
Reasoning about Actions and Planning
in ltl Action Theories

Diego Calvanese, Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lastname @dis.uniroma1.it

Moshe Y. Vardi
Department of Computer Science
Rice University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract

In this paper, we study reasoning about ac-
tions and planning with incomplete informa-
tion in a setting where the dynamic system is
specified by adopting Linear Temporal Logic
(ltl). Specifically, we study: (i) reasoning
about action effects (i.e., projection, histori-
cal queries, etc.), in such a setting; (ii) when
actions can be legally executed, assuming a
non-prescriptive approach, where executing
an action is possible in a given situation un-
less forbidden by the system specification;
(iii) the problem of finding conformant plans
for temporally extended goals that consist of
arbitrary ltl formulas, thus allowing for ex-
pressing sophisticated dynamic requirements.
For each of these problems we establish tech-
niques and characterize the computational
complexity. For the last two problems we
make use of a second-order variant of ltl.

1 INTRODUCTION

Linear Temporal Logic (ltl) is a linear-time tempo-
ral logic which has been widely used for specifying
and verifying properties of dynamic systems, such as
safety, liveness, fairness, etc. [26, 13, 39]. In this pa-
per, we study reasoning about actions and planning
in a setting where we have incomplete information on
the dynamic system and our knowledge on it is rep-
resented in ltl. This means that we represent the
behavior of the system as a set of sequences of situa-
tions, where transitions from one situation to the next
are caused by actions. In particular, we describe the
system by introducing a set of atomic facts, called flu-
ents, whose truth value changes as the system evolves,
and by specifying through a logic (ltl, in our case)
the effects of actions on such a set of facts. Such an

approach is shared by several proposals for reasoning
about actions, e.g., [4, 24, 12]. Here, however, we do
not focus on specific action theories for the dynamic
system. Instead, we allow the system specification to
be an arbitrary ltl formula.

First, we address reasoning about action effects in the
above setting. In particular, we focus on problems of
the following form: given a finite sequence of actions,
determine whether a certain property holds (which in-
clude projections and historical queries [28]).

Next, we address executability of actions in a linear-
time setting. We observe that linear-time logics cannot
be used for prescriptively asserting which actions are
possible in a given situation. This is different from
branching-time formalisms, such as the situation cal-
culus [28], the fluent calculus [34], dynamic logics [10],
and branching-time temporal logics [7, 9], where ex-
ecutability can be expressed directly in the language.
There are some workarounds to this problem in the
linear-time setting, but they involve action theories of
a specific form, see [30] for a discussion. Here, instead,
we follow a non-prescriptive approach (similar in the
spirit to [16, 22, 3]): executing an action is possible
in a given situation, unless forbidden by the system
specification. We formalize and study such a notion in
the context of ltl.

Finally, we address the problem of finding conformant
plans for temporally extended goals in dynamic systems
in the presence of incomplete information on the initial
situation and on the full effects of actions. Conformant
plans are sequences of actions that are guaranteed to
fulfill the goal specification, even when we have incom-
plete information on the dynamic system in which the
plan is to be executed [14, 17, 33, 28, 5]. Temporally
extended goals are goals that specify acceptable se-
quences of states [1]. They subsume the usual goals
expressing “reachability” of desired conditions, as well
as generalized goals, such as “don’t-disturb” and “re-

store” requirements [41]. More generally, they allow
for expressing complex temporal properties typically
used in the specification of processes [13, 39]. Plan-
ning for temporally extended goals has been studied
in [1, 6, 2, 21], where complete information is assumed,
and in [11], where the system is specified as a determin-
istic transition system, except for the initial situation,
on which incomplete knowledge is assumed. Related
kinds of goals, expressed in ctl, have been investi-
gated in [25]. We observe that ctl [13] is a branching
temporal logic whose expressive power is incomparable
to that of ltl. Here we address conformant planning
for temporally extended goals specified by means of
arbitrary ltl formulas.

Observe that, as we deal with goals expressing gen-
eral temporal properties, even sequential plans may
in fact involve loops, since goals of this form may re-
quire infinite executions. Consider, for example, a plan
to satisfy the following requirement: whenever certain
triggering conditions are met within a finite (but unde-
termined) number of steps, a specified state of affairs
must be brought about in which the triggering condi-
tions are met again.

For each of the above three problems, i.e., reasoning
about action effects, reasoning about executability of
actions, and conformant planning, we establish tech-
niques and characterize the computational complexity.
To formally capture the last two problems and to de-
rive reasoning procedures, we make use of a second-
order variant of ltl.

In this paper we focus on ltl as the linear-time for-
malism. However, all the results presented here can
be immediately rephrased in terms of more expressive
linear-time formalisms, such as µltl, which is able to
express any ω-regular property [37].

2 PRELIMINARIES

We introduce the temporal logic ltl and discuss its
relationship to Büchi automata on infinite strings. We
also introduce an extension of ltl with second-order
quantification.

2.1 LINEAR TEMPORAL LOGIC (LTL)

Linear Temporal Logic (ltl) was originally proposed
in Computer Science as a specification language for
concurrent programs [26]. Formulas of ltl are built
from a set P of propositional symbols and are closed
under the boolean operators, the unary temporal oper-
ators ◦, 3, and 2, and the binary temporal operator

U . Intuitively, ◦ϕ says that ϕ holds at the next in-

stant, 3ϕ says that ϕ will eventually hold at some
future instant, 2ϕ says that from the current instant
on ϕ will always hold, and ϕU ψ says that at some fu-
ture instant ψ will hold and until that point ϕ holds.
In fact, it is sufficient to consider as temporal oper-
ators only ◦ and U , since 3ϕ can be viewed as an
abbreviation for trueU ϕ, and 2ϕ as an abbreviation
for ¬3¬ϕ. We additionally use the standard boolean
abbreviations ∨ (or) and → (implies).

