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Abstract

Information Integration is one of the core problems
in cooperative information systems. We argue that two
critical factors for the design and maintenance of ap-
plications requiring Information Integration are con-
ceptual modeling of the domain, and reasoning sup-
port over the conceptual representation. In particular,
we present a general architecture for Information In-
tegration that explicitly includes a conceptual repre-
sentation of the application. We illustrate how the ar-
chitecture can express several integration settings and
existing systems. We provide various arguments in fa-
vor of the conceptual level in the architecture and of
automated reasoning over the conceptual representa-
tion. Finally, we present a specific proposal of an inte-
gration system which realizes the general architecture
and is equipped with decidable reasoning procedures.

1. Introduction

Information Integration has the goal of providing
an integrated and coherent view of data stored in mul-
tiple, possibly inhomogeneous information sources. It
is one of the core problems in distributed databases,
cooperative information systems, and data warehous-
ing, which are key areas in the software development
industry [36, 28, 34, 22].

Early work on integration was carried out in the
context of database design, and focused on the so-
called schema integration problem, i.e. designing a
global, unified schema for a database application start-
ing from several subschemas, each one produced in-
dependently from the others [3]. More recent efforts
have been devoted to information integration, which
generalizes schema integration by taking into account

actual data in the integration process. Here the input
is a collection of source data sets (each one constituted
by a schema and actual data), and the goal is to provide
an integrated and reconciled view of the data residing
at the sources.

The integration system may in principle be used
both to access the data and to update the stored in-
formation. However, performing updates on the inte-
grated data requires changing the data in the sources.
Hence a tight coordination between the sources and the
integration system and among the different sources is
needed. Such form of integration is typically of inter-
est to federated databases [32, 18]. Recently a looser
approach to integration has emerged, where the auton-
omy of the sources is a basic requirement, and the in-
tegration system is seen as a “client” of the sources
which cannot interfere with their operation. Hence,
performing updates on the integrated data is not of
concern and the reconciled view is used only for an-
swering queries. For this reason this form of integra-
tion is often called read-only integration. In this ap-
proach the organization responsible for the integration
system is typically different and independent from the
organizations managing the single sources [33]. In this
paper we concentrate on read-only integration.

Information integration can be either virtual or
materialized. In the first case, the integration sys-
tem acts as an interface between the user and the
sources [32, 24], and is typical of multi-databases,
distributed databases, and more generally open sys-
tems. In virtual integration query answering is gener-
ally costly, because it requires accessing the sources.
In the second case, the system maintains a replicated
view of the data at the sources [19, 25], and is typ-
ical, for example, for both information systems re-
engineering and data warehousing. In materialized
information integration, query answering is generally
more efficient, because it does not require access-
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ing the sources, whereas maintaining the materialized
views is costly, especially when the views must be up-
to-date with respect to the updates at the sources (view
refreshment). In this paper, we do not deal with the
problem of view refreshment.

There are two basic approaches to the information
integration problem, called procedural and declara-
tive. In the procedural approach, data are integrated
in an ad-hoc manner with respect to a set of predefined
information needs. In this case, the basic issue is to de-
sign suitable software modules that access the sources
in order to fulfill the predefined information require-
ments. Several information integration (both virtual
and materialized) projects, such as TSIMMIS [12, 33],
Squirrel [38, 23], and WHIPS [20, 37] follow this idea.
They do not require an explicit notion of integrated
data schema, and rely on two kinds of software compo-
nents: wrappers that encapsulate sources, converting
the underlying data objects to a common data model,
and mediators [35] that obtain information from one or
more wrappers or other mediators, refine this informa-
tion by integrating and resolving conflicts among the
pieces of information from the different sources, and
provide the resulting information either to the user or
to other mediators. The basic idea is to have one me-
diator for every query pattern required by the user, and
generally there is no constraint on the consistency of
the results of different mediators.

