A Proofs
Theorem 1 For any objective sentence about situation s, (s),
Azxioms U {Sensed[o]} = ¢(end[o])
if and only if
Azioms U {Sensed|c]} = Know(¢(now), end[o]).

Proof Sketch: <= Follows trivially from the reflexivity of K in the initial situation,
and the fact that it is preserved by the successor state axiom for K.
= From the successor state axiom for K it follows that:

Axioms U {Sensed[d'] - (a,1)} = Know(SF,(now), end[o’ - (a,1)]) (%)
Azioms U {Sensed[d’] - (a,0)} E Know(—=SF,(now),end[c’ - (a,0)])(*x*

~—

Suppose not, i.e., there exists a model M of Azxioms U {Sensed[o]} such that
for some s’ such that M = K (s, end[o]), M = —¢(s').

Then take the structure M’ obtained from M by intersecting the objects of
sort situation with those that in the situation tree rooted in the initial ancestor
situation of s', say s;. M’ satisfies all axioms in Azioms except the reflexivity
axiom, the successor state axiom for K, and the initial state axiom, which is of
the form Know(¥(now), Sy) (note that the other axioms involve neither & nor
Sp). Observe that T'rans and F'inal for the situation in the tree are defined by
considering relations involving only situation in the same tree.

Now consider the M" obtained from M’ by adding the constant Sy and making
it denote s;. Although M’ and M" does not satisfy Know(¥(now), Sp), we have
that M" = ¥(Sp). Moreover, (*) and (**) and the fact that the successor state
axiom for K in M ensure that all predecessor of s’ where K alternatives, imply
M" = Sensed|o].

Finally let us define M"’ by adding to M" the predicate K and making denote
the identity relation on situations. Then M"" |= Azioms U {Sensed[c]}. On the
other hand since M’ = —¢(s') so does M. Thus getting a contradiction. m

Theorem 2 Let dp be such that Azioms U {Sensed[c|} = EFDP(dp, end|o]).
Then, Azioms U {Sensed[o]} |= Jss.Do(dp, end[o], s¢) if and only if all online
executions of (dp, o) are terminating.

SNote that K cannot appear in the ¢(s), however Trans and Final can, since they are predi-
cates, although axiomatized using a second-order formula.
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Proof Sketch: First of all we observe that dp is a deterministic program and its
possible online executions from ¢ are completely determined by the sensing out-
comes. We also observe that in each model there will be a single execution of
dp, since the sensing outcomes are fully determined in the model. Moreover, in
all models where with the same sensing outcomes up to a given configuration
(dp;, si), the next transition of dp from end[o] is the same.

= If Azioms U {Sensed[c]} = dsy.Do(dp, end[o], s¢) then in every model
of AziomsU{Sensed[o]} the only execution of dp from end|o] terminates. Con-
sider an online execution reaching (dp;, 0;). Then, in all models of Azioms U
{Sensed[o]} with sensing outcomes as determined by o;, the next configuration
(dpis1, Siv1) is the same, given that LEFDP (dp;, end[o;]) requires the next tran-
sition to be known in each of these models, and hence by reflexivity of K we have
that such a transition is true as well in each of them. Then, for all a possible online
transitions from (dp;, end[o;]) to dp}, end[o}] it must be the case that dp} = dp; 1
and end[o}] = s;41, i.e. the next online transitions can differ only wrt the new
sensing outcome acquired.

< If an online execution of dp from ¢ terminates it means that the program
dp, from end|c]|, terminates in all models of Azioms U {Sensed|o]|} with the
sensing outcome as in the online execution. Since by hypothesis all online execu-
tions terminate, thus covering all possible sensing outcome, then dp, from end[o],
terminates in all models. m

Theorem 3 If Axioms U {Sensed|o]} = Trans(E.(p), end[o],p', s'), then

1. Azioms U {Sensed|[o]} |= s;.Do(p, end|o], s¢)
2. Azioms U {Sensed|o|} = 3ss.Do(Z.(p), end|o], sf)
3. All online executions from (3.(p), o) terminate.

Proof Sketch: (1) and (2) follow immediately from the definition of T'rans for ..

