
Reasoning about concurrent execution, prioritized interrupts, and exogenous
actions in the situation calculus

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
Department of Computer Science
Glendon College, York University

2275 Bayview Ave.
Toronto, ON, Canada M4N 3M6

lesperan@yorku.ca

Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3H5
hector@cs.toronto.edu

Abstract
As an alternative to planning, an approach to high-
level agent control based on concurrent program
execution is considered. A formal definition in the
situation calculus of such a programming language
is presented and illustrated with a detailed exam-
ple. The language includes facilities for prioritizing
the concurrent execution, interrupting the execution
when certain conditions become true, and dealing
with exogenous actions. The language differs from
other procedural formalisms for concurrency in that
the initial state can be incompletely specified and
the primitive actions can be user-defined by axioms
in the situation calculus.

When it comes to providing high-level control for robots
or other agents in dynamic and incompletely known worlds,
approaches based on plan synthesis may end up being too
demanding computationally in all but simple settings. An al-
ternative approach that is showing promise is that of high-
level program execution [9]. The idea, roughly, is that instead
of searching for a sequence of actions that would take the
agent from an initial state to some goal state, the task is to
find a sequence of actions that constitutes a legal execution
of some high-level non-deterministic program. As in plan-
ning, to find such a sequence it is necessary to reason about
the preconditions and effects of the actions within the body
of the program. However, if the program happens to be al-
most deterministic, very little searching is required; as more
and more non-determinism is included, the search task be-
gins to resemble traditional planning. Thus, in formulating a
high-level program, the user gets to control the search effort
required.
The hope is that in many domains, what an agent needs to

do can be conveniently expressed using a suitably rich high-
level programming language. Previous work on the Golog
language [9] considered how to reason about actions in pro-
grams containing conditionals, iteration, recursion, and non-
deterministic operators, where the primitive actions and flu-
ents where characterized by axioms of the situation calculus.
In this paper, we explore how to execute programs incorpo-
rating a rich account of concurrency. The execution task re-
mains the same; what changes is that the programming lan-

guage, which we call ConGolog (for Concurrent Golog), be-
comes considerablymore expressive. One of the nice features
of this language is that it allows us to conveniently formulate
agent controllers that pursue goal-oriented tasks while con-
currently monitoring and reacting to conditions in their envi-
ronment.
Of course ours is not the first formal model of concur-

rency. In fact, well developed approaches are available [7; 11;
3; 16]� and our work inherits many of the intuitions behind
them. However, it is distinguished from these in at least two
fundamental ways. First, it allows incomplete information
about the environment surrounding the program. In contrast
to typical computer programs, the initial state of a ConGolog
program need only be partially specified by a collection of
axioms. Second, it allows the primitive actions (elementary
instructions) to affect the environment in a complex way. In
contrast to typical computer programs whose elementary in-
structions are simple predefined statements (e.g. variable as-
signments), the primitive actions of a ConGolog program are
determined by a separate domain-dependent action theory,
which specifies the action preconditions and effects, and deals
with the frame problem.
The rest of the paper is organized as follows: in Section 1

we very briefly review planning in the situation calculus. In
Section 2, we review the Golog programming language and
present a variant of the original specification of the high-level
execution task. In Section 3, we explain informally the sort
of concurrency we are concerned with, as well as related no-
tions of priorities and interrupts. The section concludes with
changes to theGolog specification required to handle concur-
rency. In Section 4, we present a detailed example of a re-
active multi-elevator controller formulated in ConGolog. In
Section 5, we discuss some of the properties of ConGolog, its
implementation, and topics for future research.

1 Situation Calculus

There are a number of ways of making the planning task pre-
cise, but perhaps the most appealing is to formulate a specifi-
cation in terms of a general theory of action. One candidate

�In [13; 4] a direct use of such approaches to model concurrent
(complex) actions in AI is investigated.



language for formulating such a theory is the situation cal-
culus [10]. We will not go over the language here except to
note the following components: there is a special constant S�
used to denote the initial situation, namely that situation in
which no actions have yet occurred; there is a distinguished
binary function symbol do where do�a� s� denotes the suc-
cessor situation to s resulting from performing the action a;
relations whose truth values vary from situation to situation,
are called (relational) fluents, and are denoted by predicate
symbols taking a situation term as their last argument; finally,
there is a special predicate Poss�a� s� used to state that action
a is executable in situation s�
Within this language, we can formulate domain theories

which describe how the world changes as the result of the
available actions. One possibility is a theory of the following
form [14]:

� Axioms describing the initial situation, S�.