In the declarative approach, the goal is to model the
data at the sources by means of a suitable language,
to construct a unified representation, to refer to such
a representation when querying the global information
system, and to derive query answers by means of suit-
able mechanisms accessing the sources and/or the ma-
terialized views. This is the idea underlying systems
such as Carnot [13, 21], SIMS [1, 2] and Information
Manifold [31, 27, 29].

In this paper we propose a novel architecture for
declarative, read-only Information Integration, both
virtual and materialized. The architecture allows one
to explicitly model data and information needs – i.e. a
specification of the data that the system provides to the
user – at various levels:

• The conceptual level contains a conceptual repre-
sentation of the sources and of the reconciled in-
tegrated data, together with an explicit declarative
account of the relationships among their compo-
nents. Additionally, it provides a declarative rep-
resentation of the information needs served by the
Integration System.

• The logical level contains a representation in
terms of a logical data model of the sources and
of the data materialized by the integration system.

In addition it contains the logical schemas of the
information needs.

• The physical level contains a store for the mate-
rialized data, wrappers for the sources and medi-
ators for the information needs and the material-
ized data store.

• The meta level is a repository of the meta infor-
mation concerning the Integration System.

The relationship between the conceptual and the log-
ical, and between the logical and the physical level
is represented explicitly by specifying mappings be-
tween corresponding objects of the different levels.

The main contributions of the paper are:

• The presentation of the general architecture as
outlined above. The architecture can express
several different integration settings and existing
systems. (Section 2)

• A discussion in favor of the conceptual level in
the architecture and the ability of automated rea-
soning over the conceptual representation. Rea-
soning can be exploited in several tasks both in
the design phase of the Integration System, and
in its maintenance phase. (Section 3)

• A specific proposal of an integration system
which realizes the general architecture and which
supports modeling both at the conceptual and at
the logical level, and is equipped with decidable
reasoning procedures. (Section 4)

2. Architecture of integration systems

In this section we describe the architecture of an in-
tegration system resulting from the introduction of a
conceptual layer. In particular, we illustrate both the
various components that are maintained and used by
the system, and the tasks that the system has to carry
out for performing its job. The proposed architecture
serves as a general setting where different approaches
to integration can be evaluated and compared. Indeed,
we illustrate how existing integration systems can be
obtained as specializations of this general architecture.
In Section 4 we present the CDLNR approach to Infor-
mation Integration, viewing it as a specific instantia-
tion of the architecture.

2.1. Components

The data structures managed by an integration sys-
tem are shown in Figure 1, where four levels are sin-

2



M
et

a 
M

od
el

Sources

· · ·

· · ·

Domain Model

Modelm
Query

Model
Enterprise

Query

Source
Modeln

Model1

Model1
Source

Data Schema

Source
Data Store1 Data Storen

logical link

data flow

conceptual link

physical/logical mapping
conceptual/logical mapping

Mediators

Source

Source
Schema1

Source
Scheman

Wrappers

physical level

View Store
Materialized

Query
Schemam

View Schema
Materialized

Query
Schema1

meta level

Integration System

Interface

conceptual level logical level

Figure 1. Architecture for Data Integration

gled out: conceptual, logical1, physical, and meta.
Furthermore, Figure 1 includes the following ele-
ments, which are outside the boundary of the integra-
tion system:

• The Interface, which is the module that allows
the communication with both the user (i.e. any-
one interested in retrieving information) and the
designer (i.e. the one in charge of the building and
the functioning of the system).

• The External Sources, which represent the inde-
pendent systems managing the actual data that the
system is supposed to integrate.

