Conceptual Data Model with Structured Objects for Statistical
Databases

Giuseppe De Giacomo

Dipartimento di Informatica e
Sistemistica, Universita di Roma
Via Salaria 113, 00198 Roma, Italy
degiacomo@dis.uniromal.it

Abstract

In this paper we present a conceptual data model,
called SDM, which is able to represent the relation-
ships between elementary and statistical data at a con-
ceptual level. SDM borrows elements from research
both in Object Oriented Databases and in Knowledge
Representation. In addition it has suitable mecha-
nisms to form classes of individuals by classifying the
instances of a target class according to some speci-
fied criteria. Notably, the class resulting from such a
statistical aggregation can then be treated exactly as a
class of elementary data. This ability fulfills the of-
ten perceived mecessity, in modeling real domains, of
treating statistical aggregates and elementary data in
an homogeneous way.

1 Introduction

Typically statistical surveys are focused on directly
obtaining some predefined statistical indexes (statis-
tical variables). This setting comes from an organiza-
tion of the work that promotes a new statistical survey
each time the necessity of a new statistical product (a
set of statistical indexes exhibiting certain phenom-
ena) is sensed. However, this organization does not
permit us to perceive possible correlations that exist
at a conceptual level among the various pieces of in-
formation gathered by the different statistical surveys.
The failure to perceive such correlations brings about
costly anomalies in the process of acquisition and ag-
gregation of elementary (non-statistical) data, as for
example the repetition of more than one survey on a
single unit of analysis.

Overcoming this is possible if a further element is
introduced in the organization of the work: the statis-
tical information system (related issues are discussed
in [5, 19, 14, 16, 17, 12, 15, 3, 7, 8]). The statisti-
cal information system determines a decoupling be-
tween the phase where elementary data are gathered
and the phase where aggregate data are used. Sta-
tistical surveys become the way a statistical informa-
tion system is maintained, and thus they are set up
independently of the contingent need of some statis-
tical data. Instead, statistical data are obtained from
a suitable view of the statistical information system

Paolo Naggar

Autorita per I'Informatica nella
Pubblica Amministrazione (AIPA)

Via Po 14, 00198 Roma, Italy
paolo.naggar@aipa.it

without making reference to the statistical surveys
that provided the elementary data to make the com-
putation.

The statistical information system has to be pro-
vided with a specific language to represent its knowl-
edge on the modeled reality, i.e. it needs a conceptual
data model which is able to represent statistical ag-
gregates — a conceptual statistical data model.

A conceptual statistical data model is a conceptual
model that is able to represent the usual semantical
relationships among elementary data. But in addition,
it is able to represent the semantical relationships that
exists between elementary data and the aggregate data
derived from them by means of statistical classifica-
tion.

Generally conceptual models bypass this kind of
semantical relationships going directly to numerical
data, which in fact should be attributes of the con-
ceptual entities derived from the classification, enti-
ties that they are not able to represent explicitly. For
example this happens when the Entity Relationship
Model [9, 2] is used to model summary data [3]. In-
stead a conceptual statistical data model extends a
conceptual model by allowing it to represent explic-
itly such statistical aggregates.

At the moment virtually all conceptual statistical
data model proposals, e.g. [19, 16, 3, 7, 8], consider
statistical aggregates as a new kind of objects. This
induces a dichotomy in treating elementary data and
data aggregated for statistical means, since for the for-
mer kind of data a rich variety of semantical relations
is representable, while for the latter kind the only se-
mantical relationship representable is the one that led
to the aggregation. Our experience at AIPA has shown
that such a dichotomy is often a strong limitation in
the use of statistical data models for modeling a real
domain.

In this paper we present a statistical data model,
called SDM, which, starting from elementary data, is
able to recursively:

e represent in a conceptual schema, the relationships
among existing data;

e enlarge such conceptual schema by representing

explicitly the relationships between existing data
and their aggregations for statistical purposes.

