is applied
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to atomic programs only. It is easy to check that any DZ formula can be transformed
in linear time in the size of the formula so that such an assumption is fulfilled.

Definition Let ® be a DI formula with the converse operator applied to atomic
programs only. We define the D-counterpart ((®) of ® as the conjunction of two
formulae, ((®) = (1(P) A (2(D), where:

e (1(®) is obtained from the original formula ® by replacing each occurrence of
P~ with a new atomic program P°, for all atomic programs P occurring in ®.

e (H(P)=[(PLU...UP,UPfU...UPZIGAN.. N, where Py, ..., P, are all
atomic programs appearing in ¢, and with one conjunct ¢ of the form

(¢ =[PI<P > N(¢=[PT]<P>0)
for every ¢ € CL((1(®)) and P € {Py,..., Pp}.

O

Theorem 60 Let @ be a DI formula, and ((®) its D-counterpart. Then {(P) is a
D formula, and its size s polynomially related to the size of ®.

Proof Straightforward. O

The purpose of (1(®) it to replace the converse of atomic programs (the only
converse programs) in ® with new atomic programs. FEach new atomic program P°¢
is intended to represent P~ (the converse of the atomic program P) in (1(®).

The purpose of (2(®) is to force the models M of {(®) so that, for all ¢ €
CL((1(®)), for all states s of M, if ¢ holds in s then all the P-successors of s have
a Pfsuccessor in which ¢ holds, and similarly all the P%successors of s have a P-
successor in which ¢ holds. We shall show that, as far as satisfiability (but also
validity and logical implication) is concerned, this allows us to faithfully represent
the converse of P by means of P°.

First of all, observe that if instead of (3(®), we imposed the two axiom schemas
(¢ any formula):

¢=[P]< P >¢
¢=[P]<P>¢

then the models of (1 (®) would be isomorphic to the models of ®. In fact, the above
axiom schemas are identical to the ones used in the axiomatization of DZ to force
programs P~ to be the converse of the programs P. However the resulting logics
would not be D but trivially DZ.

Instead, (2(®) can be thought as a finite instantiation of the above two axiom
schemas: one instance for each formula in C'L(®)!. Although imposing the validity of
such a finite instantiation does not suffice to guarantee the isomorphism of the models

1 Actually, ¢» (@) already takes into account the reduction from logical implication to satisfiability
of Theorem 1.
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of (1(®) and ¥, we show that it suffices to guarantee that {;(®) has a model if and
only if ® has a model.

It is a standard result that if a DZ-formula ® has a model, then it has a connected
model, where a model M = (S,{Rp}, ) of ® is a connected model, if for some ss € S:

o M ss =
o S={t|(ss,t) e (UpRpURp-)"}.

Let @ be either a DZ formula or a D formula. We call a structure M =
(S, {Rp}, M) a structure of ®, if every atomic program P and every atomic proposi-
tion A occurring in @ is interpreted in M, i.e. Rp appears in M, and A appears in
the co-domain of II, respectively.

In the following we use 7 as an abstraction for both P and P°. Moreover, w°
denotes P¢if # = P, and it denotes P if # = P°.

Let M = (S, {R-},1I) be a connected model of {(®). We call the c-closure of M,
the structure M’ = (8, {RL}, ') of {(®), defined as follows:

e 5'=S;
e RI.=RrU{(t,s)]|(s,t) € Rye}, for each atomic program = in {(P);
o II' =1I.

Note that in the c-closure M’ of a model M, each R of M’ is obtained from Rp of
M by including, for each pair (s,?) in Rpe, the pair (¢,s) in Rp, and similarly each
‘oo is obtained from Rpe by including, for each pair (s,t) in Rp, the pair (¢,s) in
'oe. As a result in the c-closure of a model each atomic program P°¢ is interpreted
as the converse of P.
The next lemma is the core of the results in the present section. Intuitively 1t says
that the c-closure of a connected model is equivalent to the original model wrt the

formulae in C'L(y1(9)).

Lemma 61 Let M = (S,{Rp}, 1) be a connected model of ((®), and M’ =
(8" {Rp} ') its c-closure. Then, for every s € S (= 8'), and every ¢ € CL((1(D)):

Mské iff M'sk 6.