The semantics of ltl is given in terms of interpreta-
tions over a linear structure. Without loss of generality
and for simplicity of presentation, we use the natural
numbers IN as the linear structure. Hence, for an in-
stant i ∈ IN, the successive instant is i + 1. An inter-
pretation is a function π : IN → 2P , which assigns to
each element of P a truth value at each instant i ∈ IN.
For an interpretation π, we inductively define when an
ltl formula ϕ is true at an instant i ∈ IN, in symbols
π, i |= ϕ, as follows:

• π, i |= p, for p ∈ P iff p ∈ π(i).
• π, i |= ¬ϕ iff not π, i |= ϕ.
• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′.
• π, i |= ◦ϕ iff π, i+1 |= ϕ.
• π, i |= ϕU ϕ′ iff for some j ≥ i, we have that
π, j |= ϕ′ and for all k, i ≤ k < j, we have that
π, k |= ϕ.

A formula ϕ is true in π, in notation π |= ϕ, if
π, 0 |= ϕ. A formula ϕ is satisfiable if it is true in
some interpretation, and is valid, if it is true in every
interpretation.

Theorem 1 [31] Satisfiability (and validity) for ltl
formulas are PSPACE-complete.

2.2 BÜCHI AUTOMATA AND
CORRESPONDENCE WITH LTL

There is a tight relation between ltl and Büchi au-
tomata on infinite words (see e.g., [39]).

Given a finite nonempty alphabet Σ, an infinite word
is an element of Σω, i.e., an infinite sequence a0a1 · · ·
of symbols from Σ. A Büchi automaton [36] is a tuple
A = (Σ, S, S0, ρ, F) where:

• Σ is the alphabet of the automaton.

• S is the finite set of states.

• S0 ⊆ S is the set of initial states.

• ρ : S × Σ → 2S is the transition function of the
automaton (the automaton does not need to be
deterministic).

• F ⊆ S is the set of accepting states.

The input words of A are infinite words a0a1 · · · ∈ Σω.
A run of A on an infinite word a0a1 · · · is an infinite
sequences of states s0s1 · · · ∈ Sω such that s0 ∈ S0 and
si+1 ∈ ρ(si, ai). A run r is accepting iff lim(r)∩F 6= ∅,
where lim(r) is the set of states that occur in r in-
finitely often. In other words, a run is accepting if
it gets into F infinitely many times, which in turn
means, being F finite, that there is at least one state
sf ∈ F that is visited infinitely often. The language
accepted by A, denoted by L(A), is the set of words
for which there is an accepting run. Nondeterministic
Büchi automata are closed under intersection and com-
plement [36]. More precisely, for two Büchi automata
A1 and A2, the a number of states of the automaton
accepting L(A1) ∩ L(A2) is polynomial in the number
of states of A1 and A2 [40], while the number of states
of the automaton accepting Σω \L(A1) is exponential
in the number of states of A1.

The nonemptiness problem for an automaton is to de-
cide, given an automaton A, whether L(A) 6= ∅, i.e.,
whether the automaton accepts at least one word.

Theorem 2 [40] Nonemptiness of Büchi automata is
NLOGSPACE-complete.

The nonemptiness algorithm in [40] actually returns
a witness for nonemptiness, which is a finite prefix
followed by a cycle.

Both automata on infinite words and linear time logics,
such as ltl, are widely used in verification to specify
properties of dynamic systems [20, 40, 38]. The two
formalisms can be put in a tight correspondence by
considering as alphabet of the automaton the set 2P of
propositional interpretations of the propositional vari-
ables in P. Hence, an infinite word over the alphabet
2P accepted by an automaton can be viewed as an
interpretation of an ltl formula over P.

Theorem 3 [40] For every ltl formula ϕ one can ef-
fectively construct a Büchi automaton Aϕ whose num-
ber of states is at most exponential in the length of ϕ
and such that L(Aϕ) is the set of models of ϕ.

2.3 QUANTIFIED LINEAR TEMPORAL
LOGIC (QLTL)

We make also use of an extension of ltl by second-
order quantifiers over propositions, called Quantified
Linear Temporal Logic (qltl) [32]. Formally, formu-
las of qltl are built using the operators of ltl plus
an operator for existential quantification over propo-
sitions, i.e., ∃p.ϕ(p), where p is a proposition variable

and ϕ(p) is a qltl formula in which p occurs free.
We use also ∀p.ϕ(p) as an abbreviation for ¬∃p.¬ϕ(p).
The semantics of such an operator is defined as follows

• π, i |= ∃p.ϕ iff there is some π′ that agrees with
π except for the interpretation of proposition p,
and such that π′, i |= ϕ.

Observe that the two interpretations π and π′ may
disagree on the interpretation of p at any time point,
not only the initial one.