The conceptual level

The conceptual level contains a formal description of
the concepts, the relationships between concepts, and
the information requirements that the integration ap-
plication has to deal with. The key feature of this level
is that such a description is independent from any sys-
tem consideration, and is oriented towards the goal of

1Here the term “logical” is used according to the database termi-
nology, where it denotes a description of data in terms of structures
managed by DBMSs (e.g., relational tables), which are at a more
abstract level with respect to the physical organization of data.

expressing the semantics of the application. In partic-
ular, we distinguish among the following elements in
the conceptual level:

• The Enterprise Model2 is a conceptual represen-
tation of the global concepts and relationships
that are of interest to the application. It corre-
sponds roughly to the notion of integrated con-
ceptual schema in the traditional approaches to
schema integration.

• For an information source S, the Source Model of
S is a conceptual representation of the data resid-
ing in S.

• The term Domain Model is used to denote the
union of both the Enterprise Model and the var-
ious Source Models, plus possible intermodel
relationships, i.e. relationships holding between
concepts belonging to different models (i.e. be-
tween one concept in source S and one concept
in the Enterprise Model, or between one concept
in one source and one concept in another source).

2Here the term “model” is used to denote a formal description in
a given representation language. Note the difference with the usual
meaning in databases, where it denotes the formalism itself.
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• The term Query Model is used to denote a con-
ceptual representation of any information need.
An example of Query Model in a Data Ware-
house application is a conceptual specification of
a multidimensional table requiring aggregations
over elementary data.

We point out that the Domain Model contains in-
termodel relationships, i.e. the specification of the in-
terdependencies between elements of different Source
Models and between Source Models and the Enter-
prise Model. The notion of interdependency is a cen-
tral one in our architecture. Since the sources are of in-
terest in the system, integration does not simply mean
producing the Enterprise Model, but rather to be able
to establish the correct relationships both between the
Source Models and the Enterprise Model, and between
the various Source Models.

Any integration system including a conceptual level
must adopt suitable languages for expressing the above
mentioned elements of the architecture. We use the
term conceptual description language for denoting the
formalism in which the Domain Model is expressed,
and the term of conceptual query language for de-
noting the language in which Query Models are ex-
pressed. An example of conceptual description lan-
guage is the Entity-Relationship Model. An example
of conceptual query language is any formalism for ex-
pressing queries over a semantic data model.

The logical level

The logical level contains the description of the data
and the queries of interest to the system, expressed
in terms of typical logical structures managed by
DBMSs. In particular, the Source Schema of a source
S describes the logical content of S and the Material-
ized View Schema describes the logical content of the
materialized views maintained by the system. Collec-
tively, the Source Schemas and the Materialized View
Schema form what we call the Data Schema. Obvi-
ously, the Materialized View Schema is meaningful
only in the case where the integrated data (or portions
thereof) are materialized, whereas is meaningless in
the case of fully virtual integration. Finally, the Query
Schemas express the information needs at the logical
level.

Suitable languages are used for expressing the
above mentioned elements. We use the term logical
data model for denoting the formalism in which the
Source Schemas and the Materialized View Schemas
are expressed. Similarly, the term logical query lan-
guage refers to the language for expressing the Query
Schemas. Obvious examples of logical data model and
logical query language are the relational model, and

SQL, respectively.

The physical level

In our architecture, the physical level refers to the ac-
tual data managed by the system. Therefore, the phys-
ical level is the one where the extensional information
of the system is taken into account. In particular, the
Materialized View Store contains the data that the sys-
tem maintains materialized. Figure 1 shows also wrap-
pers and mediators at this level. A wrapper is a soft-
ware module that is able to access a source and retrieve
the data therein in a form that is coherent with the log-
ical specification of the source.

A mediator is a software module that takes as input
a set of data produced by either a wrapper or another
mediator, and produces as output another set of data,
namely the one corresponding to the result of a given
query. In other words, a mediator is always associated
to a particular query at the logical level. The result of
a mediator can be either materialized, or transferred to
the interface.

The meta level

The meta level comprises the Meta Model, which is
the repository with all meta infomation about the var-
ious system components, and is used by both the user
and the designer. A more detailed discussion of the
meta level is outside the scope of this paper, and can
be found, for example, in [26].

