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Abstract 

Model checking is a widely used technique in verification of dynamic systems. Re­
cently several papers have shown that model checking can be used to do planning. 
In the present paper we report the results of a set of experiments on using two well­
known model checkers, Spin and SMV, to do traditional planning (i.e, planning in a 
complete information setting for reaching a state where a certain goal is satisfied). In 
the experiments we have compared the performances of such model checkers with state­
of-art planners, IPP, FF, and TLPLAN, on problems used in AIPS'98 and AIPS'OO 
competitions. 

Keywords: model-theoretic approaches to planning, planning for temporally extended 
goals, experimental results 
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1 Introduction 

Model checking is a widely used technique in verification of dynamic systems [8, 16]. Such 
a technique is based on building the transition graph associated to a dynamic system and 
verifying on such a transition graph dynamic properties expressing acceptable runs. Sophisti­
cated technologies have been developed to deal efficiently with very large transition systems. 
As a result model checking is having an increasingly success in the industry especially for 
hardware verification. 

Recently several paper have shown that model checking can be used to do planning 
[6, 12, 9, 1]. The interest on planning via model checking is especially motivated by the need 
to extend traditional planning to planning for temporally extended goals [2, 3]. Indeed, model 
checking can be naturally used to generate plans that are sequences of actions satisfying very 
general dynamic properties. In addition, model checking can also be used to generate infinite 
plans, i.e., plans that involve non terminating loops [9]. 

Another source of interest in planning via model checking is the set of technologies de­
veloped to deal efficiently with large search spaces, which are crucial in a real world setting. 
In the present paper we focus exactly on these. In particular we report the results of a set 
of experiments that we have done using two well-known model checkers, Spin [14] and SMV 
[19], to do traditional planning (i.e, planning in a complete information setting for reaching 
a state where a certain goal is satisfied). In the experiments we have compared the perfor­
mances of such model checkers with state-of-art planners on problems used in AIPS'98 and 
AIPS'OO competitions. The planners we have used for the comparison are IPP [17], which 
was one of the best performers in AIPS'98 competition, FF [13], which was among the best 
performers in AIPS'OO, and TLPLAN [3], which accepts temporally extended goals used as 
control knowledge to prune that search space. 

The rest of paper is organized as follows. In Section 2, we briefly describe model checking 
and how it can be used to do planning. In Section 3 we introduce the two model checkers and 
the three planners used in the experiments and the experiments themselves. In Section 4 we 
report the results of the main experiments. In Section 5 we consider the impact of adding 
control knowledge, encoded as action preconditions and as temporally extended goals. In 
Section 6 we draw some conclusion. 

2 Planning via model checking 

Model checking [8, 16] is an automated technique for verifying finite state systems. The 
process of determining the correctness of specifications, design and products is growing in 
importance, since systems are more and more complex and errors are become more and more 
unacceptable. An important feature of model checking is that it can be performed automat­
ically on finite states systems. On such systems, model checking is typically implemented by 
an exhaustive search of the state space of the system, to determine if some property is true 
or not. Given sufficient resources, the procedure will always terminate with a yes/no answer. 
Moreover, it can be implemented by algorithms [21, 11] with reasonable efficiency, which can 
be run on moderate-sized machine. Model checking is based on the following ideas: 
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1. The system is modeled in a specification language accepted by the model checker. 
Through this language one can describe a transition system, i.e., a transition graph 
that describes in terms of states and transitions between states (caused by actions) all 
possible behaviors of the modeled system. 

2. The correctness claim, i.e., the property of the system that we want to verify, is ex­
pressed as a temporal logic formula that places certain constraints on the behaviors 
of the system, i.e., on the (possibly infinite) sequences of states the system may tra­
verse in its execution. In particular, in this paper we concentrate on system properties 
expressed in linear time logic (LTL) [22]. 

