EXPTIME Tableaux for ALC
(Extended Abstract)

Giuseppe De Giacomo' and Francesco M. Donini

I and Fabio Massacci'?

! Dip. Di Informatica e Sistemistica, Univ. di Roma I “La Sapienza”, Italy
{degiacomo,donini,massacci}@dis.uniromal.it
2 Computer Laboratory, Cambridge University, England

Fabio.Massacci@cl.cam.ac.uk

1 Motivations

We propose a tableaux calculus requiring simple expo-
nential time for satisfiability of an ALC concept C wrt a
TBox 7 containing general axioms of the form C'C D.

From correspondences with Propositional Dynamic
Logic (PDL) it is known that this problem is in EX-
PTIME [Pratt, 1978; Vardi and Wolper, 1986]. How-
ever, an algorithm directly derived from the methods
used to prove such a result would always require expo-
nential time and space even in simple cases, e.g. when
a simple model satisfying both 7 and C' can be easily
found.

On the other hand, proposed tableaux methods [Buch-
heit et al., 1993], which explore a space of candidate
models for 7 and C starting from simple ones, can take
advantage of such cases. However, there can be an ex-
ponential number of possibly exponential-size candidate
models. Hence, an algorithm based on tableaux methods
requires doubly exponential time in the worst case.

We devise a refined tableaux calculus that integrates
the techniques used in PDL with tableaux, thus achiev-
ing a tableaux-based procedure working in simple expo-
nential time. In a nutshell, traditional tableaux methods
close a branch only by “first principles” (atomic clashes),
whereas our enhanced tableau exploits previously proved
inconsistencies as additional lemmata to decide that a
branch can be closed without having to find the same
atomic clashes again.

For sake of brevity, we assume, wlog, that all concepts
are expressed in negation normal form, i.e. we form con-
cepts in ALC by means of the following syntax (A de-
notes a concept name, C and D arbitrary concepts, and
R a role name):

C,D == T|L|A|-A|CND|CUD|
VR.C'|3R.C
We express a concept inclusion C' C D in the TBox T

as 7C' U D = T where =C U D has also been expressed
in negation normal form.

2 The tableaux method

The search for a model corresponds to a search in an
AND-OR-tree, where OR nodes correspond to branch-
ing points in the tableau (i.e. alternative models) while
AND-nodes correspond to individuals and the links be-
tween them.

This structure is reflected by our notation in which
both branching points and links are explicit. Indeed
we use prefized formulae, that are triples of the form
(b|p:C), where:

e the segment b is a binary string representing the
choices made at the branching points;

e the element p is a string alternating integers (names
for individuals) and role names, which represents a
linked individual - e.g., the element 1R;2R46 rep-
resents the individual 6, which is an R4-filler of the
individual 2, which in turn is an R;-filler of 1;

e (' is an ALC concept.

Given two strings oy and o2 (either segments or el-
ements) o1 < oy means that oy is a prefix of o2, and
01 < 02 means that o; < 02 and o1 # 0s.

A tableau T is a set of prefixed formulae.

Given a tableau T and a segment b, we say that an
element p is present in b if there is a prefixed formula
(' | p: C) in T such that b’ < b, and p is new in b if it is
not present. We also say that a segment b is present in
T if there is a prefixed formula (b | p : C') in the tableau
for some p and some C. A segment by is mazimal for
another segment b in a tableau T if both by, and b are
present in 7" and by is the longest segment in 7" of which
bis a prefix. Formally b < bys and for all b’ it is by A b'.

The rules we use for our tableau are shown in Fig. 1.
We assume that rules are applied in the obvious way
without unnecessary repetitions. For instance rule AND
and SOME are never applied twice to the same prefixed
formula, and rule KB never adds twice the same prefixed
formula. Rule ALL can be applied again for every pRn
that is present but of course not twice for the same b
and pRn. In equal fashion we can apply rule OR again

(b|p:CND)
AND : ®lp:C)
(b|p:D)
(b|p:CUD)
OR: M0 [p: C) with bys maximal for b
(bml|p: D)
SOME : % with pRn new
ALL : % with pRn present in b
) : with p present in b
KB: W andC=TeT.

Figure 1: Rules for ALC Tableaux

for all maximal bys that are present but never twice for
the same bys. Moreover, once we have applied it for a
certain bys, we do not apply the OR rule to the same
formula with any other segment b, introduced at some
subsequent stages, such that by, < b'.

The traditional tree-like shape of a tableau can be eas-
ily reconstructed by using segments. Branches can be
reconstructed by collecting all formulae in all segments
sharing one given maximal segment. Branching points
are created by rule OR, where b0 corresponds to the left
branch and b1 to the right one. In this case, the condi-
tion for the OR rule simply becomes “apply the OR rule
only at the leaves of a subtree, and just once for each
formula and each subtree”.