(3) By the definition of T'rans for ¥, there exists a dp and such that AziomsU
{Sensed|o]|} = EFDP(dp, end|c])A\3ss.Trans(dp, end[o],p', s")ADo(p', s', s¢).
The conditions of Theorem 2 are satisfied, thus we have that all online execu-
tions from (dp, o) are terminating. Since these include all online executions from
(p',0") with s’ = end[c'], all online executions from (p', ¢') must also be termi-
nating. Hence the thesis follows. m

Theorem 4 Let dpt be a tree program, i.e., dpt € TREE. Then, for all histories
g,

if Azioms U {Sensed|c|} |= dsy.Do(dpt, end[o], s¢),

then Azioms U {Sensed[o|} = EFDP(dpt,end[o]).
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Proof Sketch: By induction on the structure of dpt.

Base cases: for nil, it is known that nil is F'inal,so AziomsU{Sensed[o]} |=
EFDP(nil, end|o]) holds; for False?, the antecedent is false, so the thesis holds.

Inductive cases: Assume that the thesis holds for dpt; and dpt,. Assume that
Azioms U {Sensed|o]} |= 3s;.Do(dpt, end[o], s¢).

For dpt = a;dpty: AziomsU{Sensed|c]} |= Isy.Do(a; dpty, end|o], s¢) im-
plies that Azioms U {Sensed[o|} |= Is;.Do(dpt,, do(a, end[o]), s¢). Since a is
a non-sensing action, Sensed|o - (a,1)] = Sensed|o], so we also have Azioms U
Sensed|o - (a,1)] = 3sy.Do(dpty, end[o - (a,1)], s¢). Thus by the induction hy-
pothesis we have Azioms U {Sensed[o - (a,1)]} = EFDP(dpt,,end[o - (a,1)]).
It follows that Azioms U {Sensed|c|} = EFDP(dpt,,do(a,end[o]). The as-
sumption AziomsU{Sensed|o|} = Is;.Do(a; dpty, end[o], s¢) also implies that
Azioms U {Sensed[o]} = Poss(a,end[o]) and this must be known by Theorem
1,ie., Azvioms U {Sensed[c]|} = Know(Poss(a,now), end[o]). Thus, we have
that

AziomsU{Sensed[o|} = Know(Trans(a; dpt,, now, dpt,, do(a, now)), end|o]).

It is also known that this is the only transition possible for a; dpt;, So Azioms U
{Sensed[o]} = LEFDP a; dpty, end[o]). Therefore, Axioms U {Sensed[o]} =
EFDP(a;dpty, end[o]).

For dpt = T'rue?; dpt;: the argument is similar, but simpler since the test does
not change the situation.

For dpt = sensey; if ¢ then dpt; else dpt,: Suppose that the sensing action re-
turns 1 and let oy = o (sensey, 1). Next we show that AziomsU{Sensed[o]} =
LEFDP(dpt,end[o]). The assumption that Azioms U {Sensed[c]} = Ts;.
Do(dpt,end[o],s;) implies that Azioms U {Sensed[oi]} |  dsy.
Do(dpty, end[o1],sf). Thus by the induction hypothesis we have Azioms U
{Sensed[o1)|} E EFDP(dpt;,end|o1]). It follows that AziomsU{Sensed[o]} |=
P(do(sensepni, end[o]) DO EFDP(dpty, do(sensepp;, end[o]). By a similar argu-
ment, it also follows that we must have that Azioms U {Sensed[o]} £
—¢(do(sense,n;, end[o]) DO EFDP(dpts, do(sensepni, end[o]). The assumption
Azxioms U {Sensed[o]} = Isy.Do(dpt, end|o], sy) also implies that Azioms U
{Sensed|o]|} |= Poss(sensegs, end[co]) and this must be known by Theorem 1,
ie., Azioms U {Sensed[c]} = Know(Poss(senses, now), end[c]). Thus, we
have that

Axioms U {Sensed[c]} = Know(
Trans(dpt, now, if ¢ then dpt, else dpt,, do(sensey, now)), end|o]).

It is also known that this is the only transition possible for dpt, so Azxioms U
{Sensed[c]} | LEFDP(dpt,end|o]). Thus, Azioms U {Sensed[c]|}
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EFDP(dpt,end[c]).m

Theorem 5 For any program dp that is

1. an epistemically feasible deterministic program, i.e.,

Axioms U {Sensed[o|} = EFDP(dp, end[o]) and

2. such that there is a known bound on the number of steps it needs to ter-
minate, i.e., where there is an n such that Azioms U {Sensed[o]} =
', s, k.k < nATrans(dp,end[o],p’,s') A Final(p', s'),

there exists a tree program dpt € TREE such that Axioms U {Sensed|o]} =
Vs¢.Do(dp, end[o], sf) = Do(dpt, end|o], sf).