Every qltl formula can be put in prefix normal form,
i.e., written in the form

Q1p1.Q2p2. · · ·Qhph.ϕ

where each Qi is either ∀ or ∃, and ϕ is a (quantifier-
free) ltl formula. If Q1 is ∃ and there are k − 1 al-
ternations of quantifiers, we say that the formula is a
ΣQLTL

k formula. If Q1 is ∀ and there are k− 1 alterna-
tions of quantifiers, we say that the formula is a ΠQLTL

k

formula.

The following complexity characterization of satisfia-
bility for qltl formulas was given in [32] (for a positive
integer k, k-EXPSPACE denotes the set of languages
accepted by a Turing machine with space bounded by

22
···2n

, where the height of the tower is k, and n is the
size of the input tape).

Theorem 4 [32] Satisfiability for ΣQLTL

k+1 and for

ΠQLTL

k formulas, with k ≥ 1, is k-EXPSPACE-
complete.

The result is obtained by reducing satisfiability of a
qltl formula ϕ to non-emptiness of Büchi automata.
Intuitively, one first builds the Büchi automaton for
the ltl matrix of ϕ. Then, existential quantification
is handled by projecting out the existentially quanti-
fied propositions from the automaton, while universal
quantification requires a complementation [19], which
gives rise to an exponential blow-up in the number of
states of the automaton.1

3 REASONING ABOUT ACTIONS
USING LTL

We may characterize the behavior of a dynamic sys-
tem by a set of evolutions, each of which can be rep-
resented as a sequence of situations [28]. Transitions
from one situation to the next are caused by actions. If

1[15] describes a symbolic implementation of the com-
plementation construction described in [19].

we have complete information on the current situation
and complete information on the effects of actions, we
are able to determine the actual evolution of the sys-
tem corresponding to a given sequence of actions. Typ-
ically, however, we have incomplete information both
on the current situation and on the actual effects of
actions. So, given a sequence of actions, we will only
be able to isolate a set of possible evolutions, one of
which is the actual one. It follows that, if we want to
check whether a certain dynamic property holds, we
need to check it for every possible evolution.

Following a methodology typical of the literature on
reasoning about actions in AI (cf. [28, 30, 29, 16, 35])
we specify a dynamic system by introducing a set of
atomic facts, here called fluents, whose truth value
changes as the system evolves, and by specifying,
through a logical formalism, the effects of actions on
such a set of facts. Then, given a dynamic property, we
can use logical inference to check whether the property
holds.

3.1 STRUCTURAL REQUIREMENTS

Specifically, we adopt as logical formalism ltl. Since
ltl does not provide us a direct notion of action, we
use propositions to denote them. Hence we consider
two separate sets of atomic propositions:

• fluents F , which are propositions that denote
atomic facts on the current situation;

• actions A, which are special propositions denot-
ing that an action has just been performed.

We describe the dynamic system by means of a con-
junction of a finite set of ltl formulas. To suitably
model actions we always add as conjuncts to the spec-
ification of the dynamic system the following ltl for-
mulas:

2(
∨
a∈A

a)

to specify that one action must be performed in order
to get to a new situation, and

2(
∧
a∈A

(a→
∧

b∈A,b6=a

¬b))

to specify that a single action at a time can be per-
formed.

In this way, a unique proposition a ∈ A holds in each
situation, and it specifies the action a that has been
just performed to get to that situation2. We include in

2In fact, the approach can be easily extended to deal
with concurrent atomic actions.

A a proposition ad, representing a dummy action with
no effects. In the initial situation, where no actual ac-
tion has been performed yet, we require for uniformity
that ad holds.

3.2 SPECIFYING EFFECTS

Apart from such structural requirements on modeling
actions, we allow for (finite) sets of arbitrary ltl for-
mulas in specifying the dynamic system. A simple way
to specify the dynamic system is as follows:

• We describe the initial situation as an arbitrary
propositional formula ϕinit involving only fluents.

• We specify effects of actions by means of formulas
of the form

2(ϕ→◦(a→ ψ))

where ψ and ϕ are arbitrary propositional formu-
las involving only fluents. Such a formula says
that executing the action a under the conditions
denoted by ϕ brings about the conditions denoted
by ψ.3

• We may also specify state constraints by means
of formulas of the form

2φ

where φ is a propositional formula involving only
fluents.

Observe that with this formalization we may have in-
complete information on the initial situation. More-
over we may have incomplete information on the effects
of an action, i.e., even if we know the truth-values of
all the fluents in a given situation we may not know
their value after the execution of an action.

If we consider the above formalization to be too liberal
and we are willing to completely specify the effects of
actions, then we can use, for example, ltl formulas
that correspond to Reiter’s successor state axioms [28]
(which also provide a solution to the frame problem).
Namely

2(◦F ≡∨
a

(ϕ+
a ∧◦a) ∨ (F ∧

∧
b

(¬ϕ−b ∨◦¬b)))

where F is a fluent, the a’s are those actions that under
the circumstances described by the propositional for-
mulas ϕ+

a , involving only fluents, make F become true,

3Note that the formula 2(ϕ→◦(a→ ϕ)) corresponds
to a frame axiom expressing that ϕ does not change per-
forming a.

and the b’s are those actions that under the circum-
stances described by the propositional formulas ϕ−b ,
involving only fluents, make F become false. Hence
the formula above expresses that F is true next if and
only if either one of the a’s is executed and ϕ+

a is cur-
rently true, or F is currently true, and none of the b’s,
such that ϕ−b is currently true, is executed.