A tableau T for a TBox 7 and a concept C' is a set of
prefixed formulae obtained by means of the rules above
starting from (0 | 1 : C') and using 7 in the rule K B.

Given a tableau T', we call concepts of an element p
along the segment b — denoted by concept (b | p) — the
set of concepts C such that (b’ | p: C) with ' < b is in
the tableau. Formally:

concept (b | p) def

{C|({¥|p:C)eT and b’ <b}

We say that an element p is a copy of an element ¢ in
a segment b if concept (b | p) = concept (b’ | ¢) for some
b'. An element is reduced if no rule with the exception
of rule SOME can be applied to one of the formulae in
which it appears, if also rule SOME cannot be applied
the element is fully reduced.

A segment b of a tableau T' is completed if all elements
present in b are reduced, and for each element p which
is not fully reduced a fully reduced copy of p is present
in the tableau.

Definition 2.1 (Inconsistent set) Let T be a tableau.
For every segment b and every element p, we say that the
set concept (b | p) is an inconsistent set (L-set) for T if
— inductively — one of the following conditions holds:

o cither 1 € concept (b | p)
or A,—A € concept (b|p) for some concept name
A (atomic clash);

e S C concept (b| p) for some L-set S;

e hoth concept (b0 | p) and concept (bl | p) are L-
sets;

e for some element q, with p < q, concept (b | q) is a
1 -set and concept (b | p) # concept (b’ | p) for all
b <b.

What characterises a L-set are indeed the concepts that
compose it and not the way it is constructed. Thus,
if concept(b|p) is a L-set then, obviously, all other
concept (b' | p') = concept (b | p) are L-sets too — this is
a particular case of the second condition in the previous
definition.

We envisage for the implementation an auxiliary data
structure in which we collect all the 1 -sets found at each
stage of the construction of the tableau.

Definition 2.2 (Closed segment) A segment b in a
tableau T is closed if there is an element p such that
concept (b | p) is a L-set for T.

Intuitively, a concept C' is satisfiable in a TBox 7 iff
there is a tableau T for 7 and C, containing a segment
b which is completed and not closed.

When more rules are applicable we follow the prefer-
ence criteria below, which are useful both to simplify the
proof of termination and to prove that only simple ex-
ponential time is needed in the worst case to terminate
the search for a complete, non-closed segment.

1. Apply rules to a formula (b | p: C) only if all ¢ < p
present in b are fully reduced.

Apply rule KB before other rules.
Apply rule AND before rule ALL.
Apply rule ALL before rule OR.

Apply rule OR before rule SOME.

With this criteria we can prove the following lemma,
in which we leave implicit the reference to tableaux.

RANEE I S

Lemma 2.1 (Stability) Let p be an element present in
a segment b. If for all formulae (b | p: C) the rule AND
has been applied, then further rule applications do not
change concept (b | p) any more.

Note that by applying OR to a formula (b|p: C), we
may add formulae involving the same element p but dif-
ferent (longer) segments b0, bas1. Since we apply rules
to an element p only after its predecessors ¢ with ¢ < p

have been fully reduced, it is never the case that rule
ALL applied to ¢ introduces a formula involving element
p. Rule ALL may only introduce elements of the form
pR;n.

To complete the construction of our tableau we only
need the conditions for termination: we do not reduce
anymore the prefixed formulae of the segment b and el-
ement p iff one of the following two conditions holds:

1. pis a copy in segment b and concept (b | p) will not
change;

2. concept (b| p) is a L-set.

Note that the preference between rules we propose is
not essential; other proof strategies may also be devised.
However there are some minimal requirements to guar-
antee EXPTIME behaviour and termination.

To guarantee termination it is important to check
whether concept (b | p) is not a copy before reducing
prefixed formulae of the form (b |p:3R.C) using rule
SOME. Our preference criteria guarantee that elements
obey the property “once a copy, always a copy”. How-
ever, any other preference criteria satisfying the same
property would do. If one wants to use strategies se-
lecting rules and formulae by some heuristics, then one
can introduce the notion of “temporary copy”: check
whether concept (b | p) is a copy and freeze the reduc-
tion of these formulae; temporary copies can be re-
activated when new relevant formulae are introduced.

To achieve the exponential-time upper bound, the
strategy must guarantee the condition for termination
plus two other ones. First, it must check whether
concept (b | p) is an already found L-set before applying
rule OR (branching) or applying rule SOME (generating
new elements) to formulae with b and p. Second, if a
set concept (b | p) is found to be a L-set, then Def. 2.1
must be applied and all new 1-sets thus generated must
be stored for future checking.

3 Correctness and Complexity

The correctness and completeness of the method is a
simple adaptation of the proofs of [Buchheit et al., 1993].
A little care is necessary for closure of a branch due to
the presence of a L-set, since we discard a branch before
actually finding an atomic clash.