3. The model checker verifies the claim wrt all possible behaviors of the system. 

If the model checker finds a behavior that falsify the claim, it returns a counterexample, that 
is a sequence of states from the initial situation, demonstrating why the claim isn't verified. 
The main problem the model checkers have to face, is states explosion: usually the transition 
system that has to be built to verify a claim is exponential in the specification. Hence model 
checkers implement sophisticated techniques to tackle such a problem. 

How can model checking be applied to planning? The idea is very simple. We specify 
the planning domain in the language accepted by the model checker and the goal as an LTL 
formula. This formula expresses that eventually a state of the system, where the goal is 
satisfied, is reached. Then, we give to the model checker the negation of the formula as the 
correctness claim. The model checker tries to falsify the claim, and if it succeeds, it returns 
a sequence of states that constitutes a counterexample. Now, in such a sequence, the goal 
is eventually satisfied. So from such a sequence we can extract the actions that form a plan 
for the goal. 

3 Experiments 

We have used for our experiments the model checkers Spin [14] and SMV [19]. These model 
checkers are widely used in industry to formally verify the correct behavior of synchronous 
and asynchronous process systems. They both accept a correctness claim specified by an 
LTL formula1. Spin uses a depth-first search algorithm to search for the counterexample, 
whereas SMV a breadth-first algorithm. Both Spin and SMV implement suitable techniques 
to solve the states explosion problem. 

We have compared the model checkers Spin (precompiled version 3.4.6) and SMV 
(precompiled version 08-08-00p3) with the planners FF [13] (v2.2), IPP [17] (v3.3) and 
TLPLAN [3]. IPP and FF are among the planners that scored the best results at AIPS'98 
and AIPS'OO competitions, respectively. TLPLAN is a forward-chaining planner that ac­
cepts temporally extended goals. These can be used to prune the search space by expressing 
domain dependent search control knowledge. Since for TLPLAN we can choose the search 
strategy, we chose the depth first strategy that is faster though it returns plans that are not 
optimal wrt the length. 

1 In fact SMV accepts CTL formulas, however it is able to translate LTL formulas into CTL using the 
results in [7]. 
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We have used a Pentium III lOOOMhz, 512Mb RAM and O.S. W indows 2000. To run FF 
we used the Unix simulator Cygwin-b20. 

We have compared the systems on six problems: mlO-simple world, mlO-full world, 
schedule world, blocks world, gripper world and briefcase world2. The first four were proposed 
in AIPS'OO competition3, the fifth in AIPS'98 competition4 and the last one, proposed by 
Pednault [20], is often reported in literature5. For each of the above problem we have 
measured the maximum size of the instances that could be solved, the time needed to solve 
it, and the length (i.e, the number of actions) of the plan returned. 

We mostly have used default values for the various parameters of the systems. When 
different values are used we make it explicit in the text. 

4 Results 

The first set of experiments are tailored to show how model checkers compete on planning 
scenarios as drawn directly from planning competitions6• We report the results obtained in 
tables. Each table contains the name of the problem instances, their size in increasing order 
and, for each system, the seconds it required to find a solution and the number of actions; 
these two values are marked resp. by an "s" and an "a". To indicate why the planner or the 
model checker couldn't solve the problem instance, we introduce the following symbols: 

• }ll meaning that the system ran out of memory; 

• r meaning that the system exhausted at least one of the available resources but the 
memory (the depth search limit, the State-vector size limit, etc.); 

• r meaning that no solution was found after 30 minutes. 

The mlO-simple problem. An elevator has to be driven from a floor to another, to board 
and bring passengers to destination. The size of the problem instances is expressed in terms 
of number of passengers to serve (the number of floors is twice the number of passengers). 
The problem instances proposed in the original competition have at most size 30. The table 
in Figure 1 shows the obtained results. 

FF and TLPLAN solve all presented instances, but the former runs faster; SMV does 
much better than IPP, while Spin is slightly worse. In all presented instances, the model 
checkers always need a longer time to find a solution, compared to the time required by the 
planners. 

2The coding of the problems for the various systems is available from the authors on request. 
3The specifications, used in the experiments, of the problems mlO-simple world, mlO-full world, schedule 

world, blocks world can be found at http://www. cs. toronto. edu/aips2000/. On that site are also available 
the official competition results of AIPS'OO. 

