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Abstract

A Description Logic (DL) system is charac-
terized by four fundamental aspects: the set
of constructs used in concept and role ex-
pressions, the kind of assertions allowed in
the TBox (assertions on concepts) and the
ABox (assertions on individuals), and the in-
ference mechanisms for reasoning on both the
TBox and the ABox. Most of the research
done in the last decade made several simplify-
ing assumptions on the above aspects. How-
ever, the recent interest in DLs exhibited in
many application areas (databases, software
engineering, intelligent access to the network,
planning, etc.) calls for investigating DL sys-
tems with full capabilities. The work pre-
sented in this paper represents a step in this
direction. We present a sound, complete, and
terminating (in worst-case EXPTIME) infer-
ence procedure that solves the problem of
reasoning in a DL system with the follow-
ing characteristics: it comes equipped with a
very expressive language, it allows the most
general form of TBox assertions, and it takes
into account instance assertions on both con-
cepts and roles in the ABox.

1 INTRODUCTION

The research on Knowledge Representation has always
paid attention to languages for the representation of
classes and relationships. Description Logics (DLs)
have been studied in the last decade as a formaliza-
tion of these languages (see (Woods & Schmolze, 1992;
Donini, Lenzerini, Nardi, & Schaerf, 1996; Borgida
& Patel-Schneider, 1994; Baader, Hollunder, Nebel,
Profitlich, & Franconi, 1992)). They allow one to rep-
resent a domain of interest in terms of concepts and
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roles, where concepts model classes of individuals, and
roles model relationships between classes. Starting
with atomic concepts and atomic roles, which are sim-
ply described by a name, complex concepts and roles
can be denoted by expressions built using suitable con-
structs. Concepts and roles are given Tarskian seman-
tics in terms of sets and binary relations, respectively.

A knowledge base expressed in a DL is constituted by
two components, traditionally called TBox and ABox.
The TBox stores a set of universally quantified asser-
tions (inclusion assertions) stating general properties
of concepts and roles. For example, an assertion of this
kind is the one stating that a concept represents a spe-
cialization of another concept. The ABox comprises
assertions on individual objects (instance assertions).
A typical assertion in the ABox is the one stating that
an individual is an instance of a certain concept.

Several reasoning tasks can be carried out on a knowl-
edge base of the above kind. The simplest form of
reasoning involves computing the subsumption rela-
tion between two concept expressions, i.e. verifying
whether one expression always denotes a subset of the
objects denoted by another expression. A more com-
plex reasoning task consists in checking whether a cer-
tain assertion (either an inclusion or an instance as-
sertion) is logically implied by a knowledge base.

A DL system is then characterized by four aspects:

1. The set of constructs constituting the language
used for building the concepts and the roles men-
tioned in the TBox and in the ABox.

2. The kind of assertions that may appear in the
TBox.

3. The kind of assertions that may appear in the
ABox.

4. The inference mechanisms provided for reasoning
on the knowledge bases expressible in the system.



It follows that the expressive power and the deduc-
tion capabilities of a DL system depends on the var-
ious choices and assumptions that the system adopts
with regard to the above aspects. As to the fourth as-
pect, we concentrate in this paper on inference mecha-
nisms that are sound and complete with respect to the
standard semantics, although other choices are possi-
ble (see (Patel-Schneider, 1989)).

Most of the basic research work on the computational
complexity of DLs has been carried out in a simplified
context where both the TBox and the ABox are empty
(see (Donini, Lenzerini, Nardi, & Nutt, 1991a, 1991b;
Nebel, 1988)). This is not surprising, since these works
aimed at studying the language constructs in isolation,
with the goal of singling out their impact on the com-
plexity of subsumption between concept expressions.

Other papers dealt with logical implication of ABox as-
sertions under the simplifying assumption of an empty
TBox, again with the goal of studying how the various
language constructs influence the reasoning on individ-
uals (see (Donini, Lenzerini, Nardi, & Schaerf, 1994;
Schaerf, 1994)).

More recently, there has been a strong interest in the
problem of reasoning with TBox assertions in isola-
tion (see (De Giacomo & Lenzerini, 1994a; Calvanese,
De Giacomo, & Lenzerini, 1995; Nebel, 1991; Baader,
1991; Schild, 1994)). One important outcome of this
line of research is that, limiting the expressive power
of the language with the goal of gaining tractability
is useless in this setting, because the power of TBox
assertions alone (when no limitations on cycles in the
TBox are imposed) generally leads to high complexity
in the inference mechanisms. For this reason, these in-
vestigations often refer to very powerful languages for
expressing concepts and roles.

The complete setting has been the subject of some in-
vestigations only recently. For example, in (Buchheit,
Donini, & Schaerf, 1993) a DL system with both the
TBox and the ABox is studied with a relatively pow-
erful language (not including inverse roles) . However,
results about reasoning on knowledge bases with both
the TBox and the ABox are still rare.