If instead we think that the above formalization is
too restricted, then ltl allows us also to express
very loose effect specifications, such as “continuing
to chop a tree sooner or later makes it fall down”:
(32¬chop) ∨ 3falls down, i.e., there cannot be a se-
quence of situations in which the tree is chopped in-
finitely often but it does not fall down.

Finally, ltl allows for expressing in a natural way
several forms of narratives [29, 30, 27]. Indeed, an
ltl formula may express that certain actions occur,
or certain conditions are brought about, according
to specified temporal patterns. For example, “after
three steps Mary arrives to the airport, then, even-
tually, she boards the plane”, can be expressed as

◦◦◦(arrives airport ∧3boards plane).

3.3 REASONING ABOUT ACTIONS
EFFECTS IN LTL

The discussion above shows that ltl is well suited to
describe dynamic systems wrt action effects. In this
paper, however, we do not focus on specific ways to
formalize the dynamic system. Instead, as mentioned,
we allow for any ltl formula as a description of the
dynamic system, as long as the structural requirements
are enforced.

We can use ltl validity to reason about action effects,
i.e., to solve problems of the following form: given a
finite sequence of actions, determine whether a certain
property holds [28]. Let Γ be the formula describing
the dynamic system, and let us introduce the formula

Occurs(a0 · · · ak, rs)
.
=

(a0 ∧◦(a1 ∧◦(· · ·◦(ak ∧ rs) · · ·))) ∧
2(rs →◦2¬rs)

which expresses that the sequence of actions a0 · · · ak
occurs, resulting in a situation denoted by the new
proposition rs (first conjunct), and that rs is true only
once (second conjunct). Note that rs acts as a marker
for the situation resulting by executing a0 · · · ak. The
projection problem (cf. [28]), “does the property ϕ
hold after the execution of the sequence of actions
a0 · · · ak?”, can be solved by checking the validity of

Γ → (Occurs(a0 · · · ak, rs) → 2(rs → ϕ))

Also, Historical queries (cf. [28]) of the form “does
the property ϕ always hold over the duration of the
sequence of actions a0 · · · ak?” can be answered by
checking the validity of

Γ → (Occurs(a0 · · · ak, rs) → 2((3rs)→ φ))

Similarly, historical queries of the form “does the prop-
erty ϕ hold at some point over the duration of the
sequence of actions a0 · · · ak?” can be answered by
checking the validity of

Γ → (Occurs(a0 · · · ak, rs) → 3(ϕ ∧3rs))

Since validity in ltl is PSPACE-complete, we have
that reasoning about action effects of a finite sequence
of actions is PSPACE-complete as well. More formally
we can state the following theorem.

Theorem 5 Given an ltl formula Γ specifying a dy-
namic system, and an ltl formula Φ specifying a dy-
namic property, deciding whether Γ→ Φ is PSPACE-
complete.

4 LEGAL ACTION SEQUENCES

A fundamental question that arises is what actions
are actually allowed at each given point. Often, in
formalisms for reasoning about actions, one adopts a
prescriptive approach, by specifying (explicitly or im-
plicitly4) the circumstances under which an action is
allowed at a given situation [28].

In ltl, on the other hand, we cannot express directly
in the language that a certain action is possible. Hence
we are forced to adopt a non-prescriptive approach,
i.e, it is always possible to execute an action, unless
it contradicts the system specification. However, one
should be careful in adopting this notion since ltl does
not adequately capture causality [22] in the presence
of incomplete information.

Consider for example the formula 2((◦a)→F), which
says that, if action a is performed next, then the fluent
F must be true now. While this is a logically mean-
ingful sentence, it is problematic in defining allowable
actions5. In principle, the actual state of the world
corresponds to a certain truth assignment to the flu-
ents. An action is executable if performing it does not

4Possibly involving a solution to the qualification prob-
lem [23, 34].

5Observe that, if we try to interpret the above formula
causally, we get a quite counterintuitive interpretation:
performing a has the effect of making F true in the sit-
uation preceding the execution of a, i.e., a would have an
effect on the past.

contradict such a truth assignment. If in the actual
state of the world F is true, then we can actually exe-
cute a, while if F is false, we cannot. Now, in general,
we have only partial information on the current state
of the world. So we need to ensure executability of ac-
tions whatever the current state of the world actually
is. In our example, if we do not know whether F is
true in the current situation, then we should not ask
to execute a, since this may not be possible.

This difficulty is shared by virtually all linear-time
formalisms, including those developed for reasoning
about actions, such as the Event Calculus. The typ-
ical way to overcome this problem is to constrain the
system specification so that the principle of direction-
ality is fulfilled: “information about a given time is de-
ductively independent from information about a later
time”, see [30] for a detailed discussion. This requires
to choose special forms of logical theories for describ-
ing the system.

Here instead, we study the case where the system spec-
ification Γ itself is not constrained in any way, and
introduce a notion of legality of a sequence of actions
wrt Γ, to characterize the sequences of actions that
are allowed. We say that a sequence a0 · · · am of ac-
tions and a sequence σ0 · · ·σn of truth assignments to
the fluents in F are consistent with Γ if there exists
a model of Γ whose interpretation of the actions in
the first m instants coincides with a0 · · · am and whose
interpretation of the fluents in the first n instants co-
incides with σ0 · · ·σn. An infinite sequence of actions
a0a1 · · · is consistent with Γ if there exists a model of
Γ whose interpretation of the actions coincides with
a0a1 · · ·. We say that an action ak+1 is legal after
the sequence of actions a0 · · · ak if for all sequences
σ0 · · ·σk of truth assignments to the fluents in F , if
a0 · · · ak and σ0 · · ·σk are consistent with Γ, then also
a0 · · · akak+1 and σ0 · · ·σk are consistent with Γ. The
sequence a0 is trivially legal, as long as Γ is satisfi-
able6. A finite sequence of actions a0 · · · ak is legal if
ai is legal after a0 · · · ai−1, for i = 1 . . . k. An infinite
sequence of actions a0a1 · · · is legal if it is consistent
with Γ, and if for all k > 0, ak is legal after a0 · · · ak−1.