4The specification of gripper world, used in the experiments, can be found at 
http: //ftp. cs. yale. edu/pub/mcdermott/ aipscomp-results. html. On that site are also available 
the official competition results of AIPS'98. 

5The specification of briefcase world used in the experiments can be found at 
http://www.informatik.uni-freiburg.de/�koehler/ipp.html 

6In these experiments TLPLAN runs without exploiting search control knowledge. 
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II In. name I In. size I IPP FF I TLPLAN I SMV I Spin 
1.0 

. . . 
7.0 

8.0 

9 .0 

10.0 

. . . 
19.0 

20. 0 

1 

. . . 
7 

8 

9 

10 

. . . 
19 

20 

0.00 s 
4a 
. . . 

6.55 s 
18 a 

66. 15 s 
22 

502. 5 5  s 
26 a 

#I 
#I 
. . . 
J'il 
#I 

0.00 s 
4 a  
. . . 

0.02 s 
19 a 

0.04 s 
24 a 

0.04 s 
27 a 

0.07 s 
29 a 
. . . 

0.22 s 
51 a 

0.01 s 
4a 
. . . 

0.34 s 
77 a 

0.58 s 
106 a 
0.9 0 s 
127 a 
l. lls 
127 a 
. . . 

39.12 s 
424 a 

35. 59 s 

0.55 s 
4a 
. . . 

1.63 s 
18 a 

3.00 s 
22 a 

5 .00 s 
26 a 

14. 73 s 
27 a 
. . . 

837.17 s 
48 a 

Figure 1: MlO-simple problem. 

7.44 s 
3 a 
. . . 

11.13 s 
31 a 

f 
f 
f 
f 
f 
f 

. . . 

f 
f 

II In. name I In. size I IPP I FF I TLPLAN I SMV I Spin II 
1.0 

. . . 
4.0 

1 

. . . 
4 

0.00 s 
4 a 
. . . 

73.85 s 
12 a 

0.03 s 
4a 
. . . 

0.03 s 
12 a 

0.00 s 
4a 
. . . 

0.01 s 
20 a 

Figure 2: MlO-full problem. 

5 

0.72 s 
9a 
. . .  

3.88 s 
25 a 

7.43 s 
5 a 
. . .  

13.11 s 
21 a 



The mlO-full problem. It's the same as the previous, but with some additional con­
straints: 

• "conflicLA" and "conflicLB" passengers are never on the lift at same time; 

• "never_alone" passengers go on board only if there's an "attendant" passenger on the 
lift; 

• "vip" and "going_nonstop" passengers are served before the others; 

• some passengers don't have access to some floors; 

• "going_up" passengers can't be on the lift when it goes down; 

• "going_down" passengers can't be on the lift when it goes up. 

The size of the problem instances is expressed in terms of number of passengers to serve 
(the number of floors is twice the number of passengers). The problem instances proposed 
in the original competition have at most size 30. The table in Figure 2 shows the obtained 
results. 

FF is the best. As in the previous problem, SMV solves more instances than IPP. Spin 
solves the same number of instances solved by IPP. The same happens for TLPLAN and 
SMV. Observe that the solution length found by SMV is more than twice the others because 
of the single assignment rule [18] that imposes strict limitations on how the constraints 
imposed by the problem are verified. 

The gripper problem. A robot with two hands has to move a given number of balls from 
room A to room B. The size of the problem instances is expressed in terms of number of 
balls to be moved. The instances proposed in the original competition have at most 42 balls. 
However, we went on with the experiments, increasing the size of problem instances, until 
the model checkers could not tackle them anymore. The obtained results are shown in the 
table in Figure 3. 

The column Spin* indicates the results obtained by a smart coding the problem that 
uses some predefined Spin constructs to handle communication across channels. FF is again 
the best. TLPLAN is the worst. SMV can solve more instances than IPP. Spin, when 
the specifications are coded in a simple way, can handle at most 10 balls, while when they 
are coded smartly it can do much better. This shows that one can greatly improve the 
performance of Spin by hacking with the coding of the problem. 