Proof We prove the lemma by induction on the formation of ¢ (called formula
induction in the following).

e ¢ = A.
M,s |E Aiff A €T(s) iff, by construction of M’, A € T'(s) iff M’ s = A.
L ] d) = —|¢)/,

M,s | —¢" iflt M,s £ ¢ iff; by formula induction hypothesis, M’ s [ ¢ iff
M’ s |-
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o O =¢1 Ao

M,s = ¢g1Ag2iff M| s |= ¢y and M, s |= ¢ iff, by formula induction hypothesis,
M/,S ':¢1 and M/,S':¢)2 iﬂM/aS':¢lA¢2~

p=<r>dq.
=. M,s =< r > ¢ iff there is a path (s = sp,...,s,) € Pathsy(r) such that

M, s, |E ¢'. We show that M’ s =< r > ¢/, by induction on the length of the
path (called path induction in the following).

q = 0. In this case (s = sg) € Pathspy(r) and M,s = ¢'. Then, by Proposi-
tion 4, there exists a formula < ¢17;...;¢,7 > ¢’ such that:

— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

= M, s E< 175 0,7 > ¢

— < P17 0,7 > ¢ =>< > ¢ s valid.
By formula induction hypothesis, for every ¢, € {¢1,..., ¢y, ¢}, we have that
M,s|E ¢, it M',s = ¢,. Hence M' s E<r > ¢'.

q > 0. In this case, by Proposition 5, there exists a formula < ¢17;...;¢,7;7 ><
7’ > ¢’ such that:

all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢’;
— 7' € Post(r), and hence <1 > ¢’ € CL(< r > ¢') C CL((1(D));
— (s0,81) € Rax;
- M,sy E< v > ¢;
— (s1,...,8¢) € Pathsy(7');
— < P17 g T >< ' > ¢ =< r > ¢ is valid.
By formula induction hypothesis, for every ¢, € {¢1,...,¢,}, we have M, sy
¢ Ml M, 50 |E @0
By construction of M’ (sg, s1) € R, implies (sg,51) € RE.

Considering that < ' > ¢' € CL(< r > ¢') C CL(¢1(®)), by path induction
hypothesis, M, s1 E< v > ¢’ and (s1,...,5,) € Pathsy(r') implies M/, 51 E<
> ¢

Hence M’ s E<r > ¢'.

<. M',s E<r > ¢ iff there is a path (s = s, ..., s4) € Pathsy(r) such that
M’ s, E ¢'. We prove that M, s =< 7 > ¢', by induction on the length of the
path (called path induction in the following).

q = 0. In this case (s = sg) € Pathsy(r) and M’ s = ¢'. Then, by Proposi-
tion 4, there exists a formula < ¢17;...;¢,7 > ¢’ such that:
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— all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢';

— M' s E<¢175.. 50,7 > ¢

— < P17 0,7 > ¢ =>< > ¢ s valid.
By formula induction hypothesis, for every ¢, € {¢1,..., ¢y, ¢}, we have that
M' sl ¢, iff M,s = ¢,. Hence M,s =< r > ¢'.

q > 0. In this case, by Proposition 5, there exists a formula < ¢17;...;¢,7;7 ><
7’ > ¢’ such that:

all tests ¢;7 occur in r, and hence all ¢; are subformulae of < r > ¢’;
r € Post(r), and hence < v’ > ¢’ € CL(< r > ¢') C CL((1(D));

— (50,51) € RE;

- M s E<y > ¢/

— (81,...,8¢) € Pathsyp (r');

— < P17 g T >< ' > ¢ =< r > ¢ is valid.

By formula induction hypothesis, for every ¢, € {¢1,..., ¢4}, we have M’ sq E
¢ il M, sp = bs.

Considering that < ' > ¢' € CL(< r > ¢') C CL(¢1(®)), by path induction
hypothesis, M, s1 <’ > ¢' and (s1, ..., 54) € Pathsyp:(r') implies M, 51 E<
> ¢

Since (sg, 1) € RL, by construction of M’, we have that either (sg,s1) € R,
or (sp,s1) € Rr and (s1,s0) € Rye.

— If (so, 1) € Rx, then we can immediately conclude that M, sq < r > ¢'.
— If (s0,51) € Rr and (s1,50) € Rye, then considering that < v’ > ¢’ is
equivalent to a formula ¢ € CL({1(®)), by (2(P) we have that
M,siE<r > ¢ = [m)<nm><r > ¢

Thus there exists a state s € § (different from s1) such that (sp,s)) €
Rx and M,s] =< v > ¢'. Hence, also this case, we can conclude that
M,sp E<r>¢.