The notion of legality cannot be expressed in an obvi-
ous way in ltl. However, in order to check the legality
of a given finite sequence of actions wrt a system speci-
fication Γ, we can apply directly the definition of legal-
ity for finite sequences introduced above. This allows
us to reduce the problem to a finite (although expo-
nential) number of ltl satisfiability checks. It is easy
to see that this provides us a PSPACE upper bound

6Recall that in our formalization a0 must be the dummy
action ad.

in the size of Γ and the length of the sequence.

Next we turn to infinite sequences, and we show that
legality can be captured in qltl. Let us introduce the
formulas

Point(now)
.
= 3now ∧2(now →◦2¬now)

EqUntil(~x, ~y,now)
.
= 2((3now)→ ~x ≡ ~y)

EqNext(~x, ~y,now)
.
= 2(now →◦(~x ≡ ~y))

where now is a proposition that acts as a marker, ~x and
~y are tuples of variables, one for each action (fluent),
and ~x ≡ ~y stands for the conjunction of equivalences
among corresponding components of the two tuples.
The formula Point(now) expresses that now holds at a
single time point. EqUntil(~x, ~y,now) expresses that ~x
and ~y coincide at every time point until the one where
now holds. EqNext(~x, ~y,now) expresses that ~x and ~y
coincide at the time point following the one where now
holds.

Let us use Γ(~a, ~f) to denote the system specification
Γ in which we have explicited all the actions ~a and all
the fluents ~f as parameters.

Then we can capture the notion of legality after a se-
quence of actions by means of the qltl formula

LegalNext(Γ,~a,now)
.
=

Point(now) ∧
∀~a1.∀~f1.Γ(~a1, ~f1) ∧ EqUntil(~a1,~a,now)

→ ∃~a2.∃~f2.Γ(~a2, ~f2) ∧
EqUntil(~a2,~a1,now) ∧
EqUntil(~f2, ~f1,now) ∧
EqNext(~a2,~a,now)

Intuitively, such a formula expresses that for every in-
terpretation of the actions and fluents satisfying Γ that
agrees with ~a till now (but possibly differs in the flu-
ents), there exists a further interpretation satisfying Γ
that agrees both in the actions and the fluents with
the first one till now , in which the action performed
next is the one selected by ~a.

Finally, we can characterize legal infinite sequences of
actions by means of the qltl formula:

Legal(Γ,~a)
.
= ∃~f.Γ(~a, ~f)∧∀now .LegalNext(Γ,~a,now)

Such a formula expresses that the sequence of actions
resulting from the interpretation of ~a is consistent with
Γ, and that every prefix of such a sequence continues
next with a legal action.

Theorem 6 An infinite sequence of actions a0a1 · · · is
legal wrt an ltl system specification Γ iff there exists
an interpretation π interpreting the actions ~a accord-
ing to a0a1 · · · and such that π |= Legal(Γ,~a).

Observe that, in defining Legal(Γ,~a), one alternation
of second-order quantifiers is required. This is an in-
dication that reasoning on legality is generally quite
hard. Indeed, if we put Legal(Γ,~a) in prefix normal
form, we get a ΠQLTL

2 formula. Hence, considering
Theorem 4 we get:

Theorem 7 Checking the existence of an infinite se-
quence of actions that is legal wrt an ltl system spec-
ification Γ can be done in 2-EXPSPACE.

Theorem 4 gives us in fact a constructive method to
check the existence of a legal infinite sequence of ac-
tions using automata theoretic techniques. In partic-
ular, we start from Legal(Γ,~a) in prefix normal form.
We construct a Büchi automaton A1 corresponding to
the matrix of such a formula. The automaton A1 is
exponential in the size of the matrix, and hence of
Γ. Next we project out the existentially quantified
variables from A1, getting an automaton A2. To deal
with universal quantification, we complement A2, ob-
taining an automaton A3 of double exponential size,
project out the universal quantified variables from A3,
and then complement again, obtaining an automaton
A4. The automaton A4 would be of triple exponential
size in Γ. However, we can do the last complementa-
tion on the fly while checking for non-emptiness, thus
obtaining the 2-EXPSPACE upper bound.

It turns out that the bound in the previous theorem is
actually tight.

Theorem 8 Checking the existence of an infinite se-
quence of actions that is legal wrt an ltl system spec-
ification Γ is 2-EXPSPACE-hard.