We also changed some of the parameters of Spin to improve its capabilities. We denote 
with "W' the results obtained setting the search depth limit (variable Maximum Search 
Depth) to a value of 200,000 (or greater); with "��" we indicate the results obtained setting 
the search depth limit to a value greater than 10,000 and the variable DVECTORSZ to a 
value greater than 1076 (see [15] for details). Spin, even with a smart coding of the problem 
(Spin*), cannot handle more than 250 balls because of the State-vector size limit ([15]), 
whose value can be changed only rebuilding Spin. 
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In . 
name 

prob01 

prob02 

prob03 

prob04 

prob05 

prob06 

. . . 
prob10 

In. 
size 

4 

6 

8 

10 

12 

14 

. . . 
22 

IPP 

0.00 s 
11a 

0.15 s 
17 a 

3.00 s 
23 a 

39 .30 s 
29 a 

438. 60 s 
35 a 

¢1 
¢1 
. . . 

¢1 
¢1 

FF 

0.02 s 
11a 

0.02 s 
17a 

0.03 s 
23 a 

0.03 s 
29 a 

0.02 s 
35 a 

0.03 s 
41 a 
. . . 

0. 05 s 
65 a 

TLPLAN 

0.09 s 
183 a 
0.71 s 
9 27 a 

t 
t 
t 
t 
t 
t 
t 
t 

. . . 

t 
t 

SMV 

0. 89 s 
11a 

2. 39 s 
17 a 

6. 43s 
23 a 

16. 79 s 
29 a 

43.90 s 
35 a 

116.73 s 
41 a 
. . . 

1527.81 s 
65 a 

Spin 

7.40 s 
159 a 
7.43 s 
727 a 

12. 63 s 
7489 a 

48.08U s 
>20, 000� a 

t 
r 
t 
r 

. . . 

t 
t 

Spin* 

7.40 s 
11a 

7.40 s 
17 a 

7. 49 s 
23 a 

7. 55 s 
29 a 

7.40 s 
35 a 

7.34 s 
41 a 
. . .  

7.43 s 
65 a II pro b 11 I 24 f-� -:..,.�--+---=07=�4

-
a

_
s -+---'-�.,------+----'--c�--+-----'--c�---+----=

77=-�0
-

a
_

s 
--jj 

. . . 
prob20 

. . . 
prob59 

prob60 

. . . 
prob124 

. . . 
42 

. . . 
120 

122 

. . . 
250 

. . . 

¢1 
¢1 
. . . 
¢1 
¢1 
¢1 
¢1 
. . . 
¢1 
¢1 

. . . 
0. 13 s 
125 a 

. . . 
0.46s 
359 a 
0. 86 s 
365 a 

. . . 
3.36 s 
749 a 

. . . 

t 
t 

. . . 

t 
t 
t 
t 

. . . 

t 
t 

. . . 

y 
y 

. . . 

y 
y 
y 
y 

. . . 

y 
y 

Figure 3: Gripper problem. 
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t 
t 

. . . 

t 
t 
t 
t 

. . . 

t 
t 

. . .  
7.48 s 
125 a 

. . .  
7.48 s 
359 a 

7. 56�U s 
365U� a 

. . .  
7.51� � s 
749�� a 



In. 
narne 

2. 0 

. . . 
4. 0 

5. 0 

6.0 

7. 0 

8. 0 

. . . 
51. 0 

In. 
size 

2 

. . . 
4 

5 

6 

7 

8 

. . . 
51 

IPP 

0.00 s 
2 a 
1 ts 
. . . 

0.05 s 
4(+1) a 

2 ts 
0.10 s 

4( + 1) a 
2 ts 

1.75 s 
6(+1) a 

2 ts 
2.80 s 

6(+1) a 
2 ts 

r 
r 
r 

. . . 

r 
r 
r 

FF 

0.17 s 
2 a 
1 ts 
. . . 