� Action precondition axioms, one for each primitive ac-
tion a, characterizing Poss�a� s�.

� Successor state axioms, one for each fluent F , stating
under what conditions F ��x� do�a� s�� holds as function
of what holds in situation s� These take the place of the
so-called effect axioms, but also provide a solution to the
frame problem [14].

� Unique names axioms for the primitive actions.

� Some foundational, domain independent axioms.

For any domain theory of this sort, we have a very clean spec-
ification of the planning task, which dates back to the work of
Green [5]:

Classical Planning: Given a domain theory
Axioms as above, and a goal formula ��s� with a
single free-variable s� the planning task is to find a
sequence of actions �a such that:

Axioms j� Legal��a� S�� � ��do��a� S���

where do��a�� � � � � an�� s� is an abbreviation for

do�an� do�an��� � � � � do�a�� s� � � ����

and where Legal��a�� � � � � an�� s� stands for

Poss�a�� s�� � � ��Poss�an� do��a�� � � � � an���� s���

In other words, the task is to find a sequence of actions that
is executable (each action is executed in a context where its
precondition is satisfied) and that achieves the goal (the goal
formula � holds in the final state that results from performing
the actions in sequence).

2 Golog

As presented in [9], Golog is logic-programming language
whose primitive actions are those of a background domain
theory. It includes the following constructs:

�, primitive action
�?, wait for a condition�

�������, sequence
��� j ���, nondeterministic choice between actions
�x��, nondeterministic choice of arguments
��, nondeterministic iteration
if � then �� else ��, conditional
while � do �, loop
proc 	��x� �, procedure definition�

In its most basic form, the high-level program execution task
is a special case of the above planning task:

Program Execution: Given a domain theory
Axioms as above, and a program �, the execution
task is to find a sequence of actions �a such that:

Axioms j� Do��� S�� do��a� S���

where Do��� s� s�� is an abbreviation for a formula
of the situation calculus which says that program
� when executed starting in situation s has s� as a
legal terminating situation.

In [9], a simple inductive definition ofDowas presented, con-
taining rules such as:

Do��������� s� s��
def
�

�s��� Do���� s� s
��� � Do���� s��� s��

Do���� j ���� s� s��
def
� Do���� s� s���Do���� s� s��

Do��if � then �� else ���� s� s��
def
�

Do��������� j ���������� s� s��
one for each construct in the language.
The kind of semantics Do associates to programs is some-

times called evaluation semantics [6] since it is based on the
complete evaluation of the program. With the goal of eventu-
ally handling concurrency, it is convenient to give a slightly
more refined kind of semantics called computational seman-
tics [6], which is based on “single steps” of computation, or
transitions.� A step here is either a primitive action or test-
ing whether a condition holds in the current state. We begin
by introducing two special predicates, Final and Trans, where
Final��� s� is intended to say that program � may legally ter-
minate in situation s, and where Trans��� s� ��� s�� is intended
to say that program � in situation s may legally execute one
step, ending in situation s� with program �� remaining.
Final and Trans will be characterized by a set of equiv-

alence axioms, each depending on the structure of the first
argument. It will be necessary to quantify over programs and
so, unlike in [9], we need to encode Golog programs as first-
order terms, including introducing constants denoting vari-
ables, and so on. This is laborious but quite straightforward
[8].� We omit all such details here and simply use programs

�Here, � stands for a situation calculus formula with all situa-
tion arguments suppressed; ��s�will denote the formula obtained by
restoring situation variable s to all fluents appearing in �. Because
there are no exogenous actions or concurrent processes in Golog,
waiting for � amounts to testing that � holds in the current state.