The previous lemma has the following consequence.

Lemma 62 Let M be a connected model of ((®) and M’ its c-closure. Then M’ is
a model of ((®) as well.

Proof Let M = (§,{R,}, 1) and M’ = (§',{R,},I"). By Lemma 61, for all
s€ S =5 and all ¢ € CL((1(D)):

M,skEo¢ if M' sk ¢.
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Furthermore, by definition of M’; (s,s') € R. implies (s',s) € R’... Thus, for all
se€ 8 and all ¢ € CL((1(P)) :

M sEé¢=[P]<P>¢
M sE¢=[Pl<P>¢.

Hence we can conclude that the thesis holds. O

We can now formulate the main result of this appendix.

Theorem 63 A DI formula ® is satisfiable iff its D-counterpart {(®) is satisfiable.

Proof =. Let MPZ = (872 {RBZ} TP%) be a model of ®. We define a structure
MP = (8P {RD},IP) of ((®) as follows:
* SD — SDI.
e RE = RB% and RE. = {(t,s) | (s,t) € REZ}, for all atomic programs P
occurring in @;
o II” =177,
It is easy to verify that M7 is a model of {(®).

<. Let MP? = (8P {RP} 1IP) be connected model of ¢((®) and MP =

(SD/, {R?/}, HD/) its c-closure. By Lemma 62, M’ is a model of {(®) as well.
Observe that, by definition, M’ is such that, for each atomic program =, REC/

(RE/)_. We define a structure MP% = (§8PZ {RBT} TP?) of ((®) as follows:

o SPT — g7'.
e RBL = RE/ for all atomic programs P occurring in ®;
o IIPZ = 117",

It is easy to verify that MP7 is a model of . O

A.2 Discussion

The logics D and DZ share many characteristics, and many results for D extend to DZ
with no difficulties. For instance the proofs of finite model property and decidability
for D in [56] are easily extended to DI, as well as the proof of EXPTIME-completeness
in [94]. However, while efficient — in practical cases — inference procedures have been
successfully developed for D, extending them to DZ has proved to be a difficult task,
and to the best of our knowledge has been unsuccessful till now.

To be more precise, the inference procedures for D based on the enumeration of
models such as those in [56, 94] can be easily modified to accommodate converse
programs. But these procedures are better suited for proving theoretical results than
for being used in practice, since they are inherently exponential, not only in the
worst-case.
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In contrast, inference procedures for D such as those in [93, 95], based on tableaux
methods, which are much more efficient in practical cases, are difficult to modify to
cope with converse programs.

The difficulty can be intuitively grasped by observing how these procedures at-
tempt to build a model of a D formula in order to check its satisfiability. They start
by introducing an initial state, and try to make it satisfy the formula. At first, reason-
ing is carried out locally, i.e. considering subformulae that involve state transitions,
simply as atomic propositions. Next, when no more local reasoning is possible, the
successor states, introduced by atomic programs, are generated, and the relevant for-
mulae that these states ought to satisfy are propagated. The two steps above are
recursively repeated for each successor state until certain termination conditions are
met. The key point is that once the successors of a given state have been generated,
no more reasoning involving that state will be carried out. Thus, to check satisfiability
of a D formula, a tableaux based procedure can be organized so as to work “forward”
only. This feature turns out to be essential in order to ensure efficient termination
criteria.

The presence of converse programs does not allow us to extend the above approach
in an obvious way. Indeed, reasoning on a state may not be completely carried out
locally, i1.e. without generating its successors, because, through converse programs,
some successors may require further properties to be satisfied by the original state.
Therefore, to check satisfiability of a DZ formula, a procedure has to work both
“forward” and “backward”, thus losing efficiency, since at any point reasoning may
involve the whole piece of model built so far.

Is there a way out of this problem? One possible solution is trying to single out
a small set of additional formulae to be checked in every state, that, in some sense,
anticipate the properties its successors may require at a later stage of the computation.

The reduction from DZ to D presented in this appendix singles out a set of addi-
tional formulae of the kind mentioned above. Hence the reduction can be used as the
basis to develop better reasoning procedure for PZ, on top of inference procedures for
D. In fact, the reduction allows us to build a satisfiability procedure for DZ by simply
translating a DZ formula to a D formula and then running on it a D satisfiability
procedure. Therefore, considering that the reduction is polynomial, by employing an
efficient satisfiability procedure for D we get an efficient satisfiability procedure for

DI.
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