0.07 s 
4( +1) a 

2 ts 
0.07 s 

4(+1) a 
2 ts 

0. 09 s 
7( +4) a 

5 ts 
0. 10 s 

6( +1) a 
2 ts 

0.41s 
9( +3) a 

4 ts 
. . . 

12.37 s 
51( +24) a 

25 ts 

TLPLAN 

f 
f 
f 

. . . 

f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 
f 

. . . 

f 
¥' 
¥' 

SMV 

0. 89 s 
4 a  
1 ts 
. . . 

24. 57 s 
ll(+l) a 

2 ts 
}'11 
� 
� 
Jb 
� 
� 
� 
}'11 
}'11 
}'11 
}'11 
� 

. . . 
}'11 
Jb 
� 

Figure 4: Schedule problem. 

Spin 

� 
}'11 
}'11 
. . . 
}'11 
}'11 
Jb 
}'11 
� 
� 
Jb 
� 
� 
� 
}'11 
}'11 
}'11 
}'11 
� 

. . . 
}'11 
Jb 
� 

Spin * 

7.40s 
2 a 
2 ts 
. . . 

7. 39 s 
4 a 
2 ts 

7.57 s 
5 a 
3 ts 

32. 69 s 
lla 
9 ts 

100. 9 5  � �  s 
7� ij a 
4� ij ts 

}'11 
}'11 
� 

.. . 
}'11 
Jb 
� 

Observe that by changing some of the parameters we could also improve the capa­
bilities of FF. However, to go over 666 balls, we have to rebuilt it, setting the variable 
MAX_PLAN_LENGTH to a value greater than 2000. To go over 796 balls we need to rebuilt 
it, setting also the variable MAX_STATE to a higher value than it is. 

The schedule problem. A collection of parts has to be processed by certain machines; 
goals are mostly non-interacting, but they compete for resources (time on machines) and on 
the same part different goals clobber other goals. This problem implements the concepts 
of concurrency and parallelism of actions: this situation is modeled by considering a time­
stamp, a variable whose value is incremented each time parts release the machines. The 
size of the problem instances is expressed in terms of number of parts to be processed. The 
instances proposed in the original competition have at most size 51. The obtained results are 
shown in the table in Figure 4, where "ts" marks the number of time-stamps required. The 
number of actions includes only the actions to process parts and not the ones to increment 
the time-stamp: the latter are reported in parentheses. Only Spin has a construct to handle 
concurrency, so we calculate by hand the value of its time-stamp. Again, the column Spin* 
indicates the results obtained by coding the problem in smart way. 

We can see that without hacking Spin cannot solve any problem instance. With a smart 

8 



I 

I 

ln. name 

t 1  

. . . 
4a 

ln. size 
obj. 

1 

. . . 
4 

loc. 
2 

. . . 
5 

IPP 

0. 00 s 
3 a  
. . . 

0.25 s 
9a  

FF 

0.01 s 
3 a 
. . . 

0.03 s 
9 a 

TLPLAN 

0.00 s 
3a 
. . . 

0.00 s 
44 a 

Figure 5: Briefcase problem. 

SMV 

0.48 s 
3a 
. . . 

1.32 s 
9a  

Spin 

7.40s 
3a 
. . .  

7.55 s 
128 a 

coding Spin can solve the same instances as IPP. TLPLAN can't solve any problem instance 7. 

SMV can handle at most 4 parts. FF does much better than all the other systems. Finally, 
we changed some of the parameters of Spin to deal with bigger instances: we indicate with 
"�U" the results obtained using a Supertrace/Bitstate verification (see [15]). 

The briefcase problem. A briefcase has to be moved between different locations, to bring 
objects in their goal locations; objects can be put in and taken out of it, and when they're 
in the briefcase, they are moved with it. The size of the problem instances is expressed in 
terms of number of objects and number of locations, reported resp. in columns "obj." and 
"loc.". The problem instances considered here have at most 10 objects and 11 locations. 
The obtained results are shown in Figure 5. FF is still the best. SMV and IPP have similar 
performances. The same happens for Spin and TLPLAN. 