Mappings

Figure 1 also shows the mappings between the concep-
tual and the logical level, and between the logical and
the physical level.

Regarding the first aspect, the mapping between
Source Models and Source Schemas represents the
fact that the correspondence between the logical rep-
resentation of data in the sources and concepts in the
Source Models should be explicit. The same holds for
information needs expressed at the conceptual level
and queries expressed at the logical level. Finally,
the correspondence between elements of the Domain
Model and the Materialized View Schema represents
the information on which are the concepts and rela-
tionships that are materialized in the views maintained
by the system. We assume that the integration sys-
tem makes it available a conceptual/logical mapping
specification language, by which the above correspon-
dences can be formally defined.

Regarding the second aspect, the mapping between
mediators and Query Schemas and/or the Materialized
Views Schema makes it explicit the fact each mediator
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is supposed to compute the extension a logical object,
which can be either materialized or not. A wrapper is
always associated to an element of a Source Schema,
namely, the one whose data are extrated and retrieved
by the wrapper. The mapping with Source Schemas
represents exactly the correpondence between a wrap-
per w and the logical element whose extensional data
are extracted form the source by w. Similarly to the
case of conceptual/logical mapping, we postulate the
existence of a logical/phyisical mapping specification
language, by which the above correspondences can be
formally defined.

2.2. Tasks

In this section we briefly discuss the tasks that
should be carried out during the use of an integration
system conforming to our architecture.

The first class of tasks comprises all the activities
regarding the definition of the different elements of the
architecture. Such activities mainly pertain to the de-
sign of the integration system. For example, the spec-
ification of the various Conceptual Models and the in-
termodel links belongs to this phase. We note that the
architecture does not prescribe to build the conceptual
level in one shot, but rather supports an incremental
definition of both the Domain and the Query Models.
Indeed, such models are subject to changes and addi-
tions as the analysis of the information sources pro-
ceeds.

Observe that in the (partially) materialized ap-
proach to integration, one of the most critical task is
the decision of what and how to materialize. More-
over, in both the materialized and the virtual approach,
the task of wrapper and mediator design is extremely
important. Designing a wrapper means to decide how
to access the source in order to retrieve data, and de-
signing a mediator means to decide how to access the
sources in order to answer a particular query or to ma-
terialize a particular view. Note that the design of a
mediator comprises the resolution of conflicts and/or
heterogeinity of data residing in different sources.

The second kind of tasks include all the design ac-
tivities to be performed when a new information need
arises. In this case, the new query has to be com-
pared with those computed by the available mediators.
The most important problem here is the one of query
rewriting, i.e. checking if and how the new query can
be reformulated in terms of those computed by the ex-
isting mediators. In virtual integration, this may lead
the new mediator to simply call for the existing me-
diators. In materialized integration, reformulating the
query in terms of the materialized views means avoid-
ing to access the sources. Conversely, if the query

(or part thereof) cannot be answered by simply rely-
ing on the existing materialized views, a new view (or
new views) should be materialized, and the problem of
query rewriting presents itself in a different form: the
new view to materialize is seen as a query that has to
be formulated in terms of the Source Schemas.

Finally, the third class of tasks concern the activi-
ties that are routinely carried out during the operational
phase of the systems, namely data extraction, query
computation, and view materialization.

2.3. Comparison with existing systems

We now show how the architecture outlined above
can be instantiated to different information integration
settings.

Schema integration [3] In the schema integration
setting, integration starts by providing a conceptual
representation of the sources (Source Models), and
proceed by generating the global database schema
(Enterprise Model). Such a schema is then used for
the design of the implemented database (Materialized
View Schema, Materialized View Store). Once such
database has been created, the sources are discarded
and the conceptual level is not used anymore.