We observe that such results would be very important
in the light of the renewed interest in DLs that we
find in disparate application areas. Indeed, DL sys-
tems are now advocated as suitable knowledge repre-
sentation systems in many contexts, such as informa-
tion systems (Catarci & Lenzerini, 1993), databases
(Borgida, 1995; Bergamaschi & Sartori, 1992; Sheth,
Gala, & Navathe, 1993), software engineering (De-
vambu, Brachman, Selfridge, & Ballard, 1991), in-

telligent access to the network (Levy, Rajaraman, &
Ordille, 1996; Blanco, Illarramendi, & Goni, 1994),
action representation (Artale & Franconi, 1994), and
planning (Weida & Litman, 1992). Many of the above
papers point out that the whole capabilities of a DL
system (expressive language, TBox and ABox asser-
tions) are often required in the corresponding applica-
tion fields (see also (Doyle & Patil, 1991)).

The work presented in this paper represents a funda-
mental step in this direction. We present a sound,
complete, and terminating inference procedure that
solves the problem of reasoning in a DL system with
the following characteristics:

1. It comes equipped with a very expressive lan-
guage, comprising all classical concept forming
constructs, plus several role forming constructs
(including inverse roles), and the most general
form of number restrictions.

2. It allows the most general form of TBox asser-
tions, without any limitations on the presence of
cycles.

3. It allows expressing instance assertions on both
concepts and roles in the ABox.

The most important contributions of our work can be
summarized as follows:

e We present the first decidability result for a DL
system combining inverse roles, number restric-
tions, and TBox and ABox assertions simultane-
ously.

e We present the first technique for reasoning on
ABox assertions in a DL system that does not
enjoy the finite model property (a knowledge base
in our system may have only models with infinite
domains).

e Our technique is optimal with respect to the
complexity class of the inference problem (EX-
PTIME), and has the same computational com-
plexity (in the worst case) as the procedure for
reasoning in a TBox expressed in the basic lan-
guage ALC (Schmidt-Schaufl & Smolka, 1991).

The paper is organized as follows. In Section 2, we
present the DL language we are interested in, called
CZQ. In Section 3 we illustrate the various features
of CZTQ by means of some examples. In Section 4 we
briefly discuss the correspondence between DLs and
propositional dynamic logics (PDLs) which is at the
base of our results on the reasoning procedures for



CZQ. In Section 5 we introduce some technical notions
that will be needed to get our results. In Section 6,
we describe our technique for computing logical impli-
cation over knowledge bases built using CZQ. Finally,
in Section 7 we draw some conclusions.

2 CIQ SYNTAX AND SEMANTICS

In the following, we focus on the description logic CZQ
which has been studied in (De Giacomo & Lenzerini,
1995; De Giacomo, 1995). The available constructs for
concept and role expressions in CZQ are specified in
Figure 1.

Note that CZQ is a very expressive language, compris-
ing all usual concept constructs, including the most
general form of number restrictions, the so called qual-
ified number restrictions, and a rich set of role con-
structs, namely: wunion of roles Ry U Ra, chaining of
roles Ry o R», reflexive-transitive closure of roles R*,
inverseroles R, and the identity role id(C') projected
on C' also called test in the following.

The semantics of CZQ interprets concepts as subsets
of a domain, and roles as binary relations over such
a domain. Formally, an interpretation T = (AT,-T)
consists of a domain of interpretation AT, and an in-
terpretation function - mapping every atomic concept
A to a subset of AZ, and every atomic role P to a
subset of AT x AT. The interpretation function is sys-
tematically extended to complex concepts and roles
according to the semantics of the constructs given in
Figure 1. In the figure, S denotes the cardinality of
the set S, and (R?)* stands for i repetitions of RT —
ie., (RT)? = (id(T))*, and (RT)" = R? o (R?)*~1.

A CZQ knowledge base K = (T,.A) is constituted by
two components: a TBox 7 and an ABox A.

The TBox is a finite set of inclusion assertions of the
form:

Ci CC

where C and C> are concepts. In the following we use
C = D as an abbreviation of C C D and D C C.

The ABox is a finite set of instance assertions of the
form:

C(a)

where C' is a concept, and « is an individual name, or
of the form:
P(aia ag)

where P is a primitive role and «a;, a; two individuals
names. An interpretation 7 maps individual names to
individuals in A7, in such a way that different individ-
ual names denote different individuals. Therefore we

do not make any distinction between individuals and
their names in the following.

An interpretation 7 is a model of an inclusion assertion
C, C Cs if Cf C C¥. An interpretation Z is a model
of an instance assertion C'(a) if a € CZ, and is a model
of P(a,ay) if (e, ;) € PT. An interpretation Z is
a model of knowledge base K if 7 is a model of each
inclusion and instance assertion in IC. K is satisfiable
if it has a model. K logically implies an (inclusion or
instance) assertion o, written K |= o, if o is satisfied
by every model of K. A concept C' is satisfiable in
if there is a model Z of K such that C% # (). Observe
that satisfiability of a concept C' in a knowledge base
K can be reformulated in terms of logical implication
as K £ C C L, and in terms of satisfiability of a
knowledge base as the satisfiability of K U {C(anew)},
where a0, in an individual not mentioned in /.

3 EXAMPLES

Figure 2 shows a CZQ knowledge base K = (T, A),
concerning directories and files. The TBox 7 is made
by four assertions.

The first inclusion assertion states that every
dir_child of an instance d of Directory is either a
directory or a file, and has exactly one dir_child™
predecessor, which is d itself. In other words, the
fragment of dir_child starting from an instance of
Directory has a structure similar to a tree, except
that cycles are not prevented.