Such a statistical data model allows one to encapsu-
late information that was originally deeply hidden and
spread throughout elementary data, in suitable sum-
mary data, while keeping track at the conceptual level
of the derivation schema applied to make such infor-
mation explicit.

SDM borrows elements from research both in Ob-
ject Oriented Databases and in Knowledge Represen-
tation. In particular several notions developed in
[10, 11, 6] were used as the base for our proposal.
Prominent among these is the notion of “polymorphic
object” introduced in [11, 6] — i.e. an object may be
seen simultaneously as an individual object, as a tuple,
and as a set.

SDM enhances the formalisms in [11, 6], by intro-
ducing suitable mechanisms to form classes that are
statistical aggregations of other classes. These mech-
anisms where inspired by those found in [7, 8], which
however induced the dichotomy mentioned above.

Specifically, SDM has a construct for aggregating
more classes into a single class that has one instance
for each class taking part in the aggregation. For ex-
ample such a construct permits us to partition the
class of integers between 0 and 100 in three intervals,
(0,...,10), (11,...,50) and (51,...,100), thus form-
ing a new class with three instances, one for each in-
terval.

A more sophisticated construct allows for the clas-
sification of instances of a class according to certain
properties. For example we can aggregate people ac-
cording to their sex and intervals of age.

Besides such constructs SDM provides one with
the ability to refer to properties which are computed
by means of suitable operators, such as COUNT,
AVR, FREQ, etc. For example it allows for adding the
property “average age” to the instances of the class
formed by aggregating people according to their sex
and intervals of age.

The rest of the paper is organized as follows. In Sec-
tion 2 the basic conceptual model is presented and its
main characteristics including the notion of polymor-
phic object are introduced. In Section 3 the constructs
that denote statistical aggregations are added to the
basic data model thus obtaining SDM, and the power
that the ability of repeatedly aggregating aggregates
gives to SDM, is illustrated. Finally, in Section 4,
some concluding remarks end the paper.

2 The basic data model

In this section we formally define the object ori-
ented data model BDM by specifying its syntax and
its semantics.

2.1 Syntax

A BDM schema is a collection of class and view
definitions over an alphabet B, where B is partitioned
into a set C of class symbols, a set A of attribute sym-
bols (used in record structures), and a set U of role
symbols (denoting binary relations over classes). We
assume that C contains the special elements Any and

Empty!. In the following C, A, and U range over ele-
ments of C, A, and U respectively.

In defining classes and views we make use of com-
plex links which are constructed starting from at-
tributes and roles. An atomic link, for which we use
the symbol [, is either an attribute, a role, or the spe-
cial symbol member (used in the context of set struc-
tures). A complex link L is obtained from basic links
according to:

L:=b | L1 @] L2 | L1 o LQ | L* | L~ | 1dent1ty(C’)

The construct Ly o Ly denotes the concatenation of
link L; with link Lo, L* denotes the concatenation of
link L with itself an arbitrary finite number of times,
L~ denotes the inverse of L (L taken in the reverse
direction), and finally identity (C') denotes the identity

role projected on C' and is used to verify the occurrence
of an instance of class C' along a link.

Usually, in object oriented models every class has
an associated type which specifies the structure of the
value associated to an instance of the class. In BDM,
objects are not required to have a single structure. In-
stead, we allow for polymorphic objects, which can be
viewed as having different structures corresponding to
the different roles they can play in the reality mod-
eled. Therefore we admit a rich set of expressions for
defining structural properties. A structure expression,
denoted with the symbol T, is constructed as follows:

T = C|_IT|T1/\T2|T1\/T2|(01,...,0n)|
[AliTl,...,Aann] | {T}

The structure (oy,...,0,) represents the class whose
instances are exactly o01,...,05. The structure
[A1:Ty,...,A,:T,] represents all tuples which have
at least Aq,..., A, components having the structures
Ti,...,T,, respectively. The structure {T'} represents
sets of elements having structure 7. Additionally, by
means of A, V, and -, we are allowed not only to in-
clude intersection and union in structure expressions
(as in [1]), but also to refer to all objects that do not
have a certain structure. Note that often object ori-
ented models make, either explicitly or implicitly, the
assumption that every object belongs to exactly one
“most specific class”. Under this assumption, inter-
section can be eliminated from the schema definition
since if an object is an instance of two classes, the
schema, also contains a class that specializes both and
of which the object is an instance [1]. In contrast, in
BDM we do not want to enforce the “most specific
class assumption”, consistently with most knowledge
representation formalisms [4] and semantic data mod-
els [13]. Such an assumption would go against the
spirit of our notion of polymorphism, which allows an
object to simultaneously have more than one structure
(and thus to belong to different unrelated classes).

I'We may also assume that C contains some additional sym-
bols such as Integer, String, etc., that are interpreted as usual,
with the constraint that no definition of such symbols appears
in the schema.

Class and view definitions are built out of structure
expressions by asserting constraints on links between
the instances of the defining class and the instances of
the other classes. A class definition expresses neces-
sary conditions for an object to be an instance of the
defined class, whereas a view definition characterizes
exactly (by means necessary and sufficient conditions)
the objects belonging to the defined view. Our con-
cept of view bears similarities to the concept of query
class of [18].

Class and view definitions have the following forms
(C is the name of the class or of the view to be de-
fined):

class C
structure declaration
link declarations
endclass

view C'
structure declaration
link declarations
endview

Let us explain the different parts of a class (view)
definition.

o A structure declaration has the following form:
is a kind of 7.

It can be regarded as both a type declaration in
the usual sense, and an extended ISA declaration
introducing (possibly multiple) inheritance.

e link declarations are distinguished as follows:

— Universal and ezistential link declarations,
whose form respectively is:

al Lin T
exists L in T

An universal declaration states that each ob-
ject reached through link L from an instance
of C' has structure T, while an existential
one states that for each instance of C' there
is at least one object of structure 7' reach-
able through link L. Note that link declara-
tions represent a generalization of existence
and typing declarations for attributes (and
roles).

— Cardinality declarations whose form is:

exists (u,v) bin T
exists (u,v) b~ in T

where u is a nonnegative integer and v is
a nonnegative integer or the special value
0o. A declaration of this kind specifies that
for each instance of C' there are at least u
and at most v different objects of structure
T reachable through an given atomic link [
(I7). Existence and functional dependencies
can be seen as special cases of this type of
constraint.

— Key declarations whose form is:
@ Ll, - ,Lm.

A declaration of this kind states that each
object o in C' is linked to at least one other
object through each link that appears in
the declaration, and moreover the objects
reached through these links uniquely deter-
mine o, in the sense that C' contains no
other object o' which is linked, by means of
Lq,...,L,, to exactly the same objects as o
(for all links in the declaration).

In both class and view definitions link declarations are
optional.

2.2 Semantics

The formal semantics of a BDM schema is based
on the notion of interpretation T = (OF,-7), where
O7 is a nonempty set that constitutes the universe of
the interpretation and -Z is the interpretation function
over such a universe. Note that an interpretation cor-
responds to the usual notion of database state. Tra-
ditional object oriented models distinguish between
objects (characterized through their object identifier)
and values associated to objects. The structure of an
object is specified through its value which can be ei-
ther a tuple, a set or an atomic value. Since an object
has a unique value it is forced to have a unique struc-
ture. Instead, in BDM we have chosen not to distin-
guish between objects and values, and one is permitted
to assign different structures to an element of the uni-
verse of interpretation. Indeed, we regard O7 as a set
of polymorphic objects, that is objects possibly having
simultaneously more than one structure, i.e.:

1. The structure of individual: an object can always
be considered as having this structure, and this
allows it to be referenced by other objects of the
domain.