Multidatabases [32, 24] The setting of multi-
databases deals with different sources, which are con-
sidered as internal components of the Integration Sys-
tem. Based on a logical representation of the sources,
mediators are designed in order to satisfy informa-
tion needs also expressed at the logical level (Query
Schemas). Such mediators do not materialize data in
the system. Typically, the conceptual level is not taken
into account.

Global information systems [33] In this setting the
goal is to provide tools for the integrated access to
multiple and diverse autonomous information sources
and repositories, such as databases, HTML docu-
ments, unstructured files. Among the systems pro-
posed in this framework, Information Manifold [31,
27, 29] uses a representation at the conceptual level of
a reconciled view (called World View) of the informa-
tion sources and no data is materialized. Also TSIM-
MIS [12, 33] deals with a virtual scenario, but does
not provide a conceptual representation of data. One
difference between the above two systems is that in
the former, data at the sources are described as views
over the World View, whereas in the latter, each me-
diator computes a view over the sources. Both these
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strategies have disadvantages: in the first case inter-
source relationships are not expressible, and in the sec-
ond case general concepts cannot be characterized in-
dependently from the sources. Notably, the CDLNR ap-
proach described in the next section does not impose
any predefined direction for expressing links between
the sources and the Enterprise Model.

Data warehouses [25] In this setting views are ma-
terialized, as e.g. in the WHIPS system [20, 37], in
which information is not represented at the conceptual
level. The lack of a conceptual level is shared by the
SQUIRREL system [40, 39, 38, 23]. However, within
SQUIRREL it is also possible to take into account the
case of virtual views.

3. Advantages of conceptual modeling and
reasoning

The most distinguished features of the architecture
described in the previous section are related with the
conceptual level. The role and importance of the con-
ceptual level in traditional architectures for informa-
tion management systems is well understood and tools
for conceptual modeling are commonly used to drive
system design.

Conversely, conceptual design has not often been
addressed in the framework of Information Integra-
tion, where the focus of attention has been mostly on
the logical and physical levels. We believe that con-
ceptual modeling can play a fundamental role in In-
formation Integration, as long as the proper modeling
issues and the proper modeling tools are clearly identi-
fied. In particular, in Information Integration the con-
ceptual model should be able to represent the relation-
ships between data in different sources. In the next
section we provide a language for representing inter-
model relationships and formally characterize them,
while below we discuss the advantages that derive
from the ability to provide a conceptual representa-
tion and reasoning support for Information Integration.
The discussion takes it for granted that once the mod-
eling issues are well understood, tools to support the
conceptual design can actually be developed.

The following is a list of advantages of conceptual
modeling that are relevant both in the design and in the
operation of an Integration System.

Declarative and system independent approach In
general terms, one can say that a conceptual level in
the architecture for Information Integration is the ob-
vious mean for pursuing a declarative approach to In-
formation Integration. As a consequence, all the ad-
vantages deriving from making various aspects of the

system explicit are obtained. The conceptual level pro-
vides a system independent specification of the rela-
tionships between sources, and between sources and
the enterprise model.

High level of abstraction in user interface One of
the most tangible effects of conceptual modeling has
been to break the barrier between user and system by
providing a higher level of abstraction in the design.
Moreover conceptual models are naturally expressed
in graphical form, and graphical tools that adequately
present the overall information scenario are key factors
in user interfaces.

Incremental approach One criticism that is often
raised to the declarative approaches to Information In-
tegration is that it requires a reconciled view of the
data, which can be very costly to obtain. As we already
mentioned, having a conceptual level does not impose
to fully develop it at once. Rather, one can incremen-
tally add new sources or new elements therein, when
they become available, or when needed, thus amor-
tizing the cost of integration. Therefore, the overall
design can be regarded as the incremental process of
understanding and representing the relationships be-
tween data in the sources.