�For space reasons, we ignore these here.
�Both types of semantics belong to the family of structural oper-

ational semantics introduced in [12].
�Observe that Final and Trans cannot occur in tests, hence self-

reference is disallowed.



within formulas as if they were already first-order terms.
The equivalence axioms �F for Final are as follows (uni-

versally closing on s):�

Final�nil� s� � TRUE
Final��� s� � FALSE
Final���� s� � FALSE
Final��������� s� � Final���� s� � Final���� s�
Final���� j ���� s� � Final���� s� � Final���� s�
Final��x��� s� � �x�Final��� s�
Final���� s� � TRUE
Final�if � then �� else ��� s� �

��s� � Final���� s� � ���s� � Final���� s�
Final�while � do �� s� �

��s� � Final��� s� � ���s�

The equivalence axioms �T for Trans are as follows (univer-
sally closing on s� 
� s�):

Trans�nil� s� 
� s�� � FALSE
Trans��� s� 
� s�� �

Poss��� s� � 
 � nil � s� � do��� s�
Trans���� s� 
� s�� � ��s� � 
 � nil � s� � s
Trans��������� s� 
� s�� �

Final���� s� � Trans���� s� 
� s�� �
�
��
 � �
����� � Trans���� s� 
�� s��

Trans���� j ���� s� 
� s�� �
Trans���� s� 
� s�� � Trans���� s� 
� s��

Trans��x��� s� 
� s�� � �x�Trans��� s� 
� s��
Trans���� s� 
� s�� �

�
��
 � �
����� � Trans��� s� 
�� s��
Trans�if � then �� else ��� s� 
� s�� �

��s� � Trans���� s� 
� s�� �
���s� � Trans���� s� 
� s��

Trans�while � do �� s� 
� s�� �
��s� � �
�� 
 � �
��while � do �� �

Trans��� s� 
�� s��

It is easy to verify, by induction on the structure of the first
argument, the following:

Theorem 1: For each Golog program �, there exist two
situation calculus formulas 	��s� and 
��s� 
� s

��, not men-
tioning Final and Trans, such that:

�F ��T j� �s�Final��� s� � 	��s�
�F ��T j� �s� 
� s��Trans��� s� 
� s�� � 
��s� 
� s

��

With Final and Trans in place, we may give a new definition
of Do as:

Do��� s� s��
def
� �
�Trans���� s� 
� s�� � Final�
� s��

where Trans� is the transitive closure of Trans, defined as the
(second-order) situation calculus formula:

Trans���� s� ��� s��
def
� �T �� � � � T ��� s� ��� s���

where the ellipsis stands for:

�s� T ��� s� �� s� �
�s� 
�� s�� 
��� s��� T ��� s� 
�� s�� �
Trans�
�� s�� 
��� s��� � T ��� s� 
��� s����

�It is convenient to include a special “empty” program nil.

In other words, Do��� s� s�� holds if it is possible to repeat-
edly single-step the program �, obtaining a program 
 and a
situation s� such that 
 can legally terminate in s�. We then
get the following result:�

Theorem 2: The two definitions of Do are equivalent in that
for any non-nil Golog program � and situations s and s�:

�F ��T j� Do���� s� s
�� � Do���� s� s

��

3 Concurrency
We are now ready to define ConGolog, an extended version
of Golog that incorporates a rich account of concurrency. We
say ‘rich’ because it handles:

� concurrent processes with possibly different priorities,

� high-level interrupts,

� arbitrary exogenous actions.

As is commonly done in other areas of computer science, we
model concurrent processes as interleavings of the primitive
actions in the component processes. A concurrent execution
of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion. So in fact, we
never have more than one primitive action happening at the
same time. As discussed in [1; 15], to model actions that in-
tuitively could occur simultaneously, e.g. actions of extended
duration, we use instantaneous start and stop (i.e. clipping)
actions, where once again interleaving is appropriate.
An important concept in understanding concurrent execu-

tion is that of a process becoming blocked. If a deterministic
process � is executing, and reaches a point where it is about
to do a primitive action a in a situation s but where Poss�a� s�
is false (or a wait action ��, where ��s� is false), then the
overall execution need not fail as in Golog. In ConGolog,
the current interleaving can continue successfully provided
that a process other than � executes next. The net effect is
that � is suspended or blocked, and execution must continue
elsewhere.	

The ConGolog language is exactly like Golog except with
the following additional constructs:

��� k ���, concurrent execution
��� ii ���, concurrency with different priorities
�jj, concurrent iteration
��	 ��, interrupt.

