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Abstract� This paper presents a pre
xed tableaux calculus for Proposi�
tional Dynamic Logic with Converse based on a combination of di�erent
techniques such as pre
xed tableaux for modal logics and model checkers
for mu�calculus� We prove the correctness and completeness of the calcu�
lus and illustrate its features� We also discuss the transformation of the
tableaux method �naively NEXPTIME� into an EXPTIME algorithm�

� Introduction

Propositional Dynamic Logics �PDL� were used in ��� to describe the properties
of states reached by programs during their execution� and to model the evolution
of the computation process ��	� �
�� Over the years� propositional dynamic logics
have been proved to be a valuable theoretical tool in Computer Science� Logic�
Computational Linguistics� and Arti�cial Intelligence �e�g� ��� 
� 
� �	� �
� ���
����� Many inference procedures� decidability and complexity results� rely on
research done within PDLs�

In this paper we present a tableaux calculus for the propositional dynamic
logic Converse�PDL �CPDL� ���� obtained from the basic logic PDL by adding
the converse of a program whose running is obtained by �running the original
program backwards�� Typically� the converse is used for preconditions e�g� �����
can be interpreted as �before running program �� property � must hold��

There are several applications of PDLs where the ability of denoting converse
programs is essential� For instance using PDLs as a core reasoning paradigm of
Knowledge Representation Systems� Several recent papers �starting from �����
point out a strong correspondence between PDLs and a family of class�based
knowledge representation formalisms� Description Logics ��	�� These logics rep�
resent the world in terms of objects grouped into classes� relations between classes
and a number of constructs for properties of classes and relations� The correspon�
dence is based on a mapping between the models of a description logic knowledge
base� and the models of a particular formula of a propositional dynamic logic� so
that classes correspond to propositional letters� relations correspond to atomic
programs� instances of classes correspond to states� and instances of relations



correspond to state transitions� Thus� inference procedures for CPDL can be
exploited as the reasoning core of very expressive description logics �and PDLs�
by using polynomial reductions from the inference problem of such logics to the
inference problem of CPDL ��� ��� This was one of the main motivation that
has led us to look into inference procedures for CPDL�

CPDL shares many characteristics with the basic PDL� and many results
for PDL extend to CPDL without di�culties� For instance the proofs of �nite
model property for PDL in ��� are easily extended to CPDL� as well as the
proof of EXPTIME�completeness in ����� However� e�cient � in practical cases
� inference procedures have been successfully developed for PDL� but their
extension to CPDL has proved to be a di�cult task and unsuccessful till now
�to the best of our knowledge��

To be more precise� inference procedures based on models enumeration ��� ���
or on automata on in�nite trees ��
� have been extended to accommodate con�
verse of programs� Yet� these procedures are better suited for proving theoretical
results than for being used in applications� Tableau procedures for PDL ���� ����
which are much more e�cient in practice� have never been extended�

The key point is that a tableau procedure for PDL can be organised so that�
once the successors a state have been generated� no more reasoning involving this
state is necessary� In the case of a CPDL direct extensions of PDL procedures
may require reasoning with the whole piece of model built so far� In ���� Pratt
says �We do not have a practical approach to this di�culty with converse� and
our �practical� procedure therefore does not deal with converse��

Our solution is to use labelled deduction ��� to develop modal pre�xed tableaux
��� �� ��� for CPDL� In particular we use Single Step Tableaux ���� �� since they
make it possible to reason locally both in �forward� and �backward� directions
to accommodate the converse� The presence of the iteration operator imposes
further constraints which lead to the notion of ignorable branches� branches
which are modally consistent but where some iterated eventualities are never
ful�lled�

The di�culties due to the combination of iteration and converse are solved
by singling out few additional formulae that �anticipate� the properties that a
state may require from its predecessors at a later stage of the computation�

The next section introduces preliminaries and proof theory in presented in
Sect� �� Examples are shown in Sect� �� soundness and completeness are given in
Sect� � and the transformation of NEXPTIME tableaux into EXPTIME algo�
rithm is sketched in Sect� 
� Finally Sect� � concludes the paper�

� Preliminaries

We brie�y present the basic notions on CPDL �see ��	� �
� for surveys��
Let A be a set of atomic programs and P a set of propositional letters� the

language of CPDL is constructed as follows� where P � P and a � A�

�� � ��� P j �� j � � � j h�i�
�� � ��� a j ��� j � � � j �� j �� j ��



Other connectives� such as � � � and ���� can be seen as abbreviations � e�g�
���� � �h�i��� Without loss of generality� we restrict the application of the
converse operator to atomic programs by using equivalences such as ������ �
���� ��� or ����� � ����� etc� We use the metavariable A to denote either an
direct or converse atomic program� assuming that �a���

�
� a� In the sequel P�Q

are propositional variables and �� � formulae whereas a� b� c atomic programs
and �� � programs� 	 or 
 are the formulae to be proved valid or satis�able�

CPDL semantics is based on transition systems �Kripke structures� ��	�� a
model is a pair hS� Ii where S is a non empty set of states and I an interpretation
such that for every atomic program a � A it is aI � S 	 S and for every
propositional letter P � P it is P I � S�

The interpretation I is extended to CPDL formulae and programs as follows�

�� � ��I � �I 
 �I

����I � S � �I

�h�i��I �
�
s j �s� � S s�t� hs� s�i � �I and s� � �I

�
�����I �

�
hs� s�i j �s��hs� s��i � �I and hs��� s�i � �I

�
�� � ��I � �I � �I

����I � re�exive transitive closure of �I

����I �
�
hs�� si j hs� s�i � �I

�
����I �

�
hs� si j s � �I

�
In the sequel we write sj�� for s � �I �

De�nition�� A CPDL formula 	 is satis�able i� there is a model hS� Ii where
�	�I is not empty� A formula 	 is valid if for every model hS� Ii it is �	�I � S�

The Fisher�Ladner closure of a formula 	 ��� �	� is de�ned inductively as�

� 	 � CL�	��
� if � � CL�	� then �� � CL�	�� provided � does not start with ��
� if ��� � � � or h�i� are in CL�	� then �� � � CL�	��
� if h���i� � CL�	� then h�ih�i� � CL�	��
� if h� � �i� � CL�	� then both h�i� and h�i� are in CL�	��
� if h��i� � CL�	� then � � CL�	��
� if h��i� � CL�	� then h�ih��i� � CL�	��

The notion of Fisher�Ladner closure is closely related to the notion of set of
subformulae in modal logics� to establish the truth value of a formula 	 in a
model it is su�cient to check the value of the formulae in CL�	� for every state
of the model ��� �	�� Both number and size of the formulae in CL�	� are linearly
bounded by the size of 	�

� Proof Theory

Pre�xed tableaux for CPDL use pre�xed formulae� i�e� pairs h� � �i where � is
an alternating sequence of integers and atomic �direct or converse� programs
called pre�x and � is a CPDL formula�



� �
� � � � �

� � �
� � �

� �
� � ��� � ��

� � �� j � � ��
dneg �

� � ���

� � �

Fig� �� Propositional tableaux rules

�seq� �
� � �h���i�

� � �h�ih�i�
hseqi �

� � h���i�

� � h�ih�i�

�test� �
� � �h��i�

� � �� j � � ��
htesti �

� � h��i�
� � �
� � �

�choice� �
� � �h� � �i�

� � �h�i�
� � �h�i�

hchoicei �
� � h� � �i�

� � h�i� j � � h�i�

Fig� �� Rules for sequence� choice� and test

De�nition�� The set of pre�xes � is the least set such that � � �� and if
� � �� A � A �A� and n is an integer� then �hAin � ��

Intuitively � �names� the sequence of atomic programs �or path� to reach the
state where � holds� For instance the pre�x �ha�i�hbi�hai�hc�i� corresponds to

the transition s�
a

 s�

b
� s�

a
� s�

c

 s��

We use the standard initial subsequence ordering v � i�e� impose � � �hAin
for every �� A and n� and take the transitive and re�exive closure�

The de�nition of branch and tableau are similar �but the rules� to pre�xed
tableaux for modal logics ��� �� ���� A tableau is a rooted �binary� tree where
nodes are labelled with formulae� and a branch is path from the root to a leaf�
A pre�x is present in a branch� if there is a pre�xed formula with that pre�x
already in the branch� and it is new if it is not already present� In the sequel B
denotes a branch and T a tableau� Intuitively a branch is a �tentative� model
for the initial formula� Propositional rules are also standard �Fig� ���

The rules for sequence� choice� and test are also simple �see Fig� ���

Pre�xed CPDL formulae starting with an atomic program a or a� must take
into account not only the classical division of possibility�like formulae hai� and
necessity�like formulae �a�� but also the presence of the converse operator� Thus
we use both forward and backward rules for necessity like subformula� as shown
in Fig� � �where the subscript F stands for forward and B for backward��

The rules for iteration combine pre�xed tableaux with the techniques de�
veloped by ���� for model checking in modal mu�calculus� based on the intro�



��A� �
� � hAi�

�hAin � �
with �hAin new in the branch

	F �A� �
� � �hAi�
�hAin � ��

with �hAin already present in the branch

	B�A� �
�hAin � �hA�i�

� � ��
with � already present in the branch

Fig� �� Transitional rules for CPDL

��� �
� � �h��i�
� � Yj

Yj


� �h��i�

Yj new h�i �
� � h��i�
� � Xi

Xi


� h��i�

Xi new

Yj �
� � Yj
� � ��

� � �h�i�Yj

Xi �
� � Xi

� � � j � � ��
j � � h�iXi

Fig� �� Rules for ��iteration operator

duction of constants for �xpoints� �Fig� ��� Intuitively the procedure works as
follows� when an iterated eventuality h��i� is found� introduce a new propo�
sitional constant Xi� set a side condition Xi

�
� h��i�� and use the Xi�rule

for further reductions� Thus we need two sets of propositional letters distinct
from the set P � X for iterated eventualities and Y iterated necessities� � The
use of � � �� in the right part of the Xi rule is semantically motivated by
the de�nition of h��i� as a least �xpoint� Such a de�nition implies that ��steps
are performed while �� is true� stopping as soon as � becomes true� Indeed
h��i� � h����� ���i� � hwhile �� do �i� is valid in CPDL ����

These constants are introduced to detect the presence of � loops which never
ful�ll h��i�� i�e� where � never holds� In this way we can eliminate the� �and its
transitive closure� introduced by Pratt�s tableaux ����� to relate pseudo models
to actual models�

Remark� The presence of the converse operator �� combined with the �� operator
is harder than the simple combination of the two operators� although 
B is
enough for CPDL without iteration and Xi�Yj rules are enough for PDL� their
combination is not enough for full CPDL�

� A formula h��i� can be expressed in modal mu�calculus as �X
� � h�iX while a
formula ����� can be expressed as 	X
�����X� where �X
��X� and 	X
��X� denote
the least 
xpoint and the greatest 
xpoint of the open formulae ��X��

� Indeed the last one is not really necessary�



LB�A� �
���

�hAin � hA�i� j �hAin � �hA�i�

�hAin is already present and � is a formula of CL�
�

Fig� �� Look behind analytic cut

Intuitively one can use �� to construct events which take place after unbounded
delays such as ha�iP � The operator �� can be used for late discoveries which
impose a property on the current state after the execution of a program� such
as hai�a���P � The combination of �� and �� can create �bombs� which� after an
unbounded number of iterations� tell us that the initial state was inconsistent�
A simple unsatis�able formula is P � ha�i��a�����P �

So� we use a restricted analytic cut LB ��look behind�� which is presented in
Fig� �� where 	 is the formula to be proved valid or satis�able�

Since the cut is analytic and its application strongly restricted� its introduc�
tion does not destroy the decidability of the calculus �although its naive and not
necessary application may lead to an explosion of the search space��

Once we have set the rules� we focus on three kinds of branches� contradictory
�we found a states where P and �P are supposed to hold�� ignorable �we didn�t
�nd contradictions but we couldn�t ful�ll some iterated eventualities� and open�

In the sequel� if B is the branch of a tableau we indicate with B�� the set of
pre�xed formulae in B labelled with the pre�x �� i�e� �

B�� � f� j h� � �i � Bg�

De�nition�� A pre�x � is reduced if ��rules are the only rules which have not
been applied to formulae of B��� It is fully reduced if all rules have been applied�

De�nition�� A pre�x �� is a copy of a pre�x � if �i� B�� � B���� and �ii�
both have the form ��hAin and ���hAin

� for the same atomic program �direct or
converse� A� In case two Xi� Xj are present in both pre�x we assume them equal
if they stand for the same iterated eventuality i�e� Xi

�
� h��i� and Xj

�
� h��i��

This de�nition of a copy is more restrictive than the corresponding de�nition
one needs for simple PDL ����� Intuitively a copy is �a di�erent name for the
same state� since they �i� have the same properties �dynamic formulae� and �ii�
can be reached by the same program� This requirement is not necessary for PDL
�one only looks forward� whereas in CPDL the past does matter�

De�nition	� A tableau branch B is ��completed if �i� all pre�xes are reduced�
and �ii� for every �� which is not fully reduced there is a �shorter� copy � which
is fully reduced�

The intuition behind � completeness is that we use ��rule to create a new state
only if we have not seen it before�



De�nition
� A tableau branch B is contradictory if it contains both � � P and
� � �P � for some propositional variable P and some pre�x ��

De�nition�� A branch B is ignorable if and only if

�� it is ��completed�

�� it contains a pre�xed formula h� � Xii where Xi
�
� h��i��

�� for every pre�x �� such that h�� � Xii is in B� then h�
� � ��i is also in B�

This de�nition can be better explained by the following property�

Proposition�� If a branch B is ignorable due to some Xi
�
� h��i�� then there

is a pre�x �� in B such that �� � Xi is in B� �� � �� is in B and �� is a copy
of a shorter pre�x ���

Intuitively one may describe this property has follows� we found an eventuality
h��i� in the branch� we tried to ful�ll it with Xi�rules� however the left hand
branches �those with � � �� were always discarded� �nally we met a pre�x ��
with the same formulae of a previously seen pre�x� so we concluded that we
could never ful�ll the eventuality in this branch and gave up�

This is clearly the critical stage of the proof procedure �discarding bad
branches� and in CPDL we must be sure that two pre�xes are identical also
for what regard the past� This is the only place where we need to use cut�

Criterion� The rule LB�A� is applicable i� the pre�xed formula �hAin � Xi

occurs already in the branch for some Xi
�
� h��i�� �hAin � �� occurs� and

�hAin is a copy of some other pre�x�

So before discarding a branch with Defn� � we must be sure that cut has been
already applied to �� and �� of Prop� �� Thus also their past is identical �at least
wrt the Fisher�Ladner closure��

De�nition
� A branch is open if it is ��completed and neither contradictory
nor ignorable�

De�nition��� A tableau is closed if all branches are either contradictory or
ignorable� A tableaux is open if at least one branch is open�

De�nition��� A validity tableaux proof for the formula 	 in the logic CPDL�
i�e� �CPDL 	 is the closed tableau starting with h� � �	i�

In a dual way one can de�ne a satis�ability proof�

Remark� For satis�able formulae a model can be easily extracted from the open
branch of the tableau� with the same procedure of the completeness proof�



��� � 	 �
�
haiQ � �ha � bih�a���iP � � �P

�
negated formula

��� � 	 haiQ � �ha � bih�a���iP � � ��P boolean simpli
cation
��� � 	 haiQ from ��� by �

��� � 	 �ha � bih�a���iP � � �

��� � 	 ��P � � �

��� � 	 P from ��� by dneg

��� � 	 �haih�a���iP from ��� by 
��
��� � 	 �hbih�a���iP � � �

��� �hai� 	 Q from ��� by ��a�
���� �hai� 	 �h�a� ��iP from ��� by �F �a�

���� �hai� 	 Y Y
�
� �h�a� ��iP from ���� by 
��

���� �hai� 	 �P from ���� by Y

���� �hai� 	 �ha� i�Y � � �

���� � 	 Y from ���� by �B�a�
���� � 	 �P from ��� by Y

���� � 	 �ha�i�Y � � �

� Contradiction between���� and ���

Fig� �� Tableaux proof of haiQ � �ha � bih�a���iP �� �P

� Examples and Intuitions

A simple example of a tableaux proof for CPDL of the valid formula haiQ �
�ha � bih�a���iP �� �P is shown in Fig� 
 �numbers are for references��

The intuitions behind �copied pre�xes� and ignorable branches can be ex�
plained with model theoretic concepts� by comparing tableau rules expansions to
a visit of a �counter� model and pre�xes to booking devices �names for states��

Whenever we �nd two pre�xes �� and �� which have the same formulae
�i�e� the same properties� we may conclude that they are essentially identical
�model M in Fig� ��� Thus� there is no need to expand the formulae of ��� we

� y �A

��
��

� s s s ss s� �� � y �A

��
��

� s s s ss s� ���� ��

� y �A

��
��

� s s s ss s� �� � y �A

��
��

� s s s ss s� ���� ��

� y �A

��
��

� s s s ss s� �� � y �A

��
��

� s s s ss s� ���� ��

Mbad

Mgood

M

� ��A

�

�

� ��A

Fig� 	� Bad and good models



have already done it for �� �by Defn� �� and if we didn�t �nd a contradiction
before we will not �nd it now� We can avoid the visit of the potential in�nite
path starting from �� by changing the model� according whether the branch is
ignorable or not�

If the branch is not ignorable then we introduce a loop back to ��� thus
dropping the in�nite path starting from �� �modelMgood in Fig� ���

If the branch is ignorable then there is an eventuality h��i� on � that� after a
certain number h�i�steps where �� always holds� arrives to an �identical� state
��� So we can change the model to Mbad �Fig� ��� and conclude that we cannot
ful�ll the eventuality in any number of ��steps�

These are the ideas behind the correctness theorem �model Mbad� and the
completeness theorem �modelMgood�� In the tableaux for PDL by Pratt ���� ���
these two cases where called successful and unsuccessful loop�

Question ��� Why di�erent Xi are introduced each time the same h��i� is met
with a di�erent pre�x if later on we identify them in the loop checking�

We use the propositional constant Xi
�
� h��i� as an automatic bookkeeping

system� if we introduce � � Xi at a certain stage and� later on� we �nd another
�� � Xi for a longer �� we already know� without further checks that there
is some h�i�steps from � to ��� Thus� if �� � � is present in the branch� we
can immediately conclude that the initial occurrence of the eventuality h��i� is
ful�lled� If we reused the same variable Xi for a di�erent pre�x ��� � h��i�� then
we could not anymore detect whether �� follows from � or from ���� Detecting
if two pre�xes are connected by some h�i�steps has the same complexity of the
original problem since � may be extremely complicated�

If we �nd out that Xi
�
� h��i�

�
� Xj this means that they are just di�erent

names for the same property� if a state �� ful�ls the same formulae of �� plus
Xi then it clearly can also ful�ll the Xj occurring in �� and thus we can identify
the two states �modelMgood of Fig� ���

For instance try the following �without LB�A�� since there is no converse��

	SAT
�
� P � �b���hbiP � ha�i�P � 	UNSAT

�
� 	SAT � �b�� a��P

Question ��� Is cut really necessary�

The di�culty is ������� which imposes constraints on past computations� For
instance check the following formulae without using cut�


UNSAT � P � ha�i��a�����P

SAT � P � ha�i��P � �a���P � �a�� a���P � � �� ��a��n��P �

where we abbreviate a�� � � � � a� for n times with �a��n� The second formula
is satis�able� while the �rst is not� In both cases� if one expands the tableau
without using cut� after the �rst n applications of the Xi rule the resulting
tableau will be ignorable� However� after n� � steps� the tableau for 
SAT has
one non�ignorable branch whereas the one for 
UNSAT remains ignorable�



This problem disappear if one uses the uneven version of tableau rules for
disjunctive formulae �usually called lemma generation�� For instance using � �
� � � implies � � � or � � ��� �� So we propose the following conjecture�

Conjecture� Look behind cut is eliminable for the validity checking of CPDL
if lemma generation is used�

Remark� It is easy to prove that cut can be eliminated if the initial formula 	
contains either only the converse operator or only the iteration operator�

� Soundness and Completeness

The correctness proof of pre�xed tableaux ��� ��� follows an established path�

�� devise an mapping between �names� �pre�xes� and �things� �states� so that
relations between states are preserved�

�� prove a safe extension lemma� i�e� that any tableau rule applied to a satis�
�able formula preserve satis�ability with the above mentioned mapping�

�� prove a safe closure lemma� i�e� that the calculus correctly ignores branches
which do not correspond to models either because they are contradictory or
because do not ful�ll some iterated eventuality h��i��

Remark� For modal logics safe closure is immediate �a branch must only be non
contradictory� whereas it is the hardest part for �C�PDL� we have to verify�
with a �nite computation� that an eventuality will never be ful�lled�

De�nition��� Let B be a set of pre�xed formulae and hS� Ii a model� a map�
ping is a function ��� � � � S such that for all � and �hAin present in B it is
h����� ���hAin�i � AI where A is either a direct or converse atomic program�

De�nition�	� A tableaux branch B is satis�able �SAT for short� in the model
hS� Ii if there is a mapping ��� such that for every h� � �i present in B it is
����j��� A tableau is SAT if one branch is such for some model hS� Ii�

Theorem�
� If T is a SAT tableau� then the tableau T � obtained by an appli�
cation of a tableau rule is also SAT�

Proof� By induction on the rules applied as in ��� Chapter �� or ��� ����

Now we prove that that ignorable branches can be safely discarded �the key
point of the proof�� The following preliminary result is useful�

Lemma��� Let B be a ��completed branch and Path�Xi� be the set of pre�xes
� such that h� � Xii is present in B then

�� Path�Xi� is totally ordered wrt v	
�� the pre�x �� where Xi has been �rstly introduced is the minimum element	



�� if the branch is not ignorable then the pre�x �� such that both h�� � Xii and
the corresponding h�� � �i are present is the maximum element�

Proof� By simple induction on the number of applied tableaux rules� the reduc�
tion of h� � h�iXii can only introduce pre�xes longer �or equal� to �� ut

Theorem��� If T is a SAT tableau� then one SAT branch is not ignorable�

Proof� Suppose the contrary� T is SAT with all SAT branches ignorable �clearly
SAT branches cannot be contradictory�� It is worth noting that each branch can
be ignorable due to a di�erent unful�lled Xi

�
� h��i i�i �or even more than one��

Then let B be an ignorable branch for Xi� It is easy to prove the following

Proposition�
� For every model hS� Ii and for every mapping ��� such that B
is SAT for it� if � is in Path�Xi� then ���� �j���

Proof� By de�nition of ignorable branch �Defn� �� if h� � Xii is in B then h� � ��ii
is also in B� So if B is SAT on the model hS� Ii with mapping ��� then� by Defn� ���
it is ����j���i� ut

Since B is SAT� there must be a model hS� Ii and an mapping ��� on which B is
SAT with a certain mapping ����

So let �� � ���hAin� be the longest pre�x such that � � Xi is present� Since
B is ��completed there must be a shorter copy �� � ���hAin� which satis�es the
same formulae and which has been fully expanded �Prop���� Hence the pre�xed
formula h�� � h�iXii also occurs in B and� since B is SAT� �����j�h�iXi� Therefore
an integer N and a state sN in hS� Ii exist such that h������ sN i is in ��N �I and
sN j���

By Lemma�� each ��� � Xi can only be introduced by reducing the immediate
predecessor �� � h�iX�� Hence� by a simple induction on the structure of �� there
are R ��step from �� to �� for some integer R � ��

By Prop� �
 N must be strictly greater than R since � cannot be ful�lled by
any remapping ��� of the � in Path�Xi� on the states of hS� Ii� Hence there are
N �R ��steps from �� to ful�ll � in the model hS� Ii under ����

Now we construct a new model by duplicating the original model hS� Iias in
Fig��� S� � fsc j s � Sg and PJ � fsc j s � P Ig and also for atomic program
we have aJ � fhsc� s

�
ci j hs� s

�i � aIg� The only di�erence is the atomic �direct
or converse� program A in �� and ��� modify J so that�

AJ � fhsc� s�ci j hs� s
�i � AIg � fh������c� �����cig

The key point is to prove that this new A�arc can be safely added�
Since B is ��completed� all possible instances of LB�A� have been applied and

therefore for every � � CL�	� we have that either h�� � �hAi�i or h�� � hAi�i
is present on the branch� The pre�x �� is a copy of �� by hypothesis� so
h�� � �hAi�i is present in the branch i� h�� � �hAi�i is present� Since the branch
is SAT on the original model hS� Ii� it is �����j��hAi� i� �����j��hAi� for every
� � CL�	��



Consider now the state �����c the only di�erence with the original state �����
is the incoming A�arc� But� as we have seen above� the two states see exactly
the same formulae of CL�	� going back through A� By the �ltration Lemma
��� �	�� these are the only formulae necessary for establishing the truth value of
	� Hence� by induction� we have that �����c satis�es h�

�i� in N � R ��steps in
the new model �and indeed also in the old one��

Then we construct a new mapping ��� on the duplicated model as follows�
map every pre�x shorter or unrelated with �� in the same way as ��� does and
����� on �����c� This make the branch still satis�able� the formulae are the same
for both �� and �� and the incoming arc does not a�ect them� By Thm��
� we
can expand the tableau and still preserve SAT�

In the new model the state ����� ful�ls the eventuality h��i� in N�R � N ��
steps� We can repeat the process until we reach an N � � R but this is impossible
due to Prop� �
� Contradiction� ut

The correctness theorem follows with a standard argument�

Theorem��� If 	 has a validity proof then 	 is valid�

To prove completeness� we also have an established path�

�� apply a systematic procedure to the tableau�
�� if it does not close� choose an open branch to build a model for the initial

formula �� i�e� a counter�model for ��
�� for this construction identify pre�xes present in the branch with states and

show that if h� � �i occurs in the branch then also h�ij��� For PDL the hard
part of the proof is to show that iterated eventualities are indeed ful�lled�

Then we can prove a strong model existence theorem using open branches�

Theorem��� If B is an open branch then it is SAT on a hS� Ii�

Proof� Construct the model as follows�

S
�
� f� j � is present in B

aI
�
� fh�� �haini j � and �hain are present in Bg�
fh�ha�in� �i j � and �ha�in are present in Bg

P I �
� f� j � � P � Bg

To take loops and repetitions into account� we modify slightly the above
de�nition� if ��� is a copy of some shorter pre�x �� then we delete ��� from S�
replace ��� with �� in all transitions aI� and construct the mapping ����

���� �

�
�� if � is a copy of a shorter ��

� otherwise

Next we need to prove that if h� � �i � B then ����j�� by induction on the
construction of �� We focus on modal connectives and iteration operators�



Suppose that � is not a copy of another pre�x and h� � hai�i � B then� by
��saturation� h�hain � �i � B for some �hain� Hence ���hain�j�� by inductive
hypothesis and h����� ���hain�i � aI by construction� Therefore ����j�hai�� If
� is a copy there must be a shorter pre�x �� present in B which has the same
formulae and which has been fully reduced� In this case the mapping ��� will
map � on �� and the above reasoning applies� Similarly for a��

For the necessity operator we show the case for a�� Suppose that h� � �ha�i�i
is in B� By construction the only pre�xes ��� such that h���� �i � aI are�

�� �ha�in for some n�
�� �� where �� is a repeated copy of a longer pre�x of the form �ha�im�
�� �� if � has the form ��haim

For case ��� we have that for every �ha�in present in B it is h�ha�in � ��i �
B by ��completion wrt 
F �a

��� Hence� ���ha�in�j��� by inductive hypothesis�
For case ��� the shorter pre�x �� must have the same formulae of the copy
�ha�im and� by ��completion �again the forward rule�� we have that �ha�im �
�� is present and therefore �it is a copy� also �� � ��� By induction hypothesis we
have that �����j���� For case ��� consider ��completion w�r�t� the rule 
B�a

���
the pre�xed formula h�� � ��i occurs in B� So �����j��� by inductive hypothesis�
Therefore� by de�nition of j�� it is ����j��ha�i��

For the iteration operator the case of ���� is simple� For h��i� we have to
prove that whenever the corresponding Xi appears then h�

�i� is satis�ed� The
proof is by double induction� on the formula size and on the length of the pre�xes
in Path�Xi�� One chooses as a base for the latter induction the top pre�x �� such
that h�� � �i is present� By induction hypothesis it is �����j�� and by de�nition
it is �����j�h�

�i�� For the induction step consider a pair �j � �j�� such that
�j is the immediate predecessor of �j�� in Path�Xi� and that ���j���j�h��i��
Note that� since Xi was new on the branch� the only way to introduce it for �j��

is to reduce completely �j � h�iXi� By induction on the construction of � �by
using a techniques from ���� it is possible to verify that h�j � �j��i is in �I and
therefore the claim follows by de�nition of j�� For instance if � � �� � then by
��completion �i � h�ih� iXi is on the branch and therefore� by induction� there
must be �� such that h�j� ��i � �I and h��� �j�ii � �I and the claim follow by
semantics of sequence operator� ut

A completeness theorem follows with standard argument�

Theorem��� If 	 is valid then 	 has a validity proof�

� From NEXPTIME Tableaux to EXPTIME Algorithms

Our tableau leads to the following �naive� algorithm� select a formula from
the branch and reduce it� if the reduction requires branching� then choose one
branch and add the other to the stack� repeat until the branch is contradictory�
ignorable or open� in the �rst two cases discard the branch and backtrack� This



algorithm compute each time from scratch without keeping track of discarded
branches� i�e� the naive implementation does not learn from failures� This makes
sense for logics in PSPACE �
� but not for �C�PDL� In fact the algorithm works
in NEXPTIME� while �C�PDL is EXPTIME complete ��� ����

A smart algorithm can be developed with the techniques of ����� use a suitable
data structure where all possible subsets of the formulae that may appear in the
tableau are listed� As soon as our expansion procedures introduces a new formula
with a certain pre�x� we collect the formulae with the same pre�x and look in
our database� if this set is already present then we do not expand it further�
otherwise we introduce it in the database� marked with the last atomic 
direct or
converse� program used to reach it� This is the di�erence with ����� for CPDL
two sets must also be equal wrt the �arriving program� �Defn� � and Thm�����
Last we start a marking algorithm which marks bad pre�xes as in ����� A key
di�erence is that we discard at once all pre�xes which contains a Xi which makes
the branch ignorable� This is more e�ective than ���� also for PDL since we do
not compute the transitive closure of � but just look for Xi locally�

Marking each set with the �arriving programs� and �using cut� implies that�
for each atomic programs A� our database could contain all propositionally con�
sistent subsets of f�� hAi���hAi� j � � CL�	�g� This gives an upper bound for
the database size exponential in O�jAct�	� j	 j	 j�� where Act�	� are the direct
or converse atomic programs in 	� and hence the desired EXPTIME bound�

As a further optimisation� pre�xed formulae which branch the tableau or
introduce new states are not expanded if one of their reduct is already present
in the same branch� For instance if � � �� is already present then � � ������ is
not expanded� Similarly if for �hAin � � is present then � � hAi� is not reduced�

� Discussion and Conclusion

Known decision procedures for CPDL are based either on the enumeration of
models ��� ��� or on automata on in�nite trees ��
�� However� these are often
inherently exponential� So that the best procedures for PDL are the tableaux
methods in ���� ���� Yet they have not been extended till now�

One characterising feature of �C�PDL is the presence of �xpoint operators
�the ��� In comparison with tableaux for modal logics ��� �� 
� ���� the tableaux
for modal �xpoint logics are conceptually divided in two� ��� build a �pseudo�
model expanding the modal part� ��� check this model for the satis�ability of
�xpoint formulae� The notion of ignorable branches stems out from the idea of
merging the second step into the �rst one�

Such a merging requires to keeps track� during the expansions phase� of
iterated eventualities and of their ful�llment� The necessity of �successful and
unsuccessful� loop checking for eventualities has been pointed out in ���� ��� for
PDL� and is even stronger for the modal mu�calculus ����� For instance in ����
a model checker is run on the �nal pseudo�model whereas in ���� a new relation
symbol� is introduced and some properties of its transitive closure veri�ed�



We think that the use of constants for iterated eventualities� taken from
model checking techniques in ����� improves e�ciency and readability of the
calculus� In this setting our tableaux calculus is a �rst step towards e�ective
decision procedures for CPDL and the corresponding description logics�
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