Theorem 3.1 Let b be a segment in a tableau T. If an
element p is present in b such that concept (b |p) is a
1 -set for T, then there is no model for b.

This can be proved by a simple induction or a “cut-and-
paste” argument: each L-set is eventually generated by
the presence of some atomic clash so when we meet a -
set we paste down — renaming elements — the previously
found segments with the atomic clash responsible for the
inconsistency of the set. This padding argument is then

applied in the induction step of the proof. For instance if
concept (b | p) is a L-set because both concept (b0 | p)
and concept (bl | p) are L-sets, then we can paste below
b both segments b0 and b1 (and recursively for b0 and bl
if they do not contain an atomic clash) thus obtaining a
corresponding “traditional” closed tableau.

The proof that the worst-case complexity is indeed
optimal is somehow more intricate; we sketch it briefly.

In the following we denote by n the size of T plus
C, which we assume coincides with the number of sub-
concepts occurring in 7 and C'. We use ¢ as an arbitrary
constant (> 1).

Proposition 3.1 The size of every element present in
a segment is O(2°").

Indeed, there are no more that 2™ sets of sub-concepts
of 7 and C. If an element is longer that 2™ then it is a
copy of one of its prefixes. See [Buchheit et al., 1993].

Proposition 3.2 The size of every segment is O(2°").

In fact, the size of the longest segments is increased by
the application of rule OR. The number of sub-concepts
of the form C' U D is at most n. Hence for each element
there are at most n possible applications of rule OR.
Since there are O(2°") elements, the size of a segment is
O(n - 2°™).

We say that concept (b | p) is an internal L-set for T
if both the segments b0 and b1 appear in T'.

Proposition 3.3

Let T be a tableau. FEvery concept (b | p) which is an
internal L-set for T is different from any other internal
1 -set concept (V' | q).

Indeed if this was not the case, the “second detected”
would not have been an internal 1-set. — as a result of
the second condition for termination.

Proposition 3.4 The number of internal 1-sets in a
tableau T is at most 2™.

This follows from the previous proposition and the fact
that there are at most 2™ possible L-sets (since there are
2" sets of sub-concepts of 7 and C).

Proposition 3.5 The number of segments that are
present in a tableau T is O(2°7).

To prove this proposition define the internal segments as
the segments b such that b0 and b1 occur in 7. Then the
number of internal segments is at most the number of in-
ternal L-set, while the number of non-internal segments
is the same as the one of internal segments.

Lemma 3.2 The size of a tableau T is at most O(2°™).

Indeed, the number (size) of formulae (b | p: C) in T is
bounded by the number (size) of segments (O(2°)), the
number (size) of elements (O(2°")) an the number (size)
of sub-concepts (O(n)).

As a consequence of the above lemma, we get our main
result:

Theorem 3.3 The proposed tableaux method termi-
nates and returns an answer in simple exponential time.

4 Discussion

In this paper we have presented a tableaux calculus for
satisfiability of a concept wrt a TBox (and hence also
for subsumption in a TBox) which works in worst-case
exponential time. In fact we do not need to change sub-
stantially the “normal” construction used by tableaux
which has proven to be reasonably effective in practice
[Bresciani et al., 1995]. The key point is to make use
of an auxiliary data structure which is used store sets
of concepts whose conjunction was already proved to be
inconsistent.

Our main ideas behind our procedure can be used to
device EXPTIME tableaux procedures for various ex-
tension of ALC. In particular, our calculus can be easily
modified to deal with an ABox as well.

References

[Bresciani et al., 1995] P. Bresciani, E. Franconi, and
S. Tessaris. Implementing and testing expressive de-
scription logics: Preliminary report. In Alexander
Borgida, Maurizio Lenzerini, Daniele Nardi, and Bern-
hard Nebel, editors, Working Notes of the 1995 De-
scription Logics Workshop, Technical Report, RAP
07.95, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, pages 131-139,
Rome (Italy), 1995.

[Buchheit et al., 1993] Martin Buchheit, Francesco M.
Donini, and Andrea Schaerf. Decidable reasoning
in terminological knowledge representation systems.
Journal of Artificial Intelligence Research, 1:109-138,
1993.

[Pratt, 1978] V. R. Pratt. A practical decision method
for propositional dynamic logic. In Proceedings of

the Tenth ACM Symposium on Theory of Computing
(STOC-78), pages 326-337, 1978.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre
Wolper. Automata-theoretic techniques for modal log-
ics of programs. Journal of Computer and System
Sciences, 32:183-221, 1986. A preliminary version ap-
peared in Proc. of the 16th ACM SIGACT Symp. on
Theory of Computing (STOC-84).