2. The structure of tuple: an object o having this
structure can be considered as a property ag-
gregation, which is formally defined as a partial
function from A to OF with the proviso that o
is uniquely determined by the set of attributes
on which it is defined and by their values. Be-
low the term tuple is used to denote an element
of O that has the structure of tuple, and we
write [A1:01,...,Ap:0y] to denote any tuple ¢
such that, for each i € {1,...,n}, t(4;) is defined
and equal to o; (which is called the A;-component
of t). Note that the tuple ¢ may have other com-
ponents as well, besides the A;-components.

3. The structure of set: an object o having this
structure can be considered as an instance aggre-
gation, which is formally defined as a finite collec-
tion of objects in O, with the following provisos:
(1) the view of o as a set is unique, in the sense
that there is at most one finite collection of ob-
jects of which o can be considered an aggregation,

and (2) no other object o' represents the aggre-
gation of the same collection. Below the term

set is used to denote an element of O that has
the structure of set, and we write {oy,...,0,} to
denote the collection whose members are exactly
01,...,0n.

The interpretation function -~ assigns an extension

to classes, structure expressions, and links, as follows:

e It assigns to member a subset of OF x OF such
that for each {...,0,...} € O, we have that
({.-.,0,...}},0) € member”.

e It assigns to every role U a subset of O x OF.

e It assigns to every attribute A a subset of OF x
OT such that, for each tuple [...,A:0,...] €
O, we have that ([...,A:0,...],0) € A%, and
there is no o' € O different from o such that
([-..,A:0,...],0) € AT. Note that this implies
that every attribute in a tuple is functional for
the tuple.

e It assigns to every complex link a subset of
OT x O such that the following conditions are
satisfied (in the semantics, “o” stands for con-
catenation of binary relatlons and “x” for their

reflexive transitive closure):

(Ly U Lz) =LIuLf

(Ly o Ly)* LI o LI

(L*)I — (LI)*

(L) ={(0.0) | (¢/,0) € L7}

(identity (C))* = {(0,0) € OF x OF | 0 € C*}.

e It assigns to every class and to every structure
expression a subset of O such that the following
conditions are satisfied?:

Any’ = O7

Empty1:@

Clgol

(-T)F =0T\ 1%

(M AT =TENTE

(V) =TIuTE

(01,...,00)F ={o1,...,0,} COT

[AliTl,...,AnCTn]I = {[Al:ol,..z.,An:on] S g?z
|01 ETl yeroy0p ETn}

{TY = {{o1,...,0n € OF | 01,...,0, € TT}.

The elements of CZ are called instances of C.

In order to characterize which interpretations are
legal according to a specified schema, we now define
what it means that, given an interpretation Z, an ob-
ject 0 € OF satisfies a declaration which is part of a
class or view definition:

2Note the slight notational abuse in the fourth equation: to
be more precise we should write (01,...,0n)% = {0F,..., 0L} C

O where 011, ...,0L are distinguished objects in OZ.

o satisfles “is a kind of T7, if 0 € TZ;

o satisfies “all L in T, if for all o' € O, (0,0') €
LT implies o' € TZ;

o satisfies “exists L in T, if there is o' € O such
that (0,0') € LT and o' € T%;

o satisfies “exists (u,v) b in T7, if there are at
least u and at most v objects o' € O such that
(0,0") € bT and o' € T%; a similar definition holds
for a cardinality declaration involving b~.

Moreover,
“key Lq,...

a class C satisfies a key declaration
,Ly,”, if for every instance o of C' in 7

there are objects oy,...,0, € O such that (0,0;) €
LT, for i € {1,...,m}, and there is no other object

o' # 0in C* for which these conditions hold.

An interpretation 7 satisfies a class definition 6 for
the class C, if every instance of C' in 7 satisfies all
declarations in 4, and if C satisfies all key declarations
in 0. 7T satisfies a view definition 0 for the view C, if
the set of objects that satisfies all declarations in ¢ is
exactly the set of instances of C'. In other words, there
are no other objects in O besides those in CT that
satisfy all declarations in §.