��� k ��� denotes the concurrent execution of the actions ��
and ��. ��� ii ��� denotes the concurrent execution of the ac-
tions �� and �� with �� having higher priority than ��. This
restricts the possible interleavings of the two processes: ��
executes only when �� is either done or blocked. The next
construct, �jj, is like nondeterministic iteration, but where the
instances of � are executed concurrently rather than in se-
quence. Finally, ��	 �� is an interrupt. It has two parts:
a trigger condition � and a body, �. The idea is that the body

�See [6] for hints on the proof of this theorem.
�Just as actions in Golog are external (e.g. there is no internal

variable assignment), in ConGolog, blocking and unblocking also
happen externally, via Poss and wait actions. Internal synchroniza-
tion primitives are easily added.



� will execute some number of times. If � never becomes
true, � will not execute at all. If the interrupt gets control
from higher priority processes when � is true, then � will ex-
ecute. Once it has completed its execution, the interrupt is
ready to be triggered again. This means that a high priority
interrupt can take complete control of the execution. For ex-
ample, � TRUE 	 ringBell� at the highest priority would
ring a bell and do nothing else. With interrupts, we can easily
write controllers that can stop whatever task they are doing to
handle various concerns as they arise. They are, dare we say,
more reactive.
We now show how Final and Trans need to be extended

to handle these constructs. (We handle interrupts separately
below.) For Final, the extension is straightforward:

Final���� k ���� s� � Final���� s� � Final���� s�
Final���� ii ���� s� � Final���� s� � Final���� s�
Final��jj� s� � TRUE

Observe that the last clause says that it is legal to execute the
� in �jj zero times. For Trans, we have the following:

Trans���� k ���� s� 
� s�� �
�
��
 � �
� k ��� � Trans���� s� 
�� s�� �


 � ��� k 

�� � Trans���� s� 
�� s��

Trans���� ii ���� s� 
� s�� �
�
��
 � �
� ii ��� � Trans���� s� 
�� s�� �


 � ��� ii 

�� � Trans���� s� 
�� s�� �

��
��� s���Trans���� s� 
��� s���
Trans��jj� s� 
� s�� �

�
��
 � �
� k �jj� � Trans��� s� 
�� s��

In other words, you single step ��� k ��� by single stepping
either �� or �� and leaving the other process unchanged. The
��� ii ��� construct is identical, except that you are only
allowed to single step �� if there is no legal step for ��.
 This
ensures that �� will execute as long as it is possible for it to
do so. Finally, you single step �jj by single stepping �, and
what is left is the remainder of � as well as �jj itself. This
allows an unbounded number of instances of � to be running.
Observe that with ��� k ���, if both �� and �� are always

able to execute, the amount of interleaving between them
is left completely open. It is legal to execute one of them
completely before even starting the other, and it also legal to
switch back and forth after each primitive or wait action. It
is not hard to define, however, new concurrency constructs
kmin and kmax that require the amount of interleaving to be
minimized or maximized respectively. We omit the details.
Exogenous actions are primitive actions that may occur

without being part of a user-specified program. We assume
that in the background theory, the user declares using a predi-
cate Exowhich actions can occur exogenously. We then mod-
ify the specification of Trans for primitive actions and wait
actions from Golog as follows:

Trans��� s� 
� s�� � � � � as before � � � �
�a�Exo�a��Poss�a� s��
 � ��s� � do�a� s�

	It is true, though not immediately obvious, that Trans� remains
properly defined even with these axioms containing negative occur-
rences of Trans. See [1] for details.

and similarly for test actions. So while executing a program,
exogenous actions whose preconditions are satisfied can oc-
cur before any primitive action or while waiting for any con-
dition to become true.
Finally, regarding interrupts, it turns out that these can be

explained using other constructs of ConGolog:

��	 ��
def
� while Interrupts running do

if � then � else FALSE�
To see how this works, first assume that the special flu-
ent Interrupts running is always true. When an in-
terrupt ��	 �� gets control, it repeatedly executes �
until � becomes false, at which point it blocks, releas-
ing control to anyone else able to execute. Note that ac-
cording to the above definition of Trans, no transition oc-
curs between the test condition in a while-loop or an if-
then-else and the body. In effect, if � becomes false,
the process blocks right at the beginning of the loop, un-
til some other action makes � true and resumes the loop.
To actually terminate the loop, we use a special primi-
tive action stop interrupts, whose only effect is to make
Interrupts running false. Thus, we imagine that to execute
a program � containing interrupts, we would actually execute
the program fstart interrupts � �� ii stop interrupts�g
which has the effect of stopping all blocked interrupt loops
in � at the lowest priority, i.e. when there are no more actions
in � that can be executed.