Proof sketch: Recall that satisfiability of ΠQLTL
2 formu-

las is 2-EXPSPACE-complete. The lower bound proof
in [32] is a reduction from Turing machines that re-
quire doubly exponential space. It cannot, however,
be easily adapted to our setting. The difficulty is that
in our problem Γ, which can be used to encode the
Turing machine, appears on both the left-hand side
and the right-hand side of an implication. The main
difference between the two sides is the occurrence of
the additional action described by EqNext . The key
idea of our lower-bound proof is the introduction of
a special action aillegal that, on one hand, cannot oc-
cur in a legal sequence of actions, while, on the other
hand, guarantees that a finite sequence of actions in
which aillegal occurs is consistent with Γ. As an ex-
ample, suppose that Γ is the formula 3aillegal → p0.
A finite sequence of actions in which aillegal occurs is
consistent with Γ, since we can take p0 to be true at
time 0. On the other hand, the action aillegal cannot
be legal, since it implies backward directionality.

To encode a Turing machine that requires doubly ex-
ponential space, we intend the sequence of actions to
represent an accepting run of such a machine. Such a
run consists of a sequence of configurations, each one of
length 22

n

(Γ has to be of length polynomial in n). To
say that such a sequence of configurations is a proper
computation of the machine, we need to “point” to
cells that are distance 22

n

apart and say that they are
properly related. Such “pointing” is accomplished in
[32] via second-order universal quantification.

Here we have implicit universal quantification over
the sequence σ0, . . . , σk of truth assignment to fluents
in the definition of legality. In particular we have
special fluents pfirst and plast that can hold at at
most one point (this is ensured by Γ). The intention
is for plast to hold at point k. This is accomplished
by requiring in Γ that 2(plast → ◦◦aillegal). We
know that in a legal sequence ai cannot be aillegal , for
1 ≤ i ≤ k + 1, so if plast holds it must be at point k.
We can now distinguish between the left-hand side
and the right-hand side in the definition of legality.
In the left-hand side, ak+1 is not yet defined, so it can
be aillegal . On the right-hand side ak+1 is an action
in a legal sequence, so it cannot be aillegal . Now we
can use the left-hand side to say that pfirst and plast

holds at points that are 22
n

apart, and we use the
right-hand side to require that the actions in these
points are properly related. Further details are left to
the full paper.

Hence, verifying existence of a sequence of actions that
is legal wrt a system specification is 2-EXPSPACE-
complete. To the best of our knowledge this is the
hardest natural problem known for ltl.

Although not optimal from the point of view of com-
putational complexity, we can also characterize legal-
ity of a finite sequence a0 · · · ak of actions, in terms of
satisfiability of the qltl formula

Occurs(a0 · · · ak, rs) ∧
∀now .2(now ∧3◦rs)→ LegalNext(Γ,~a,now)

5 PLANNING

The logic ltl can express very sophisticated dynamic
properties, which can be either verified wrt the sys-
tem specification, but can also be used as temporally
extended goals [1] to synthesize plans. For example,
reachability of a desired state of affairs, i.e., “is a situ-
ation where a given goal ϕgoal holds reachable?”, can
be expressed by the formula 3ϕgoal . Goals can also
be more sophisticated. For example, an achieving and
maintenance goal, i.e., “is there a sequence of actions

that achieves a certain goal ϕagoal while another goal
ϕmgoal is kept satisfied?”, can be expressed by the
formula ϕmgoal U ϕagoal. Similarly, safety, invariance,
liveness, and fairness properties can be expressed in
ltl.

We provide a method for conformant planning [33] in
the setting where both the dynamic system and the
goal are specified by arbitrary formulas of ltl. The
problem of conformant planning consists in construct-
ing a plan, i.e., a sequence of actions, that guarantees
satisfaction of the goal whenever the conditions speci-
fied for the system are satisfied. In general, a plan that
satisfies an ltl formula needs to be infinite, although
it is finitely representable. If the goal can be fulfilled
in a finite number of steps and we are interested in a
finite plan, we may use a dummy action with no ef-
fects, and require it to be executed just after the goal
is fulfilled and not before (this can be done by suit-
ably changing the goal). The dummy action acts as a
marker for the end of the plan.

Formally, conformant planning can be described as fol-
lows: find an (infinite) sequence of actions a0a1 · · ·
such that for any sequence σ0σ1 · · · of truth assign-
ments to fluents, such that a0a1 · · · and σ0σ1 · · · satisfy
the system specification Γ, the goal γ is also satisfied.

Again, this condition cannot be expressed in ltl.
However, it can be expressed in qltl as follows. Let
us introduce the formula

Plan(Γ, γ,~a)
.
= ∀~f.Γ(~a, ~f)→ γ(~a, ~f)

which characterizes the sequences of actions such that,
for all interpretations of the fluents consistent with the
system specification, the goal is fulfilled. Hence, with-
out considering legality, we can express plan existence
as satisfiability of

Plan(Γ, γ,~a)

This is a ΠQLTL
1 formula. Considering that conformant

planning is already EXPSPACE-hard for much simpler
settings than the one considered here [18, 11] (where
each action is always possible), we get:

Theorem 9 Verifying existence of a (non necessarily
legal) plan in ltl is EXPSPACE-complete.

To verify existence of a legal plan, we simply have to
check the satisfiability of

Plan(Γ, γ,~a) ∧ Legal(Γ,~a)

Observe that, due to the presence of the legality check,
this is a ΠQLTL

2 formula. Hence, by Theorems 4 and 8,
we get:

Theorem 10 Verifying existence of a legal plan in
ltl is 2-EXPSPACE-complete.

To actually find a plan (either with legality check
or not), one can develop an algorithm based on
Büchi automata. Let us consider the case with-
out legality check. Let ϕ(~a, ~f) be Γ(~a, ~f)→ γ(~a, ~f).