If 7 satisfies all class and view definitions in a
schema S then 7 is called a model of S. A schema
is said to be consistent if it admits a model. A class
(view) C is said to be consistent in S, if there is a

model Z of S such that C” is nonempty. The notion
of consistency is then extended to structure expres-
sions in a natural way.

2.3 Example of a BDM schema

To illustrate the main characteristic of the basic
data model we present a simple BDM schema. The
schema models a condominium (instance of the class
Condominium) as a set of apartments and simultane-
ously as a record having two fields, one for its address
and one for the an integer representing its budget. The
address, loc being declared a key, univocally identifies
a condominium. Each condominium is also required
to have a single manager who manages it. Similarly
we introduce the class Manager and Address. We also
define a view CondominiumManager as the collection
of those managers who manage a condominium.

class Condominium
is a kind of
{Apartment}A
[Loc: Address, budget: Integer]
key loc
exists (1,1) manages™
endclass

in Manager

class Address
is a kind of
[city: String, street: String,
num: Integer]
key city, street, num
endclass

view CondominiumManager

is a kind of Manager

exists manages in Condominium
endview

class Manager
is a kind of
[ssn: String, loc: Address|
key ssn
exists manages in Any
endclass

Observe that, in BDM, objects can be seen as
having different structures simultaneously. In the
example, the structure of the class Condominium
is specified through a conjunction of the set
structure {Apartment} and the record structure
[Loc: Address, budget: Integer]. Therefore, the
designer is anticipating that each instance of
Condominium will be used both as a set (in this case
the set of apartments forming the condominium) and
as a record structure collecting the relevant attributes
of the condominium (in this case where the condo-
minium is located and its budget). Moreover, each
instance of condominium can also be regarded as an
individual object that can be referred to by other ob-
jects through roles (in this case manages).

3 Statistical constructs

Next we extend the basic data model BDM with
suitable constructs for aggregating data for statistical
means. We call the resulting data model SDM.

A statistical aggregate (or simply aggregate) is a
specification of how to classify the instances of a given
class, which is called target of the aggregate, accord-
ing to the values of certain properties. For example we
may define a statistical aggregate by classifying the in-
stances of the class people according to the value of sex
and age (possibly partitioning ages in intervals). The
characterizing feature of the data model SDM is that
statistical aggregates are indeed classes, on which we
can operate exactly as we do for simpler classes. Aside
from special structures for representing statistical ag-
gregates, SDM is equipped with a new kind of atomic
links, called computed links, since they are computed
by making use of some predefined operators.

Similarly to BDM, an SDM schema is a collec-
tion of class and view definitions over the alphabet B,
where B is partitioned into a set of symbols of class C,
a set, of symbols of attribute A, a set of symbols of role
U, a set of symbols of computed link F, and a set of
symbols of predefined operators OP, such as COUNT,
AVR, FREQ, etc. The symbols C, A, U, F, OP, denote
generic elements of C, A, U, F', e OP respectively. An
atomic link in SDM, denoted by the symbol [, is ei-
ther an attribute, a role, a computed link, or one of the
following special symbols: member (as in BDM), in
(denoting member—), and target (a special attribute
used in the context of statistical aggregates).

Class definitions of SDM are analogous to those of
BDM,; in contrast view definitions can have in alterna-
tive to the structure declaration a statistical aggregate

declaration. Such declarations are of two kinds: sim-
ple aggregate declarations or complex aggregate decla-
rations. We illustrate them below.
3.1 Simple aggregate declarations
A simple aggregate declaration has the following
form:
is an aggregate of T1,...,Ty

where T1,...,T, are structural expressions. The tar-
get class in this case is understood to be the union of
Ty, ...,T,. Intuitively, by means of a simple aggregate
declaration as the one above we define a class C' hav-
ing n instances, each such an instance is a set made
up by the whole collection of objects in 7.