4 A reactive multi-elevator controller
We illustrate the use of the concurrency primitives using a
reactive elevator controller example. The example will use
the following terms (where e stands for an elevator):
� ordinary primitive actions:
goDown�e� move elevator down one floor
goUp�e� move elevator up one floor
buttonReset�n� turn off call button of floor n
toggleFan�e� change the state of elevator fan
ringAlarm ring the smoke alarm

� exogenous primitive actions:
reqElevator�n� call button on floor n is pushed
changeTemp�e� the elevator temperature changes
detectSmoke the smoke detector first senses smoke
resetAlarm the smoke alarm is reset

� primitive fluents:
floor�e� s� � n the elevator is on floor n, � 
 n 
 �
temp�e� s� � t the elevator temperature is t
FanOn�e� s� the elevator fan is on
ButtonOn�n� s� call button on floor n is on
Smoke�s� smoke has been detected

� defined fluents:
TooHot�e� s�

def
� temp�e� s� � 


TooCold�e� s�
def
� temp�e� s� � �


We begin with the following basic action theory for the above
primitive actions and fluents:
� initial state:
floor�e� S�� � � �FanOn�S�� temp�e� S�� � �
ButtonOn�
� S�� ButtonOn��� S��



� exogenous actions:
�a�Exo�a� � a � detectSmoke�a � resetAlarm�
a � changeTemp�e�� �n�a � reqElevator�n�

� precondition axioms:
Poss�goDown�e�� s��floor�e� s� �� �
Poss�goUp�e�� s��floor�e� s� �� �
Poss�buttonReset�n�� s��TRUE
Poss�toggleFan�e�� s��TRUE
Poss�ringAlarm��TRUE

Poss�reqElevator�n�� s���� 
 n 
 �� �
�ButtonOn�n� s�

Poss�changeTemp� s��TRUE
Poss�detectSmoke� s���Smoke�s�
Poss�resetAlarm� s��Smoke�s�

� successor state axioms:
Poss�a� s�� �floor�e� do�a� s�� � n�

�a � goDown�e� � n � floor�e� s�� �� �
�a � goUp�e� � n � floor�e� s� � �� �
�n � floor�e� s� � a �� goDown�e� �

a �� goUp�e���
Poss�a� s�� �temp�e� do�a� s�� � t�

�a � changeTemp�e�� FanOn�e� s� �
t � temp�e� s�� �� �

�a � changeTemp�e�� �FanOn�e� s� �
t � temp�e� s� � �� �

�t � temp�e� s� � a �� changeTemp�e���
Poss�a� s�� �FanOn�e� do�a� s���

�a � toggleFan�e� � �FanOn�e� s�� �
�a �� toggleFan�e� � FanOn�e� s���

Poss�a� s�� �ButtonOn�n� do�a� s���
a � reqElevator�n� �
�ButtonOn�n� s� � a �� buttonReset�n���

Poss�a� s�� �Smoke�do�a� s���
a � detectSmoke �
�Smoke�s� � a �� resetAlarm��

Note that many fluents are affected by both exogenous and
programmed actions. For instance, the fluent ButtonOn is
made true by the exogenous action reqElevator (i.e. some-
one calls for an elevator) and made false by the programmed
action buttonReset (i.e. when an elevator serves a floor).
Now we are ready to consider a basic elevator controller. It

might be defined by something like:

while �n�ButtonOn�n� do
�n�fBestButton�n��� serveF loor�e� n�g;

while floor�e� �� � do goDown�e�

The fluent BestButton would be defined to select among
all buttons that are currently on, the one that will be served
next. For example, it might choose the button that has been
on the longest. For our purposes, we can take it to be any
ButtonOn. The procedure serveF loor�e� n� would consist
of the actions the elevator would take to serve the request
from floor n. For our purposes, we can use:

serveF loor�e� n�
def
�

while floor�e� � n do goUp�e�;
while floor�e� � n do goDown�e�;
buttonReset�n�

We have not bothered formalizing the opening and closing of
doors, or other nasty complications like passengers.
Using this controller �, we would get execution traces like