The blocks problem. Stack a set of blocks, to reach a given configuration and moving 
only one block at a time. The size of the problem instances is expressed in terms of number 
of blocks to be handled. The instances proposed in the original competition have at most 
50 blocks. The table in Figure 6 shows the obtained results. "U" denotes that the variable 
Maximum Search Depth has been set to 32,000, whereas "��, indicates that it has been set 
to 1,000,000. FF is the best. Spin and SMV can handle the same number of blocks and they 
behave worse than IPP. TLPLAN is the worst. 

7However, we have to remind that TLPLAN has been built to use a control knowledge to guide the search 
of a plan . 
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II ln. name I ln. size I IPP FF I TLPLAN I SMV Spin 
4. 0 4 0.05 s 0.02 s 0.25 s 1.00 s 7.33 s 

6 a  6 a  12 6 a  12 a 
5. 0 5 0.00 s 0.02 s 0. 09 s 4.38 s 7.47s 

12 a 12 a 296 a 12 a 302 a 
6. 0 6 0.05 s 0.02 s r' 27.87 s 7.84� s 

12 a 20 a r' 12 a 1760� a 
7. 0 7 0.05 s 0.01 s r' 484. 73 s 27. 53U� s 

20 a 20 a r' 20 a > 10,000�� a 
8. 0 8 0.15 s I 0.03 s 

Figure 6: Blocks problem. 

5 Adding control knowledge 

The second set of experiments were designed to show whether one could take advantage of 
the additional expressive power provided by LTL for expressing control knowledge. Control 
knowledge consists of suitable constraints on state transitions and thus can (at least in 
principle) be used to reduce the state space explored during planning. Obviously verifying 
such constraints adds an overhead in choosing the state to explore next. Hence, control 
knowledge is effective when the reduction of the state space is prevailing over the overhead 
introduced in processing each state. 

Control knowledge can either be expressed in a declarative way through a temporally 
extended goal, or in a "procedural way" changing the system itself by modifying the pre­
conditions of actions. The difference between these two approaches is that while the former 
requires the system to extract from constraints on transitions the corresponding conditions 
on the next state to explore, in the latter such conditions are already explicited in the 
preconditions of actions. 

Traditional planning systems do not allow for expressing temporally extended goals. So 
for these systems phrasing control knowledge through action preconditions is the only choice. 
TLPLAN has a special construct for the specification of control knowledge as a temporally 
extended goal. For the model checkers we adopted both approaches, though SMV posed 
difficulties in expressing certain action preconditions (see below) . 

We have concentrated on briefcase world and blocks world problems. On those we have 
implemented the control knowledge in [3]. 
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I 
I 

I 

I 

ln. name. 

t 1  

. . . 
4a 

5 

. . . 
t 7  

IPP 
(Int) 
0. 00 s 

3 a  
. . . 

37. 10 s 

9a 

y 
y 

. . . 

y 
y 

FF 
(Int) 
0. 11 s 

3 a 
. . . 

0.37 s 

9 a 
2.45 s 

22 a 
. . . 

30.73 s 

15 a 

TLPLAN 
(Goal) 
0.00 s 

3 a  
. . . 

0.01 s 

15 a 
0.01 s 

23 a 
. . . 

0.02 s 

27 a 

SMV 
(Int) 
0.43 s 

3 a  
. . . 

0. 89 s 

9a 
2.40 s 

17 a 
. . . 

96. 40 s 

15 a 

SMV 
(Goal) 
0.58 s 

5 a 
. . . 

50.70 s 

19 a 

� 
r' 

. . . 

� 
� 

Spin 
(Int) 
7.43 s 

3 a  
. . . 

7.30 s 

9a 
7.48 s 

20 a 
. . . 

7. 70 s 

15 a 

Figure 7: Briefcase problem with control knowledge. 

Spin 
(Goal) 
7. 64 s 

3 a  
. . .  

7. 52 s 

9a 
7. 59 s 

20 a 
. . .  