The formal semantics is as follows: given an
interpretation Z, a class C satisfies a declaration
“is an aggregate of Ty, ..., T,” if

CT ={{oloeTL},....{o] o€ T}}.

A typical example of simple aggregate declaration
is the following:

view AgelIntervals
is an aggregate of
(0,...,10),(11,..
endview

.,100), Integer A —(0,. .., 100)

where the declaration is used for partitioning Integer
in three intervals; indeed AgeIntervals has three in-
stances each denoting a set of objects: the first denotes
{0...,10[, the second denotes {11...,100[}, and the
third denotes {101,102, .. .[}.

3.2 Complex aggregate declarations

A complex aggregate declaration has the following
form:

is an aggregate of C' by
att1 :L1 :Tl,...,attn :Ln ZTn

where C is the target class, att; € A, L; are (possibly
complex) links, and T; are structural expressions.

Intuitively by means of a complex aggregation dec-
laration as the one above we define a class C' that
denotes a classification of the instances of the class C
according to the values of Lq,...,L,.

The formal semantics is as follows. Given an in-
terpretation Z, a class C' satisfies the declaration
“is an aggregate of C' by att; = Ly : Ty, ..., att,, =
L,:T,) if T

C't = {[att,:04,...,att,: 0,,target : 5] |
01 ETll,...,onETf,
S={oecC?|(o,01) € LT,..

Note that atty, ..., att, form a key for the tuples in C’.
Observe also that if for some o; € TE,...,0, € TF,
we have that [atti:01,...,att,: 0,,target : S] & OF,
then it is not possible to assign to C' an extension
which satisfies the declaration.

A typical example of complex aggregate declaration
is the following:

-, (0,00) € Ly}}

view Agg
is an aggregate of Person by
s = sex : Sex,a — age o in : AgeIntervals
endview

where AgeIntervals is the statistical aggregate de-
fined in the previous example. The complex aggre-
gate Agg denotes the classification of the instances of
Person by sex and age intervals. The number of in-
stances of Agg is equal to the cardinality of the exten-
sion of Sex multiplied by the cardinality of the exten-
sion of AgeIntervals, that is 2 x 3 = 6. An example
of instance of Agg is the following;:

[s = male,a=(0,...,10),target = {oy,...,0n[}]
where 01, ...,0, are all males having an age ranging
from 0 to 10 that are contained in the extension of the
class Person.

3.3 Computed links

As mentioned, beside statistical aggregate declara-
tions, we also introduce the possibility of declaring
computed links, i.e. atomic links that are computed by
making use of a set of predefined operators. Such oper-
ators, which typically are statistical operators, operate
on whole classes, computing for example the number
of the instances of a class (COUNT), The average of a
certain value for a class (AVR), etc.

A computed link declaration has the following form:

compute F as OP(&y,...,E,)

where F' € F is the computed link introduced by the
declaration, OP € OP is one of the predefined op-
erators, and &1,...,&, are expressions denoting the
classes that constitute the input of OP.

A computed link F' represents a function having as
domain the class in which its declaration appears, and
as codomain the codomain of OP.

The domain and codomain of OP are predefined.
For example COUNT(+) has as domain the set of the sub-
set of Any and as codomain Integer, similarly AVR(:).
Instead FREQ(:,-) accept as input two subsets &1, E> of
Any, such that & C &, and returns a rational num-
ber, the ratio between the cardinality of £ and the
cardinality of &s.

The expressions &1, ...,&, in input to the prede-
fined operators can be either structural expressions or
special expressions having the following form:

QL :T

where L is a (possibly complex) link and T is a struc-
tural expression.

For notational convenience, given an interpretation
Z, for each object o € O, we denote by £Z(0) the set
singled out by &;, defining T7(0) = T.