Axioms j� Do��� S�� do��u� u� r�� u� u� u� r�� d� d� d� d� d�� S���

where u�goUp�e�, d�goDown�e�, rn� buttonReset�n�.
In this particular run, there were no exogenous actions.
This controller does have a big drawback, however: if no

buttons are on, the first loop terminates, the elevator returns
to the first floor and stops, even if buttons are pushed on its
way down. It would be better to structure it as two interrupts:

��n�ButtonOn�n�	
�n�fBestButton�n��� serveF loor�e� n�g�

�floor�e� �� �	 goDown�e��

with the second at lower priority. So if no buttons are on, and
you’re not on the first floor, go down a floor, and reconsider;
if at any point buttons are pushed exogenously, pick one and
serve that floor, before checking again. Thus, the elevator
only quits when it is on the first floor with no buttons on.
With this scheme, it is easy to handle emergency or high-

priority requests. We would add

��n�EButtonOn�n� 	
�n�fEButtonOn�n��� serveEF loor�e� n�g�

as an interrupt with a higher priority than the other two (as-
suming suitable additional actions and fluents).
To deal with the fan, we can add two new interrupts:

�TooHot�e� � �FanOn�e�	 toggleFan�e��

�TooCold�e� � FanOn�e�	 toggleFan�e��

These should both be executed at the very highest priority. In
that case, while serving a floor, whatever that amounts to, if
the temperature ever becomes too hot, the fan will be turned
on before continuing, and similarly if it ever becomes too
cold. Note that if we did not check for the state of the fan,
this interrupt would loop repeatedly, never releasing control
to lower priority processes.
Finally, imagine that we would like to ring a bell if smoke

is detected, and disrupt normal service until the smoke alarm
is reset exogenously. To do so, we add the interrupt:

�Smoke	 ringAlarm�

with a priority that is less than the emergency button, but
higher than normal service. Once this interrupt is triggered,
the elevator will stop and ring the bell repeatedly. It will han-
dle the fan and serve emergency requests, however.
Putting all this together, we get the following controller:

��TooHot�e� � �FanOn�e� 	 toggleFan�e�� k
�TooCold�e� � FanOn�e�	 toggleFan�e��� ii
��n�EButtonOn�n� 	

�n�fEButtonOn�n��� serveEF loor�e� n�g�ii
�Smoke	 ringAlarm� ii
��n�ButtonOn�n�	

�n�fBestButton�n��� serveF loor�e� n�g�ii
�floor�e� �� �	 goDown�e��

Note that this elevator controller uses 5 different levels of pri-
ority. It could have been programmed in Golog without inter-
rupts, but the code would have been a lot messier.



Now let us suppose that we would like to write a controller
that handles two independent elevators. In ConGolog, this
can be done very elegantly using ��� k ���, where �� is the
above program with e replaced by elevator� and �� is the
same program with e replaced by elevator�. This allows the
two processes to work completely independently (in terms of
priorities).�� For n elevators, we would use ��� k 
 
 
 k �n�.
In some applications, it is useful to have an unbounded num-
ber of instances of a process running concurrently. For exam-
ple in an FTP server, we may want an instance of a manager
process for each active FTP session. This can be programmed
using the �jj concurrent iteration construct.
Finally, if it is desirable to have the elevator continue work-

ing indefinitely, we can do so by adding an interrupt:

�TRUE	 wait�

at the lowest possible priority, where wait is a no-op in terms
of fluents. So if everything else is satisfied, the elevator sim-
ply waits until a higher priority interrupt is triggered exoge-
nously. Such programs never terminate, so semantics based
on Do cannot be used, but their behavior can nonetheless be
specified using Trans [1].