Documentation While in the procedural approach
the information about the interrelationships between
sources is hard-wired in the mediators, in a declarative
approach it can be made explicit. The importance of
this clearly emerges when looking at large organiza-
tions where the information about data is widespread
into separate pieces of documentation that are often
difficult to access and non necessarily conforming to
common standards. Conceptual modeling for Infor-
mation Integration can thus provide a common ground
for the documentation of the enterprise data stores and
can be seen as a formal specification for mediator de-
sign. By making the representation explicit we gain
re-usability of the acquired knowledge, which is not
achieved within a procedural approach to Information
Integration.

Maintenance Classical advantages of conceptual
level in the design phase are advantages also in the
maintenance phase of the Information Integration Sys-
tem (sources change, hence “design never ends”).

All the advantages outlined above can be obtained
simply by having the appropriate linguistic (graphical)
tools for expressing the conceptual model, as well as
the mappings to the other components of the architec-
ture.
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Another set of features that one can obtain from the
introduction of the conceptual level are related to the
ability to reason over the conceptual representation.
Such a possibility, which is fully supported by our ap-
proach described in the next section, can be used in the
accomplishment of several activities concerning both
the design and the operation of the system. For ex-
ample, one can use reasoning to check the conceptual
representation for inconsistencies and redundancies; to
maintain the system in response to changes in the in-
formation needs; to improve the overall performance
of the system. In particular, we are pursuing the goal
of characterizing the quality of data and to use such a
characterization to improve quality of services by rely-
ing on reasoning support on the conceptual represen-
tation [7].

4. The CDLNR approach

In this section we instantiate the general integra-
tion architecture presented in Section 2 to a specific
proposal which we call the CDLNRsystem (Conceptual
Data Language for N Repositories). The distinguish-
ing features of CDLNR are: the use of the conceptual
level in the representation of information and the abil-
ity of handling both materialized and virtual represen-
tation of views. Moreover, CDLNR is equipped with
automated reasoning support both at the conceptual
and at the logical level. A detailed description of the
physical level is outside the scope of the paper.

4.1. Representation at the conceptual level

In CDLNR both the Enterprise Model and the
Source Models are expressed by means of a
logic-based conceptual description language, called
DLR [6, 8], which is general and powerful enough
to express the usual database models, such as the
Entity-Relationship Model, the Relational Model, or
the Object-Oriented Data Model (for the static part).
To specify knowledge on the conceptual interrelation-
ships among the sources and/or the enterprise, we use
intermodel assertions [11] expressed also in DLR.
Intermodel assertions provide a simple and effective
declarative mechanism to express the dependencies
that hold between entities (i.e. classes and relation-
ships) in different models [22].
DLR is a Description Logic [17, 9, 4] based on the

formalisms presented in [5, 14], which includes con-
cepts (i.e. unary relations) and n-ary relations. Rela-
tions R (of given arity between 2 and nmax) and con-
cepts C are built starting from a set of atomic relations
P and atomic concepts A according to the following

syntax (i and j denote components of relations, i.e. in-
tegers between 1 and nmax, n denotes the arity of a
relation, i.e. an integer between 2 and nmax, and k de-
notes a nonnegative integer)3:

R ::= >n | P | ($i/n: C) | ¬R | R1 uR2

C ::= >1 | A | ¬C | C1 u C2 |
∃[$i]R | (≤ k [$i]R)

The semantics of the DLR constructs is specified
through the notion of interpretation. An interpretation
I = (∆I , ·I) is constituted by an interpretation do-
main ∆I and an interpretation function ·I that assigns
to each concept C a subset CI of ∆I , and to each re-
lation R of arity n a subset RI of (∆I)n, such that
the conditions in Figure 2 are satisfied.

The Enterprise Model and each Source Model is
constituted by a finite set of intramodel assertions,
which express knowledge on the relations and con-
cepts inM, and have the form

L v L′ L 6v L′ L ≡ L′ L 6≡ L′

with L, L′ either two relations of the same arity or two
concepts.