The second inclusion assertion states that instances
of File have no children, and that are distinct from
instances of Directory.

The third assertion states that the instances of
FileSysRoot are directories which have no dir_child-
predecessor.

The forth assertion states that every instance of
FileSysElement reaches an instance of FileSysRoot
in a finite number of steps through a chain of
dir_child~—. It can be seen that such constraint,
together with the first assertion, prevents cycles to
appear in dir_child-chains involving instances of
FileSysElement.

The ABox A can be thought of as divided into parts.

The first part is made of instance assertions concerning
the individuals a, b and c, and their dir_child rela-
tionships. It expresses that a has two children, namely
b and c, and that a is in turn a child of c (i.e. there is
a cycle involving a and b).

The second part concerns the individuals MyDir,



H Construct Name Syntax Semantics H
atomic concept A AT C AT
top T AT
bottom L ]
conjunction Cy M Cy ctnct
disjunction Cy U Cy ctuct
negation -C AT —CT
existential quantification R.C {s|3s'.(s,s') € RT and s' € CT}
universal quantification VR.C {s|Vs'.(s,s') € RT implies s' € CT}
qualified number (>nQ.C) | {s|#{s".(s,s") € QT and s’ € CT} > n}
restrictions (<nQ.C) | {s|t{s'.(s,s") € QT and s’ € E*} < n}
atomic role P PIC AT x AL
union R; U Ry R URZ
chaining Ry o Ry RToRZ
reflexive-transitive closure R* U;so(RY)
test id(C) {(s,s) | s € CT}
inverse R- {(s,s") | (s',5) € RT}
basic role Q=P| P

Figure 1: Syntax and semantics of CZQ concept and role constructs.

TBox:

ABox:

File C (Vdir_child.l) M —Directory

FileSysRoot L Directory 1Vdir_child™.L
FileSysElement = 3(dir_child™)*.FileSysRoot

Directory C Vdir_child.((Directory LIFile) M (< 1dir_child™.T))

dir_child(a,b)
dir_child(a,c)
dir_child(c,a)

dir_child(MyDir, Research)
dir_child(MyDir, Teaching)
dir_child(Research, CIQ.tex)
FileSysElement (CIQ.tex)
File(CIQ.tex)

Figure 2: Example: directories and files.

Teaching, Research and CIQ.tex. It expresses that
MyDir has Teaching and Research as children, and
that CIQ.tex is a child of Research. Moreover CIQ.tex
is both a FileSysElement and a File.

From K we can make the following inference:
K |=FileSysElement C DirectoryllFile.

Let us prove the above logical implication. By
the fourth assertion in the TBox, every instance
s of FileSysElement reaches an instance s' of
FileSysRoot in a finite (but indeterminate) number
n of dir_child™ steps. We proceed by induction on
n. If n = 0, then s = s’. Hence s is an instance of
FileSysRoot and so is an instance of Directory. If
n = k+1 > 0, then let s” be the immediate dir_child-

predecessor along the chain. By induction hypothesis,
s either a directory or a file. Since it has a dir_child-
successor, namely s, it must be a directory and hence
all is children, including s are either a directory or a
file.

With minimal modification, this proof applies to the
following logical implication as well:

K = FileSysElement C V(dir_child™ )*.Directory.
The knowledge base K logically implies also that a, b,
and c are not FileSysElement, i.e. for &« = a,b, c:

K = —FileSysElement(a).

To prove the above logical implication we may rea-
son as follows. First observe that none of a, b, and ¢



can be an instance of FileSysRoot, since all of them
have an immediate dir_child-predecessor. Now let,
for example, @ = b. Suppose that b is an instance of
FileSysElement. By the fourth assertion in the TBox,
b must be connected by a finite chain of dir_child™
to an instance of FileSysRoot. Also, as we saw be-
fore, the fact that b is an instance of FileSysElement
implies that all dir_child-predecessors of b are in-
stances of Directory. It follows from the first asser-
tion in the TBox that each of the individuals a, b, and
¢ has at most one dir_child immediate predecessor,
and therefore, there are no dir_child-predecessors of
b other than a and c. Since neither a nor ¢ can be
an instance of FileSysRoot, we have a contradiction.
Hence we can conclude that neither a, b, or ¢ are in-
stances of FileSysElement.

With similar reasoning we can prove that, for g =
MyDir, Teaching, Research:

K = FileSysElement(f3)

and also that MyDir and Research are instances of
Directory, while Teaching is either an instance of
Directory or an instance of File. In addition, we can
prove that it is consistent that MyDir is an instance of
FileSysRoot, though it is not logically implied.

Observe that in the proofs above, the use of induc-
tion is essential. Thus, the automatic reasoning pro-
cedure for CZQ must include either implicitly or ex-
plicitly such form of induction. The need for induc-
tion comes, as shown in the examples, from the pres-
ence of the reflexive-transitive closure of roles, which
allows the specification of properties of objects that
are distant a finite but indeterminate number of steps
away (through a chain of roles). This ability testifies
the non-first-order nature of our logic. CZQ is indeed
a subset of first order logic + fizpoints (see (De Gi-
acomo & Lenzerini, 1994b) and not of the pure first
order logic, as most description logics are.