We have to check satisfiability of ∃~a.∀~f.ϕ(~a, ~f), i.e.,

∃~a.¬∃~f.¬ϕ(~a, ~f) This can be reduced to checking
nonemptiness of a Büchi automaton constructed as
follows. We build an automaton A1 corresponding to
the ltl formula ¬ϕ(~a, ~f) (exponential step). Then we

project out ~f from such an automaton, obtaining an
automaton A2 accepting sequences of actions (poly-
nomial step). Next we complement A2 obtaining A3

(exponential step), and check for nonemptiness of A3.
As mentioned, the nonemptiness algorithm for Büchi
automata returns a witness for nonemptiness, which
can be interpreted as a plan. The plan returned con-
sists of two parts: a sequence arriving to a certain
state, and a second sequence that forms a cycle back
into that state. Thus, such plans have finite represen-
tations. The construction of the automaton is double
exponential in both the size of the system specification
Γ and of the goal specification γ. Observe that this al-
gorithm is optimal, wrt complexity, for plan existence,
since one can perform complementation and the final
intersection on the fly, while checking for nonempti-
ness [40]. Using the same kind of automata manipula-
tions we can build an automaton for checking existence
of plans guaranteed to be legal.

6 CONCLUSIONS

In this paper, we have studied reasoning about action
effects, legality of actions, and conformant planning
in the setting of ltl. We have provided reasoning
techniques based on a second-order extension of ltl.

The results obtained extend immediately to other vari-
ants of ltl such as µltl, which is an extension of ltl
with explicit fixpoint operators that is able to express
any ω-regular property [37]. The key is that the rea-
soning techniques rely on an exponential translation of
ltl to Büchi automata [39]. Such a translation is also
known for µltl. In addition, one may directly specify
the system by a Büchi automaton instead of an ltl
formula. Then, adopting the techniques discussed in
this paper, it can be shown that reasoning on action
effects remains PSPACE-complete, synthesizing non-
necessarily legal plans remains EXPSPACE-complete,
while testing legality becomes EXPSPACE-complete.

We have adopted a very general non-prescriptive no-
tion of legality of actions, which turned out to be quite

sophisticated and complex to verify. It would be very
interesting to study such a notion in the branching-
time setting at the base of situation calculus, dynamic
logics, branching-time logics, etc. Note that the com-
plexity is probably going to increase, by moving to the
branching-time setting, which is in fact richer than the
linear-time setting considered here. Also, one should
stress that for system specifications of a special form,
checking legality of sequences of actions may become
much easier. For example, if our system only contains
formulas expressing successor state axioms (see Sec-
tion 3) then all actions are always legal.

Finally, algorithms for checking nonemptiness of Büchi
automata, which are at the base of reasoning proce-
dures for ltl and qltl, have proved to be well suited
for scaling up to very large systems. A breakthrough
technology has been the use of symbolic methods and
the experimental results on adopting symbolic tech-
niques for planning under incomplete information are
quite promising [7, 8, 5]. The symbolic techniques can
be adapted to our framework. So, in spite of the high
worst-case complexity, the scalability of the algorithms
involved, hint that the automata-theoretic approach
may actually be feasible, even in the general setting
considered here.

Acknowledgements

The third author was supported in part by NSF
grants CCR-9700061, CCR-9988322, IIS-9908435, IIS-
9978135, and EIA-0086264, by BSF grant 9800096,
and by a grant from the Intel Corporation.

References

[1] F. Bacchus and F. Kabanza. Planning for tem-
porally extended goals. Ann. of Mathematics and
Artificial Intelligence, 22:5–27, 1998.

[2] F. Bacchus and F. Kabanza. Using temporal log-
ics to express search control knowledge for plan-
ning. Artificial Intelligence, 116(1–2):123–191,
2000.

[3] C. Baral, M. Gelfond, and A. Provetti. Represent-
ing actions: laws, observations and hypotheses. J.
of Logic Programming, 31(1–3):201–243, 1997.

[4] H. Barringer et al.MetateM: an introduction. For-
mal Aspects of Computing, 7(5):533–549, 1995.

[5] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic
search + symbolic model checking = efficient con-
formant planning. In Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), pp.
467–472, 2001.

[6] S. Cerrito and M. C. Mayer. Bounded model
search in linear temporal logic and its appli-
cation to planning. In Proc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Meth-
ods (TABLEAUX’98), LNAI 1397, pp. 124–140.
Springer, 1998.

[7] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and
P. Traverso. Planning via model checking.
In Proc. of the 4th Eur. Conf. on Planning
(ECP’97), 1997.

[8] A. Cimatti and M. Roveri. Conformant planning
via symbolic model checking. J. of Artificial In-
telligence Research, 13:305–338, 2000.

[9] M. Daniele, P. Traverso, and M. Y. Vardi. Strong
cyclic planning revisited. In Proc. of the 5th Eur.
Conf. on Planning (ECP’99), LNAI 1809, pp. 35–
48. Springer, 1999.

[10] G. De Giacomo, L. Iocchi, D. Nardi, and
R. Rosati. A theory and implementation of cogni-
tive mobile robots. J. of Logic and Computation,
9(5):759–785, 1999.

[11] G. De Giacomo and M. Y. Vardi. Automata-
theoretic approach to planning for temporally ex-
tended goals. In Proc. of the 5th Eur. Conf.
on Planning (ECP’99), LNAI 1809, pp. 226–238.
Springer, 1999.