An interpretation I satisfies an intramodel assertion
L v L′ (resp. L ≡ L′) if LI ⊆ L′I (resp. LI =
L′I), and it satisfies L 6v L′ (resp. L 6≡ L′) if I does
not satisfy L v L′ (resp. L ≡ L′). An interpretation
satisfiesM, if it satisfies all assertions inM.

Intermodel assertions have essentially the form of
intramodel assertions, although the two relations (con-
cepts) L and L′ belong to two different conceptual
modelsMi,Mj . Intermodel assertions can be either
extensional, which express relationships between the
extensions of the relations (concepts) involved, or in-
tensional, which express conceptual relationships that
are not necessarily reflected at the instance level. The
interpretation of extensional intermodel assertions is
analogous to the one of intramodel assertions. In-
stead, intensional intermodel assertions are interpreted
by first taking the intersection of the relations (con-
cepts) L, L′ with both >ni and >nj (>1i and >1j).
For example, an interpretation I satisfies the inter-
model assertion Ri vint R′

j if >n
I
i ∩ >n

I
j ∩ RI

i ⊆
>n

I
i ∩ >n

I
j ∩R′

j
I .

The conceptual query language for the Query Mod-
els is an SQL-like language over the alphabet of
the Domain Model [6], suitably extended with ag-
gregation constructs, in the line of those presented
in [10, 15].

3Concepts and relations must be well-typed, which means that (i)
only relations of the same arity n can be combined to form expres-
sions of type R1 u R2 (which inherit the arity n), and (ii) i ≤ n
whenever i denotes a component of a relation of arity n.
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>In ⊆ (∆I)n >I1 = ∆I
PI ⊆ >In AI ⊆ ∆I

(¬R)I = >In \RI (¬C)I = ∆I \ CI
(R1 uR2)I = RI1 ∩RI2 (C1 u C2)I = CI1 ∩ CI2
($i/n: C)I = {(d1, . . . , dn) ∈ >In | di ∈ CI}
(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI . di = d}

(≤ k [$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI1 | di = d}| ≤ k}

Figure 2. Semantic rules for DLR (P, R, R1, and R2 have arity n)

The expressiveness ofDLR, required for capturing
meaningful properties at the conceptual level, makes
reasoning a complex task. We have devised a sound
and complete algorithm to decide the satisfiability of
the conceptual representation [8].

4.2. Representation at the logical level

The CDLNR logical data model is the relational
model: we express data at the logical level in terms
of a set of relation schemas, each describing either a
relation of a Source Schema, or a relation of the Ma-
terialized View Schema. The mapping between the
Data Schemas and the Domain Model is obtained by
characterizing each relation schema in terms of a non-
recursive Datalog query over the elements of the Do-
main Model, i.e. a query of the form:

q(~x) ← body1(~x, ~y1) ∨ · · · ∨ bodym(~x, ~ym)

where each body i(~x, ~yi) is a conjunction of atoms,
either R(~t) or C(t) (where ~t and t are variables in
~x,~yi)with R, C relations and concepts over the Do-
main Model. The arity of q is equal to the number
of variables of ~x. By means of assertions on both re-
lations and concepts expressed in the Domain Model,
additional constraints than those directly present in the
query can be imposed4.

The logical query language is an embedded SQL,
which enables to express a Query Schema in terms of
the Data Schema, possibly making use of other Query
Schemas.

Automated reasoning at the logical level is based
on techniques for query containment developed in [6],
which is exploited for performing query rewrit-
ing [33].