Finally, note that the knowledge base described in Fig-
ure 2 enjoys the finite model property. However, it
easy to build a CZQ knowledge base with only infinite
models. For example consider the following knowledge
base:

C (< . < .
TBox: TC (< 1lsuce.T)M(L 1suce™.T)
InfSeq C Jsucc.InfSeq

ABox: | (InfSeqMVsucc™.L1)(Init)

The first assertion constrains the role succ and its in-
verse to be functional.

The second assertion constrains the instances of
InfSeq to have its immediate successor in InfSeq as

well, i.e. each instance of InfSeq either is a (not neces-
sarily immediate) successor of itself, or has an infinite
chain of successors.

The instance assertion states that the individual Init
is an instance of InfSeq but does not have any prede-
Cessor.

Now, since Init has no predecessor, it cannot be a
successor of itself, so being an InfSeq it must have
an infinite chain of successor. Hence all models of the
knowledge base are infinite.

Observe that the existence of knowledge bases that ad-
mit only infinite models makes the reasoning methods
based on the direct search and construction of a model
(as the tableaux-based method in (Donini et al., 1994))
infeasible for CZQ. Any reasoning procedure for CZQ
based on the construction of a model, may at most
construct a finite structure that represents a model (a
pseudo-model), in the sense that it contains enough
information so that, in principle, it can be expanded
(maybe not univocally) to a model.

4 CORRESPONDENCE WITH PDLs

In the next sections, we will describe the procedure
for reasoning in CZQ-knowledge bases. Such proce-
dure is based on the inference technique that the au-
thors developed for the description logic CZQ, mainly
based on the correspondence between DLs and Propo-
sitional Dynamic Logics (PDLs) (Schild, 1991; De Gi-
acomo & Lenzerini, 1994a; De Giacomo, 1995). PDLs
are modal logics developed to specify and reason about
program schemas in terms of states and state transi-
tions caused by (running) a program (Fischer & Lad-
ner, 1979; Kozen & Tiuryn, 1990).

The correspondence between DLs and PDLs is due to a
substantial similarity between the interpretation struc-
ture of the two kinds of logics: individuals in DLs cor-
respond to states in PDLs, links between individuals
correspond to state transitions, concepts correspond to
formulae, and roles correspond to programs. In fact,
most constructs in DLs have a counterpart in known
PDLs as shown in Figure 3. In (Schild, 1991), using
the correspondence, many new results on DLs were
obtained from known results on PDLs. In particular,
from the decision procedures for Converse PDL, the
first reasoning procedures for DLs that include inverse
and TBoxes were devised.

Notably, neither qualified number restrictions nor
ABoxes have a counterpart in PDLs.

Indeed the only form of number restrictions known in
PDLs is that of assuming all atomic programs (not



[ DLs | PDLs |
atomic concept A atomic proposition A
top T true tt
bottom L false ff
conjunction Ci 1 Cy conjunction o1 A P2
disjunction Ci U Cy disjunction d1V P
negation -C' negation )
existential quantification JR.C diamond (“some runs ...”) <r>¢
universal quantification VR.C box (“all runs ...”) [r]¢
quali.ﬁe.d number (>nQ.0) (deterministic PDLs) ( assumption: deterministic )
restrictions (£nQ.0) atomic programs
atomic role P atomic program P
union Rl (] RQ choice ri Urs
chaining Ri0oRs sequence 1372
reflexive-transitive closure R* reflexive-transitive closure r*
test id(C) test @7
inverse R~ converse rT
basic role Q —
inclusion assertions Cy C O, axioms (valid formulae) 0]
instance assertions C(a) | P(ay,as) — —

Figure 3: Correspondence between DLs and PDLs.

their inverse) to be deterministic, thus getting the so
call Deterministic PDLs. As an aside, Deterministic
PDLs that include also the converse operator do not
have the finite model property and indeed the reason-
ing procedures developed for these logics are based on
the construction of automata on infinite trees.

As for ABoxes, in PDLs, they would roughly corre-
spond to a partial specification of an actual evaluation
of a program. However, such kind of specification have
not been studied yet.

The research in (De Giacomo & Lenzerini, 1994a, 1995;
De Giacomo, 1995) has tackled these two aspects.

In (De Giacomo & Lenzerini, 1994a) the EXPTIME-
decidability of CZ.F, i.e. CZQ with number restrictions
limited to unqualified functional restrictions (on both
atomic roles and their inverse), was established. In
(De Giacomo & Lenzerini, 1995; De Giacomo, 1995)
this result was extended to CZQ. The reasoning pro-
cedures developed in these works do not construct au-
tomata on infinite trees, but are based on a polynomial
encoding of a CZQ TBox into a CZF TBox, which is
in turn encoded into a CZ-concept (corresponding to
a Converse PDL formula. Observe that, from CZQ to
CZ, we go from a logic which does not have the finite
model property to a logic that does have it.

As for ABoxes, the best known results about reasoning

on knowledge bases constituted by both a TBox and an
ABox, are two EXPTIME reasoning procedures pre-
sented in (De Giacomo & Lenzerini, 1994a; De Gia-
como, 1995) for CZ and CQ (the logic obtainded from
CIQ by disallowing inverse roles), respectively. Notice
that both logics have the finite model property.