5 Discussion
With all of this procedural richness, it is important not to lose
sight of the logical framework. ConGolog is indeed a pro-
gramming language, but one whose execution, like planning,
depends on reasoning about actions. Thus, a crucial part of a
ConGolog program is the declarative part: the precondition
axioms, the successor state axioms, and the axioms charac-
terizing the initial state. This is central to how the language
differs from superficially similar “procedural languages”. A
ConGolog program together with the definition of Do and
some foundational axioms about the situation calculus is a
formal logical theory about the possible behaviors of an agent
in a given environment.�� And this theory must be used ex-
plicitly by a ConGolog interpreter.
We have developed a prototype ConGolog interpreter in

Prolog (see [1]). Indeed, a simple if somewhat inefficient
interpreter can be lifted directly from Final, Trans, and Do
introduced above.�� For example, for ��� ii ���, we would
have the following two Prolog clauses for Trans:
trans(prioConc(Sigma1,Sigma2),S1,

prioConc(Delta,Sigma2),S2) :-
trans(Sigma1,S1,Delta,S2).

trans(prioConc(Sigma1,Sigma2),S1,
prioConc(Sigma1,Delta),S2) :-

trans(Sigma2,S1,Delta,S2),
not trans(Sigma1,S1,_,_).

Our implementation requires that the program’s precondition
axioms, successor state axioms, and axioms about the initial

�
Of course, when an elevator is requested on some floor, both el-
evators may decide to serve it. It is easy to program a better strategy
that coordinates the elevators: when an elevator decides to serve a
floor, it immediately makes a fluent true for that floor, and the other
elevator will not serve a floor for which that fluent is already true.

��Although with a different emphasis, this approach is shared by
[2] where a logical formalism is proposed for concurrent database
transactions.

��Exogenous actions can be simulated by generating them proba-
bilistically or by asking the user at runtime when they should occur.

state be expressible as Prolog clauses. This is a limitation of
the implementation, not the theory.
In summary, we have shown how, given a basic action the-

ory describing an initial state and the preconditions and ef-
fects of a collection of primitive actions, it is possible to com-
bine these in complex ways appropriate for providing high-
level control. The semantics of these complex actions ends
up deriving directly from that of the underlying primitive ac-
tions. In this sense, we inherit the solution to the frame prob-
lem provided by successor state axioms for primitive actions.
There are, however, many areas for future research.

Among them, we mention: 1) incorporating sensing actions,
that is, actions whose effect is not to change the world so
much as to provide information to be used by the agent at
runtime; 2) handling non-termination, that is, developing ac-
counts of program correctness (fairness, liveness etc.) appro-
priate for controllers expected to operate indefinitely.

References
[1] A longer version of this paper, in preparation.
[2] A. J. Bonner and M. Kifer. Concurrency and communication

in transaction logic. In Proc. ICDT’95, 1995.
[3] J. De Bakker and E. De Vink. Control Flow Semantics. MIT

Press, 1996.
[4] G. De Giacomo and X. Chen. Reasoning about nondetermin-

istic and concurrent actions: A process algebra approach. In
Proc. AAAI’96, pages 658–663, 1996.

[5] C. C. Green. Theorem proving by resolution as a basis for
question-answering systems. In Machine Intelligence, vol. 4,
pages 183–205. Edinburgh University Press, 1969.

[6] M. Hennessy. The Semantics of Programming Languages.
John Wiley & Sons, 1990.

[7] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall Int., 1985.

[8] D. Leivant. Higher order logic. In Handbook of Logic in Arti-
ficial Intelligence and Logic Programming, vol. 2, pages 229–
321. Clarendon Press, 1994.

[9] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. B. Scherl. GOLOG: A logic programming language for
dynamic domains. To appear in the Journal of Logic Program-
ming, 1997.

[10] J. McCarthy and P. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In Machine Intelli-
gence, vol. 4, Edinburgh University Press, 1969.

[11] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[12] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science Dept.
Aarhus Univ. Denmark, 1981.

[13] D. Pym, L. Pryor, D. Murphy. Processes for plan-execution.
In Proc. UK Planning and Scheduling SIG Workshop, 1995.

[14] R. Reiter. The frame problem in the situation calculus: A sim-
ple solution (sometimes) and a completeness result for goal
regression. In Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy, pages
359–380. Academic Press, 1991.

[15] R. Reiter. Natural actions, concurrency and continuous time in
the situation calculus. In Proc. KR’96, pages 2–13, 1996.

[16] C. Stirling. Modal and temporal logics for processes. In Log-
ics for Concurrency: Structure versus Automata, LNCS 1043,
pages 149–237. Springer-Verlag, 1996.