[12] P. Doherty, J. Gustafsson, L. Karlsson, and
J. Kvarnström. (TAL) Temporal Action Logics:
language specification and tutorial. Elect. Trans.
on Artificial Intelligence, 2(3–4):273–306, 1998.

[13] E. A. Emerson. Automated temporal reasoning
about reactive systems. In Logics for Concur-
rency: Structure versus Automata, LNCS 1043,
pp. 41–101. Springer, 1996.

[14] O. Etzioni et al. An approach to planning with
incomplete information. In Proc. of the 3rd Int.
Conf. on Knowledge Representation and Reason-
ing (KR’92), pp. 115–125, 1992.

[15] B. Finkbeiner. Language containment check-
ing with nondeterministic BDDs. In Proc. of
the 7th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS 2001), LNCS 2031, pp. 24–38. Springer,
2001.

[16] M. Gelfond and V. Lifschitz. Action languages.
Elect. Trans. on Artificial Intelligence, 3(16),
1998.

[17] M. R. Genesereth and I. R. Nourbakhsh. Time-
saving tips for problem solving with incomplete
information. In Proc. of the 11th Nat. Conf.
on Artificial Intelligence (AAAI’93), pp. 724–730,
1993.

[18] P. Haslum and P. Jonsson. Some results on the
complexity of planning with incomplete informa-
tion. In Proc. of the 5th Eur. Conf. on Planning
(ECP’99), 1999.

[19] O. Kupferman and M. Y. Vardi. Weak alternat-
ing automata are not that weak. ACM Trans. on
Computational Logic, 2(3):408–429, 2001.

[20] R. P. Kurshan. Computer Aided Verification of
Coordinating Processes. Princeton Univ. Press,
1994.

[21] J. Kvarnström and P. Doherty. TALplanner: a
temporal logic based forward chaining planner.
Ann. of Mathematics and Artificial Intelligence,
30:119–169, 2001.

[22] N. McCain and H. Turner. Satisfiability plan-
ning with causal theories. In Proc. of the 6th Int.
Conf. on Knowledge Representation and Reason-
ing (KR’98), pp. 212–223, 1998.

[23] J. McCarthy. Circumscription — a form of
non-monotonic reasoning. Artificial Intelligence,
13:27–39,171–172, 1980.

[24] R. Miller and M. Shanahan. The event calcu-
lus in classical logic — Alternative axiomatisa-
tions. Elect. Trans. on Artificial Intelligence,
4(16), 1999.

[25] M. Pistore and P. Traverso. Planning as model
checking for extended goals in non-deterministic
domains. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), pp. 479–484,
2001.

[26] A. Pnueli. The temporal logic of programs. In
Proc. of the 18th Annual Symp. on the Founda-
tions of Computer Science (FOCS’77), pp. 46–57,
1977.

[27] R. Reiter. Narratives as programs. In Proc. of the
7th Int. Conf. on Knowledge Representation and
Reasoning (KR 2000), pp. 99–108, 2000.

[28] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[29] E. Sandewall. Features and Fluents: The Repre-
sentation of Knowledge about Dynamical Systems.
Clarendon Press, Oxford, 1994.

[30] M. Shanahan. Solving the Frame Problem: A
Mathematical Investigation of the Common Law
of Inertia. The MIT Press, 1997.

[31] A. P. Sistla and E. M. Clarke. The complexity
of propositional linear temporal logic. J. of the
ACM, 32(3):733–749, 1985.

[32] A. P. Sistla, M. Y. Vardi, and P. Wolper. The
complementation problem for Büchi automata
with applications to temporal logic. Theoretical
Computer Science, 49:217–237, 1987.

[33] D. E. Smith and D. S. Weld. Conformant Graph-
plan. In Proc. of the 15th Nat. Conf. on Artificial
Intelligence (AAAI’98), pp. 889–896, 1998.

[34] M. Thielscher. Causality and the qualification
problem. In Proc. of the 5th Int. Conf. on Knowl-
edge Representation and Reasoning (KR’96), pp.
51–62, 1996.

[35] M. Thielscher. Introduction to the fluent calcu-
lus. Elect. Trans. on Artificial Intelligence, 3(14),
1998.

[36] W. Thomas. Automata on infinite objects.
In Handbook of Theoretical Computer Science,
vol. B, pp. 133–192. Elsevier Science, 1990.

[37] M. Y. Vardi. A temporal fixpoint calculus.
In Proc. of the 15th ACM SIGACT-SIGPLAN
Symp. on Principles of Programming Languages
(POPL’88), pp. 250–259, 1988.

[38] M. Y. Vardi. An automata-theoretic approach
to fair realizability and synthesis. In Proc. of
the 7th Int. Conf. on Computer Aided Verifica-
tion (CAV’95), LNCS 939, pp. 267–292. Springer,
1995.

[39] M. Y. Vardi. An automata-theoretic approach to
linear temporal logic. In Logics for Concurrency:
Structure versus Automata, LNCS 1043, pp. 238–
266. Springer, 1996.

[40] M. Y. Vardi and P. Wolper. Reasoning about
infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

[41] D. S. Weld and O. Etzioni. The first law of
robotics (a call to arms). In Proc. of the 12th
Nat. Conf. on Artificial Intelligence (AAAI’94),
pp. 1042–1047, 1994.