Finally we remark that in CZQ, qualified number re-
strictions are allowed only for basic roles (i.e. atomic
roles and their inverse). This is a disign choice due
to the fact that allowing a generic role to appear in a
qualified number restriction would have made the logic
undecidable. Indeed it suffices to observe that the un-
qualified functional restriction (< 1(R; U R3).T) is in
fact a form of role value map', which leads to unde-
cidability (e.g. see (Schmidt-Schauf, 1989)).

5 TECHNICAL PRELIMINARIES

We assume, without loss of generality, U,V, < to be
expressed by means of —,M,3, >, and the inverse role
operator to be applied to atomic roles only?.

The Fisher-Ladner closure (Fischer & Ladner, 1979) of
a CZQ concept C is denoted by CL(C) and is defined

!This observation is originally due to Franz Baader.

2We recall that the following equations hold: (R: o
Ry)™ = Ry oRy, (RiUR2)” = Ry URy, (Ri)” =
(BT)", id(C)™ = id(C).



inductively as the smallest set of concepts S containing
C and such that:

CincCye S implies C1,Cs € S

-C'e S implies C' € S

C'eS implies =C" € S (if C" # -C")
(>nQ.C")e S implies C' € S

dR.C' € S implies C' € S

AR, o Ry.C" € S implies AR;.AR,.C' € S
AR U R,.C" € S implies AR,.C’,3R>.C' € S
dRrR*.C' € S implies AR.AR*.C" € S
Fid(C").C" € S implies C" € S.

Intuitively, CL(C) is analogous to the set of subcon-
cepts in simpler logics: It comprises the concepts that
play a direct role in establishing the interpretation of
C. The size of CL(C) is linearly bounded by the size
of C (cf. (Fischer & Ladner, 1979)). By definition, if
C' € CL(C), then CL(C'") C CL(C).

We can extend the above notion to that of the Fisher-
Ladner closure of a knowledge base by simply taking
the union of the Fisher-Ladner closures of all concepts
appearing in the knowledge base.

Let us denote the empty sequence of roles by the role
e, and define 3e.C' = C and Ve.C = C. Given a role
R, we call Pre(R) and Post(R) the two sets of roles
defined inductively as follows (Q = P | P™):

Pr(@  ={5,Q}

Pre(R; o Rg) ={Ri 0o R} | R, € Pre(Rg)}U Pre(R;)
Pre(R; U Rg) =Pre(R;)U Pre(Ry2)

Pre(R%) ={R{o R | R} € Pre(R;)}

Pre(id(C))  ={,id(C)}

Post(Q)  ={5,Q}

Post(R; o Rg) ={R} o Ry | R} € Post(R;)} U Post(Ryz)
Post(R; U Rg)=Post(R;) U Post(R2)

Post(R?%) ={R] o R} | R| € Post(R;)}
Post(id(C)) ={e,id(C)}.

Roughly speaking, Pre(R) and Post(R) are the sets
formed by those roles that are “prefix” and “postfix”
of the role R, respectively. The size of both Pre(R)
and Post(R) is polynomial in the size of R.

For the roles in Post(R) the following two properties

can be easily proven (see (De Giacomo, 1996, 1995)):

e Let dR.C be a concept. For all roles R’ €
Post(R), 3R'.C € CL(3R.C).

e Let dRy....3R;.C' be a concept. For all roles
R' € Post(R; o ... 0 Ry), there is a formula

D e CL(3R;....
lent to AR'.C.

3R;.C) such that D is equiva-

A path in an interpretation Z is a sequence (So, - . ., Sq)
of elements of AT (¢ > 0), such that for each i =
1,...,q, (si=1,8;) € QI for some Q = P | P~. The
length of (so,. .., sq) is g. Intuitively a path describes
the sequence of individuals which are met by following
arole (or the inverse of a role) in a given interpretation.
We inductively define the set of paths Pathsz(R) of a
role R in an interpretation Z, as follows, where (@ =
P|P7):

Pathsz(Q) =Q?
Pathsz(R; U Rg)=Pathsz(R;) U Pathsr(R2)
Pathsz(R1 o Rg) ={(s0,---,Su,---,5q) |
(S0 .-, Su) € Pathsz(R;) and
(Suy---,8q) € Pathsz(Rg)}
Pathsz(R*) ={(s) | s AI} U (U;s0 Pathsz(R"))
Pathsz(id(C)) ={(s) | s € C*}.

We say that a path (sp) in Z satisfies a concept C
which is not of the form IR.C if sy € CZ. We say that
apath (so, ..., S,) inZ satisfies a concept C of the form
AR;.---3R;.C", where C' is not of the form IR'.C",
if (so,...84) € Pathsz(R; o---0o R;) and s, € C'Z.

The following two propositions describe the basic prop-
erties of paths and can be proven by induction on the
structure of the role R (see (De Giacomo, 1996, 1995)).