The semantics of a computed link declaration is as

follows. Given an interpretation Z, an object o € O
satisfy the declaration “compute F' as OP(&,...,&n)”

if
(0,0') € F¥ where o' = OP*(f(0),...,E%(0)).

3.4 Example of a SDM schema

We now present an example of a schema in SDM
that shows the power that comes from the ability of
treating statistical aggregates as any other classes.
The example stems from a real case considered by
ATPA as part of a study on the state of the information
systems used by Italian Public Administration.

Norms issued by the Parliament institute certain
processes, each of which is carried out in a given Min-
istry. It is of great interest to know the distribution of
the quantity of norms wrt to the quantity of ministries
they affect. Indeed to simplify administrative proce-
dures it is desirable that most ministries are affected
only by a limited number of norms. This simple ob-
servation makes the importance of having the ability
to determine the above distribution apparent.

The classes of elementary data of interest, in
this example, are the following: Norms, Processes,
Process-Norm pairs (denoting that a norm contributes
to the institution of a process) and Ministries. More-
over we also require that each process determines a
ministry in which it takes place. The corresponding
SDM schema is the following:

class Norm
is a kind of Any
endclass

class Ministry
is a kind of Any
endclass

class Process

is a kind of Any

exists (1,1) m in Ministry
endclass

class PN
is a kind of [p:Process,n:Norm|
key p,n

endclass

Observe that the last definition denotes a binary rela-
tion in a formally correct way.

Data that populate the classes Norm, Ministry,
Process e PN, can be obtained directly through a
survey. Instead the data we are interested in — the
distribution of norms wrt ministries — require a so-
phisticated use of the statistical aggregates and, in
particular they require the aggregation of statistical
aggregates repeatedly.

We get the data of interest in three step of aggre-
gation.

e The first step is to aggregate the class PN by norms
and ministries.

view A1
is an aggregate of PN by
n' =n:Norm,pm=pom:Ministry
endview

e The second step is to aggregate the class Al
(which is a statistical aggregate) by norm, adding
to each instance of the resulting class a com-
puted link that denotes the number of ministries
to which a norm applies. Observe this number
is the same as the cardinality of the subset of
the target of the aggregate singled out by a given
norm.

view A2
is an aggregate of A1 by
n” =n': Norm
compute num ministry as
COUNT(Q@Qtarget o member : Any)
endview

e The third and last step is to aggregate the class A2
(which is again a statistical aggregate) by num-
ber of ministries, adding a computed link that
denotes the number of norms that affect a given
number of ministries. Observe this number is the
same as the cardinality of the subset of the tar-
get of the aggregate singled out by the number of
ministries.

view A3
is an aggregate of A2 by
num ministry’ = num ministry: Integer
compute num_norm as
COUNT(@Qtarget o member : Any)
endview

The class A3 obtained in this way contains exactly the
summary data desired: the distribution of the quan-
tity of norms wrt the quantity of ministries they affect.

4 Discussion and conclusion

SDM is a powerful formalism for modeling both
statistical data and elementary data. One of the main
features of SDM (inherited from BDM) is the adop-
tion of the notion of polymorphic object, which al-
lows for considering objects having a complex struc-
ture as individual objects, thus exploiting their com-
plex structure only when such structure is actually
relevant. This characteristic allows for treating statis-
tical aggregates in the same way as elementary data
are treated, and hence permit us to form statistical
aggregates of statistical aggregates.

We would like to conclude the paper by briefly men-
tioning some methodology issues. Often statistical ag-
gregates are formed by partitioning a target class in
equivalence classes induced by certain properties of
the instances of the target class. The formalism intro-
duced in this paper does not impose such a restriction,
in the sense that its semantics remains perfectly co-
herent even if we do not enforce the above restriction.
In particular, the properties of a given class used to
aggregate its instances do not need to cover the whole
class, i.e. it is admissible that some instances of the
target class are not inserted in any of the instances of
the aggregate class. Furthermore, such properties do
not need to single out disjoint subsets of the target

class, i.e. it is admissible that a given instance of the
target class is inserted in more then one instance of the
aggregate class. SDM leaves to the system designer
the choice of which restrictions (if any) to enforce in
forming statistical aggregates.