7.58 s 

15 a 

The briefcase problem. The control knowledge for this problem is based on the following 
natural ideas: 

1. Don't move the briefcase from its current location if there is an object that needs to 
be taken out or put into the briefcase; 

2. Don't take an object out of the briefcase if the briefcase is not at the object's goal 
location; 

3. Don't put objects that don't need to be moved into the briefcase; 

4. Don't move the briefcase to an irrelevant location, where a location is irrelevant if there 
is no object to be picked up there, there is no object in the briefcase that needs to be 
dropped off there, and it is not a goal to move the briefcase to that location. 

The obtained results are shown in the table in Figure 7, where: 

• (Pre) means that the control knowledge is implemented within the system, 

• (Goal) that it's implemented within the goal specification. 

Spin and TLPLAN solve all problem instances: the former finds shorter solutions, whereas 
the latter requires a shorter time. SMV solves the same instances as IPP, if we encode the 
control knowledge within the system. It solves the same instances as FF, if we encode 
the control knowledge within the goal. In Spin, we had difficulties in encoding the control 
knowledge within the goal: the LTL formula, encoding the control knowledge, involves the 
use of the LTL next operator X, but the precompiled version of Spin doesn't support it. 
We managed to encode the control knowledge by hacking with Spin predefined constructs 
to handle communication across channels. 
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Figure 8: Blocks problem with control knowledge. 

The blocks problem. The control knowledge for this problem is based on the classification 
of towers as good or bad: 

ck1: "a good tower can't be destroyed, a bad tower can't grow up with blocks, it isn't 
useful to pick up a block if the tower where we want to stack it isn't a good tower" . 

For the two model checkers we also report the results obtained adding to the system, instead 
of the previous control knowledge, the simpler condition: 

ck2: "stack block x on block y if y is on its goal-block and y is x goal-block, where 
goal-block is the block where the considered block is on, in the goal situation." 

In fact, we could encode ck1 in SMV neither within the system, nor within the goal, in a 
simple way, because of the single assignment rule [18]. We also had difficulties in encoding 
ck1 in Spin within the goal because of the LTL next operator X that the precompiled version 
of Spin doesn't support. However, we could encode ck1 by doing the same hacking as for 
the briefcase problem. The obtained results are shown in Figure 8, where: 

• (Pre) means that the control knowledge ck1 is implemented within the system, 

• (Goal) that ck1 is implemented within the goal specification, 

• (Pre*) that we implemented the control knowledge ck2 within the system. 
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FF and TLPLAN are the best. Spin can solve the same instances as IPP if we encode 
control knowledge ck2; if we encode ck1, instead, Spin solves less instances. SMV can handle 
at most 4 blocks encoding control knowledge ck2. 

6 Conclusions 

The results of the experiments shows that the performances of the two model checkers, Spin 
and SMV, are comparable to that of IPP. Instead FF performs much better that both. In 
other words Spin and SMV used as planners are competitive with the best performing plan­
ners at the AIPS'98 competition but not with those at AIPS'OO. Spin can indeed improve 
its performance by exploiting additional control knowledge. Instead SMV appears to be less 
responsive to control knowledge. With control knowledge, TLPLAN becomes the best per­
former. It has to be pointed out that Spin is quite sensible to how the problem specification 
is coded. Often by hacking with such coding one can greatly improve its performance. 

We observe that there is a lot of room for improvement in doing planning using Spin 
and SMV, and more generally using model checkers. Our experiments show that both Spin 
and SMV are not fine tuned to do planning. Indeed, as shown, by changing various built in 
parameters we can get better performances already. Obviously one could do even better by 
exploiting the technologies at the base of such model checkers to devise new planning systems 
that take advantage of them. First experiments in this directions are quite encouraging see 
for example [10]. 

There are several other systems we would have liked to do our experiments on: among 
them, the planner PADOK [4], which accepts LTL goals as Spin, SMV, and TLPLAN, and 
also the model checker NuSMV [5], a recent re-implementation of SMV. 
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