Proposition 1 Let T be an interpretation and IR.C
a concept such that: s € (AR.C)T, (s) € Pathsz(R),
and s € CT. Then there exists a concept Jid(C;) o
..0id(Cy).C, with g >0, such that:

e all tests id(C;) occur in R,
CL(3R.C);

and hence C; €

e s€(Fid(Cy)o...0id(Cy).C);

e Jid(Cy)o...0id(Cy).C CAR.C is valid.
Proposition 2 Let Z be a structure, and AR.C a for-
mula such that: s € (3R.C)T, (s = sg,...,8) €
Pathsz(R) with ¢ > 0, s, € CT. Then there exists a
formula 3id(Cy)o...0id(Cy) 0 Q.3R'.C, with g > 0,
such that:

o all tests id(C;) occur in R, and hence C; €

CL(3R.C);

e R' € Post(R) and hence AR'.C is equivalent to D
for some D € CL(3R.C);



(s0,51) € QF;

s1 € (AR.C)L;

(s1,...,5,) € Pathsz(R');

3id(C; )o. . .0id(C,)o Q-(AR'.C) C IR.C is valid.

6 REASONING IN CZQ
KNOWLEDGE BASES

In this section, we illustrate the technique for reason-
ing on CZQ knowledge bases. The basic idea underly-
ing our method is as follows: checking the satisfiability
of a CZQ knowledge base K = (T, .A) is polynomially
reduced to checking the satisfiability of a CZQ knowl-
edge base K' = (7', A"), whose ABox A’ is made of
a single instance assertion C'(a). In other words, the
satisfiability of K is reduced to the satisfiability of the
concept C wrt the TBox 7' of the resulting knowl-
edge base. The latter reasoning service can be realized
by means of the method presented in (De Giacomo &
Lenzerini, 1995; De Giacomo, 1995), and is known to
be EXPTIME-complete. Thus, by means of the reduc-
tion, we get an EXPTIME algorithm for satisfiability
of CZQ knowledge base, and hence for all reasoning
services on CZQ knowledge bases.

Definition Let X = (T, .A) be a CZQ knowledge base.
We call the reduced form of K the CZQ knowledge base
K'= (T, A" defined as follows (a new atomic concept
A; is introduced for each individual «; (i=1,...,m) oc-
curring in A).

o A" = {(3create.A; M...M3create. Ay,)(g)}, where
g is a new individual (the only one present in A")
and create is a new atomic role:

o 7' is formed by T} and 7],

aux-*

- T¢ = T UTy, where 77 = T, and T} is

made of one inclusion assertion:
A, CC

for each instance assertion C'(a;) € A, two
inclusion assertions:

A; C3P.A; N (< 1P.A))
AJ‘ CdP .A; N (S 1P7.Ai)

for each instance assertion P(ay,a;) € A,
and one inclusion assertion:

Ai T Mizjm A

for each individual «; occurring in A.

— 7). is made of one inclusion assertion (u
stands for (P U...UP, UP, U...UP, ),
where Py,..., P, are all the atomic roles in
T¢):

(Az M C) E ‘v’u.(ﬁAi U C)

for each A; occurring in 7} and C such that:
1. C € CL(Ty)

2. C = 3R.C" with AR.C" € CL(T})

3. C=3(R 0Q).A; with R' € Pre(R), Q =

P | P~,and R, P, A; occurring in CL(T}.)

where, R is defined inductively as follows
Q=P|P):

* @ =Qoid(N;=4,;);

* RioRy =Ry o Ry;

RiURy = Ry U Ry;

R =R ;

id(C) =id(C).

* % ¥

O

Lemma 3 Let K be a CZQ knowledge base, and K' its
reduced form. Then the size of K' is polynomial with
respect to the size of K.

Let us comment on how the reduced form K' =
(T', A") relates to the original knowledge base K =
(T, A). First, observe that the ABox A’ is used to
force the existence of the only individual g, connected
by the role create to one instance of each A;. It
can be shown that this allows us to restrict the at-
tention to models of K’ that represent graphs con-
nected to g, i.e. models 7 = (AT,.T) of K' such that

AT ={g}U{s' | (g,5) € create’ o (Up(PT U P )"

The TBox 7' consists of two parts T¢ and 7.,.. T¢
is made of the original inclusion assertions in 7 plus
what we may call a “naive encoding” of the original
ABox A as inclusion assertions, which form 7. In-
deed, each individual o; is represented in 7} as a new
atomic concept A; (disjoint from the other A;’s), and
the instance assertions in the original ABox A are rep-
resented as inclusion assertions in 7 involving such
new atomic concepts. However 7, alone does not suf-
fice to represent faithfully (wrt the reasoning services
we are interested in) the original knowledge base, be-
cause an individual «; in K is represented by the set
of instances of A; in K'. In order to relate the sat-
isfiability of K’ to the satisfiability of K, we must be
able to single out, for each A;, one instance of A; rep-
resentative of a;. For this purpose, we need to add a
new part, called 7/,., to T'. Roughly speaking, 7/,
contains inclusion assertions of the form:

(Az M C) E \Vlu.(ﬂAi U C)



which say that if an instance of A; is also an instance
of C,a new then every instance of A; is an instance
of C'. Observe that if we could add an infinite set of
assertions of this form, one for each possible concept
of the language (e.g. by a kind of axiom schema), we
could safely restrict our attention to models of X' with
just one instance for every concept A; (i =1,...,m),
since there would be no way in the logic to distinguish
two instances of A; one from the other. What we show
below is that in fact we do need only a finite (polyno-
mial) number of such inclusion assertions (as specified
by T7...) in order to be able to identify, for each i, an
instance of A; as representative of «;. This allows us
to prove that the existence of a model of K’ implies
the existence of a model of K.