Acknowledgments

The authors would like to express their gratitude to
Maurizio Lenzerini for valuable suggestions and com-
ments on the work presented here.

References

[1] S. Abiteboul and P. Kanellakis. Object identity
as a query language primitive. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 159173, 1989.

[2] C. Batini, S. Ceri, and S. B. Navathe. Con-
ceptual Database Design, an Entity-Relationship

Approach. Benjamin and Cummings Publ. Co.,
Menlo Park, California, 1992.

[3] C. Batini and G. Di Battista. Design of statisti-
cal databases: a methodology for the conceptual
step. Information Systems, 13(4):407—422, 1988.

[4] S. Bergamaschi and C. Sartori. On taxonomic
reasoning in conceptual design. ACM Transac-
tions on Database Systems, 17(3):385-422, 1992.

[5] A. W. Bragg. Data manipulation languages
for statistical databases — the Statistical Anal-
ysis System (SAS). In Proceedings of the 1st
LBL Workshop on Statistical Data Bases Man-
agement, 1981.

[6] D. Calvanese, G. De Giacomo, and M. Lenz-
erini. Structured objects: Modeling and reason-
ing. In Proceedings of the Fourth International
Conference on Deductive and Object-Oriented
Databases (DOOD-95), LNCS 1013, pages 229—
246, Springer Verlag, 1995.

[7] T. Catarci, G. D’Angiolini, and M. Lenzerini.
Concept description language for statistical data
modeling. In Proceedings of Very Large Data
Bases, 1990.

[8] T. Catarci, G. D’Angiolini, and M. Lenzerini.
Concept language for statistical data modeling.
Data and Knowledge Engineering, 1995. To ap-
pear.

[9] P. P. Chen. The Entity-Relationship model: To-
ward a unified view of data. ACM Transactions
on Database Systems, 1(1):9-36, 1976.

[10] G. De Giacomo and M. Lenzerini. Boosting the
correspondence between description logics and
propositional dynamic logics. In Proceedings of
the 12th National Conference on Artificial Intel-
ligence (AAAI-94), pages 205-212, 1994.

[11]

[12]

[13]

[14]

[15]

G. De Giacomo and M. Lenzerini. What’s in
an aggregate: Foundations for description logics
with tuples and sets. In Proceedings of the 14th
International Joint Conference on Artificial In-
telligence (IJCAI-95), pages 801-807, 1995.

S. P. Ghosh. Statistical relational tables for sta-
tistical database management. IEEE Transaction
on Software Engineering, SE-12(12):1106-1116,
1986.

R. B. Hull and R. King. Semantic database mod-
elling: Survey, applications and research issues.
ACM Computing Surveys, 19(3):201-260, 1987.

G. Ozsoyoglu and Z. M. Ozsoyoglu. Statisti-
cal database query languages. IEEE Transaction
on Software Engineering, SE-11(10):1071-1081,
1985.

G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos.
Extending relational calculus with set-valued at-
tribute and aggregate functions. Transactions on
Database Systems, 12(4):566-592, 1987.

[16]

[17]

[18]

[19]

G. Ozsoyoglu and T.-A. Su. Rounding and infer-
ence control in conceptual models for statistical
databases. In Proceedings of the IEEE Security
Symposium, 1985.

A. Shoshani and H. K. T. Wong. Statistical and
scientific databases issues. IEEE Transactions on
Software Engineering, SE-11(10), 1985.

M. Staudt, M. Nissen, and M. Jeusfeld. Query
by class, rule and concept. Journal of Applied
Intelligence, 4(2):133-157, 1994.

S. Y. W. Su. Semantic data model for statistical
databases. In Proceedings of the IEEE CS Inter-
national Conference on Data Engineering, 1984.