4.3. Example

Figure 3 shows a Domain Model W that repre-
sents in M0 an enterprise and in M1 and M2 two

4This distinguishes our approach with respect to [16, 30], where
n-ary relations appearing in queries are not part of the conceptual
model.

sources containing information about contracts be-
tween clients and departments for services, and about
registration of clients at departments. Symbols sub-
scripted by i refer to model Mi. The intramodel as-
sertions in M0, M1, M2 are visualized in Figure 4,
using Entity-Relationship diagrams, which are typi-
cal of conceptual modeling in Databases and are fully
compatible with DLR. Source 1 contains informa-
tion about clients registered at public-relations depart-
ments. Source 2 contains information about contracts
and complete information about services. The Enter-
prise Model provides a reconciled conceptual descrip-
tion of the two sources. Note that, in this example,
such reconciled description is not complete yet: e.g.,
the relation PROMOTION is not modeled inM0 (recall
that our approach to integration is incremental). The
various interdependencies among relations and con-
cepts in the Enterprise Model and the two Sources
Models are represented by the intermodel assertions
on the right-hand side of Figure 3, which are also part
ofW .

As for the logical level representation, suppose, for
example, that the actual data in Source 1 are described
by a relational table Table1 having three columns,
one for the client, one for the department which the
client is registered at, and one for the location of the
department. Such a table is mapped on W by means
of the query:

Table1(x, y, z) ← REG-AT1(x, y) ∧ LOCATION1(y, z)

Using the reasoning services associated withDLR,
we can automatically derive logical consequences of
W . For instance, we can prove that the assertion
PROMOTION1 vext REG-AT0 u ($2:PrDept0) is
a logical consequence of W . Observe that, although
M0 does not contain a relation PROMOTION, the
above assertion relates PROMOTION1 toM0 in a pre-
cise way.

Next, consider, for instance, the following queries
posed toM0:

q1(x, y) ← Client0(x) ∧ CONTRACT0(x, y, z)
q2(x, y) ← Client0(x) ∧ CONTRACT0(x, y, z) ∧

REG-AT0(x, w) ∧ PrDept0(w)

8



CONTRACT0 v ($1:Client0) u ($2:Dept0) u
($3:Service0)

REG-AT0 v ($1:Client0) u ($2:Dept0)
PrDept0 v Dept0

REG-AT1 v ($1:Client1) u ($2:Dept1)
PROMOTION1 v REG-AT1

LOCATION1 v ($1:Dept1) u ($2:String)
Dept1 v ∃≤1LOCATION1[$1].>2

CONTRACT2 v ($1:Client2) u ($2:Dept2) u
($3:Service2)

Dept1 ≡ext PrDept0

REG-AT1 vext REG-AT0

Client1 ≡ext Client0 u ∃≥1REG-AT0[$1].PrDept0

Client0 u ∃≥1CONTRACT0[$1].>2

vext ∃≥1PROMOTION1[$1].>2

Client2 vext Client0 u ∃≥1CONTRACT0[$1].>2

Dept2 vext Dept0

Service2 ≡ext Service0

Client1 ≡int Client2

Dept1 ≡int Dept2

Figure 3. Domain model (($i/n: C) is abbreviated by ($i: C))

1

1

3

2

2

Service_0

CONTRACT_0

REG-AT_0 Department_0

PRDept_0

Client_0

Client_1

1 2
PROMOTION_1 LOCATION/

String

REG-AT_1 Department_1
21

Client_2

Service_2

Department_2CONTRACT_2
1

2
3

Figure 4. Enterprise and source models in Entity-Relationship diagrams

q2 is obviously contained in q1. However, taking into
account the assertions inW , we can also derive that q1

is contained in q2 wrtW .

5. Conclusions

The main contribution of this work is a novel archi-
tecture for Information Integration which generalizes
several proposals in the literature. The distinguishing
feature of the proposed architecture is the emphasis on
the conceptual modeling of the data, which allows for
automated reasoning support for the Integration Sys-
tem design and maintenance tasks.

We have also proposed CDLNR, a specific Inte-
gration System based on Description Logics, that
conforms to the general architecture and that allows
for decidable reasoning over the conceptual model.
CDLNR is currently being used in the context of data
warehouse design within the ESPRIT Project DWQ
(Foundations of Data Warehouse Quality) [7, 26]. A
tool implementing the CDLNR system is currently un-
der construction for such a project.
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