The individuals ¢ of a model Z of K’ such that ¢ €
AT are called aliases of the individual a; in Z. The
assertions in 7, allow us to prove the lemma below.
Lemma 4 Let K be a CTQ knowledge base, K' its re-
duced form, and T a model of K'. Let t be an alias
of a; in Z, and let AR.C € CL(T(). If there is a
path from t that satisfies AR.C' and contains N aliases
t=t1,...,tn, of i = ;y,...,q;, respectively, then
from every alias t' of a; in T, there is a path that sat-
isfies AR.C' and contains N aliases t' = t|,...,tly of
Qg sy Qiy s B0 the same order as ti,...,tN.

Proof By induction on the number N of aliases, mak-
ing use of the inclusion assertions in 7,,, with C' of
the form (2) and (3). O

We further restrict our attention to tree-like models
only, without loss of generality. Indeed, any model Z of
K' can be easily transformed into a tree-like model, by
simply unfolding 7 as follows: Put ¢ as the root of the
tree; for each @-successor (Q = P | P7) of g add it to
the tree as a Q-child of the node; continue recursively
to process the children of g, and so on. Observe that
the tree-like model obtained may be infinite.

Note that, by virtue of A’, in the tree-like model, for
each «a; occurring in K, g has one create-successor s, ,
as a child, such that s,, € A;. Moreover, each s,, has
a single P-successor s € AJI for each P(a;, ;) € K and
a single P-predecessor s' € A7 for each P(ay,a;) € K,
by T.

Given a tree-like model Z = (AZ,.Z) of K', we define
a new interpretation 7' = (A%, .Z') of K' as follows

° AII = {g}U{S € AI | (g,s) € Rcreateo(UP(RPU
Rp))™}

o createl = Ripeare and PT = RpN (AII X AI’) for
each atomic role P occurring in K'

o AT = ATN AT for each atomic concept A occur-
ring in K'

where

® Rereate = {(9,54,) € create’ | a; fori =
1,...,m}

e Rp = (P — ({(5as,8) € PT | s €

AJI and P(a;,a;) € K} U {(sq,,8) € (P7)* |
s' € Al and P(aj,05) € K})) U {(Sa;5q;) |
P(ai,aj) € ’C}

Observe that in Z', for every atomic role P, the number
of P-successors of all individuals in AZ, is the same
as in Z. The following lemma holds for Z'.

Lemma 5 Let K be a CIQ knowledge base and K'
its reduced form. Let T be a model of K' = (T', A"),
and I' be the interpretation obtained from I as above.
Then, for every C' € CL(T{) and for every x € AT

zec” if and only if x € CT.

Proof By induction on the formation of C' (called
concept induction in the following). The only complex
case is C = JR.C". Here we show the if-direction of
such a case (the only-if-direction is similar, yet slightly
simpler).

If € (3R.C"), then there is a path (z =
To,...,T,) € Pathsz(R) such that z, € C'Z. We prove
z € (3R.C")T', by induction on the number k of aliases
along the path (zo,...,z,), different from s,, for any
i (we call this induction, path induction).

Case k = 0. In this case, for all the states z; along
the path, z; € AZ'. By applying Proposition 2 ¢ times
and Proposition 1 once, we can conclude that there
exists a concept I((id(Co,1) o ...0id(Cp,g,)) 0 Q1 ©
ceo(id(Cq—q,1)0...01d(Cq—y ,gqu)) 0 Qqo(id(Cy,1)0
...014d(Cyq,)))-C" with g; > 0, such that:

o all tests id(C; ;) occur in R, and hence Cj; €
CL(3R.C") C CL(T});

o (zi1,m)€Qf fori=1,...,¢;
e 3((id(Cp,1)o...0id(Cy,g,))0Q10...0(id(Cy—1,1)0

v 0 id(Cyg gy ) 0 Qq o (id(Cop) o ... o
id(Cy4,)))-C' € AR.C" is valid.



By concept induction hypothesis we have that, for all
Cij, zi € CH iffz; € CF;, and 2, € C7iff z, €
C'T". By construction of 7', (z;—_1,z;) € QF implies

(zi_1,2;) € QF . Hence z € (3R.C")T .

Case k > 0. Let (xo,...,zq) = (zo,--.,Tu,-.-Tq)
where z,, such that z, € AJZ, is the first alias, dif-
ferent from s,, for any 4, along the path (zq,...,z,).
By applying Proposition 2 w times only, we can con-
clude that, there exists a formula 3((id(Cp 1) o0 ...0
id(Cpg,))0Q10...0>id(Cy—1,1)0...0id(Cq—1,g._,))0
Qu).(3AR'.C") with ¢g; > 0, such that:

o all tests id(C; ;) occur in R, and hence Cj; €
CL(3R.C") C CL(TL);

e R' € Post(R), and hence the concept IR'.C' is
equivalent to D for some D € CL(3R.C’) C
CL(Tg);

o (zi1,m)€Qf, fori=1,...u

.,Zq) € Pathsz(R');

. @

e 3((id(Cp,1)o...0id(Cp,g,))0Q10...0(id(Cy—1.1)0
c0id(Cy1,4,.,)) © Qg).(3R'.C") C IR.C' is

valid.

Since the path (zy,...,z,) contains k aliases, by
Lemma 4, from each alias of a; there is a path sat-
isfying 3R’.C" which goes through exactly the “same”
k aliases in the same order. Let (sq, = @y,,...,2;) be
such a path. This path contains less than k aliases,
excluding z!,. Thus, by path induction hypothesis,
sa;, € (AR.C"T'.

Now, by construction of Z', (z,_1,7,) € QL im-
plies (Zy_1,5q;) € QL thus z,_; € (3Q..(3R'.C"))T .
Whereas, by formula induction hypothesis, for all C; ;,
T; € C’iI,j iff z; € CzI; Hence considering that for i =
1,...,u—1, (wi_l,mi) S Qzl implies (mi_l,wi) S Qill,
we get z € (AR.C")T . O

We can now state the main theorem on reasoning in
CZQ knowledge bases.

Theorem 6 A CZQ knowledge base K = (T, A) is
satisfiable iff its reduced form K' = (T', A') is satis-
fiable. Thus, satisfiability of CZQ knowledge bases is
EXPTIME-complete.

Proof = We can extend a model 7 of K to a model
of K' by adding the individual g to AT, and letting
create’ = {(g,a;) |i=1,...,m}.

< If there exists a model Z of K’ then by Lemma 5
we can construct an interpretation Z' such that (1)
T' satisfies all inclusion assertions in 7; (2) to each
individual «; occurring in K, it corresponds exactly
one individual s,, of Z’, and for such s,, we have
S, € CT for each instance assertion C'(a;) in K, and
(a;,aj) € PT for each instance assertion P(i,a;).
Hence 7' satisfies K.

Thus, the satisfiability of K is polynomially reducible
to satisfiability of its reduced form K', i.e. to satisfia-
bility of a concept (namely the concept in A’) in a CZQ
TBox (namely 7'), which is known to be EXPTIME-
complete (De Giacomo & Lenzerini, 1995; De Gia-
como, 1995). O

7 DISCUSSION AND
CONCLUSION

We have presented a new technique for reasoning in a
DL system with full capabilities, showing that reason-
ing in this logic is EXPTIME-complete. The technique
is based on a careful encoding of instance assertions
into special TBox assertions, that treat individuals as
mutually disjoint atomic concepts, and add suitable
constraints by exploiting the capability of CZQ to ex-
press complex properties of role chains. We stress the
importance of these additional constraints: indeed, a
naive translation of individuals into atomic concepts,
like the one implicitly done in Crassic (Borgida &
Patel-Schneider, 1994), would not be sufficient for our
purposes.

Consider the knowledge base K constituted by the
TBox and the ABox shown in Figure 4.

The first inclusion assertion constrains the role succ
and its inverse to be functionl.

The second inclusion assertion states that every indi-
vidual is linked by a (succ U succ™)-chain to some
instance of C. In fact the existence of a single instance
of C for each (succ U succ™)-connected part of the
model is sufficient to satisfy the above constraint.

The third inclusion assertion states that the instances
of C have a succ-successor in D and a succ-predecessor
in —D.

The assertions in the ABox express that a has b as
succ-successor, and b has a as succ-successor.

The knowledge base K is unsatisfiable. Indeed, both
a and b must be connected by a (succ U succ™)-chain
to an instance of C, hence either a or b must be an
instance of C. Suppose that b is an instance of C. Then
its succ-successor, which is a, is an instance of D, and



TBox: ABox: naive ABox encoding
To(<1 T <1 - T A C dsucc.B
C (< 1succ. )I_l(*_ succ .7T) succ(a, b) B C Jsucc .A
T C 3(succ U succ™)*.C succ(b, a) C3
C C dsucc.D M dsucc.—D ’ BL succ;A
- A C Jsucc™ .B

Figure 4: Example: naive ABox encoding fails.

its succ-predecessor, which is again a, is an instance
of =D. But this is a contradiction. The conclusion is
reached if we assume that a is an instance of C.

Now consider the knowledge base K' obtained from K
by substituting the assertions in the ABox with their
naive encodings (see Fig. 4, where A and B are dis-
joint). It is easy to see that K' is satisfiable. Indeed,
to see this, it suffices to consider the following inter-
pretation: AT = a,a’,b,b’, a,a’ € A%, b,b’ € BT,
(a,b),(b,a’),(a’,b'),(b',a) € succ’, and such that
be ¢’ aeD? and a' € -DT.

Observe that if we include the assertions:
(A [l D) C Vu.(—|A ] D)

for all D € CL(K), then the above interpretation is not
a model anymore.

By virtue of the characteristics of the encoding pre-
sented in this paper, it can be shown that the technique
can be extended to even more powerful DLs, such as
CATS and CVL (see (De Giacomo & Lenzerini, 1995;
Calvanese et al., 1995)), which include role conjunc-
tion and a limited form of role-value map. Here, we
restricted our attention to CZQ for the sake of simplic-
ity.

In the future, we aim at extending our analysis to the
ONE-OF construct (by which we can form a concept as
a set of individuals). Although we know that reasoning
is still EXPTIME decidable if we add ONE-OF and
get rid off of either inverse roles or number restrictions
(De Giacomo & Lenzerini, 1994a; De Giacomo, 1995),
the decidability of reasoning on CZQ knowledge bases
extended with ONE-OF is still an open problem.
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