Proof Sketch: We construct the tree program dpt = m(dp, o) from dp using the
following rules:

e m(dp, o) = False? iff Arioms U {Sensed[o]} is inconsistent, otherwise
e m(dp, o) = nil iff
Axioms U {Sensed[o]} = Final(dp, end[o]), otherwise
e m(dp,o) =a;m(dp,o - (a,1)) iff
Azioms U {Sensed[c]|} | Trans(dp,end[o],dp', do(a,end|[o]) for some
non-sensing action a,
e m(dp, o) = sensey;if ¢ then m(dp, o - (sensey, 1))
else m(dp,, o - (sensey, 0)) iff
Azioms U {Sensed[o]|} = Trans(dp, end[o], dp’, do(sensey, end[o]) for
some sensing action senseg,
e m(dp,o) = True?; m(dp', o) iff
Axioms U {Sensed[o]} = Trans(dp, end[c], dp’, end[o]).

Let us show that
Azxioms U {Sensed|c]} = Do(dp, end[o], sy) = Do(m(dp, o), end[o], sf).

It turns out that, under the hypothesis of the theorem, for all dp and all o,
(dp, o) is bisimilar to (m(dp, o), o) with respect to online executions. Indeed, it
is easy to check that the relation [(dp, o), (m(dp, o), o)] is a bisimulation, i.e., for
all dp and o, [(dp, o), (m(dp, o), o)] implies that

o AziomsU{Sensed|o|} = Final(dp, end|o])iff AziomsU{Sensed|o]} =
Final(m(dp, o), end|o]),

e foralldyp', o’ if AviomsU{Sensed[o]} = Trans(dp, end[o],dp', end[sigma'])
with AziomsU{Sensed[sigma’|} consistent, then AziomsU{Sensed[o]} |=
Trans(m(dp, o), end|c], m(dp’, o), end[c']) and [(dp', o'), (m(dp', o'), o")],
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e for all dp', o' if Azioms U {Sensed[c]} [ Trans(m(dp,o),end|o],
m(dp',0'),end|o’]) with Azioms U {Sensed|sigma’]} consistent, then
Azioms U {Sensed[o]} | Trans(dp,end|o],dp',end[sigma’]) and
[(dp', &"), (m(dp', "), 0)].

Now, assume that Azioms U {Sensed[o]|} = sy.Do(dp, end|o], ss), then
since dp is an EFDP, by Theorem 2 all online execution from (dp, o) terminate.
Hence since (dp, o and (m(dp, o), o) are bisimilar, (m(dp, o), o) has the same
online execution (apart from the program appearing in the configurations).

Next, observe that given an online execution of (dp, o) terminating in (dpy, o),
in all models of Azioms U {Sensed[c]|} with sensing outcomes as in oy both the
program dp and m(dp, o) reach the same situation end[o¢|. Since there are ter-
minating online executions for all possible sensing outcomes, the thesis follows.
|

Theorem 6 Let dpl be a linear program, i.e., dpl € LINE. Then, for all his-
tories o, if Axvioms U {Sensed|c|} = dsy.Do(dpl, end|o], sy), then Azioms U
{Sensed[o]} = EFDP(dpl,end|o]).

Proof Sketch: This is a corollary of Theorem 4 for tree programs. Since linear
programs are tree programs, the thesis follows immediately from this theorem. m

Theorem 7 For any dp that does not include sensing actions, such that
Axioms U {Sensed[o|} = EFDP(dp, end[o]),
there exists a linear program dpl such that
Azioms U {Sensed[o]} |= Vsy.Do(dp, end[o], sf) = Do(dpl, end[o], s¢).

Proof Sketch: We show this using the same approach as for Theorem 5 for tree
programs. Since dp cannot contain sensing actions, the construction method used
in the proof of Theorem 5 produces a tree program that contains no branching and
is in fact a linear program. Then, by the same argument as used there, the thesis
follows. m

Theorem 8 Axioms U {Sensed[o]} = Trans(Xi(p), end[o], dpl, s") if and only
ifthere exists a situation sy such that AxiomsU{Sensed[o|} |= Do(p, end|c], s¢).
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Proof Sketch: < If for same sy we have AziomsU{Sensed[c|} = Do(p, end|o], sf)
then the sequence of actions from end[o] to s; is an LINE program, which triv-
ially satisfies the left-hand-side of the axiom for ;. Observe that if s’ = end|o]
then the linear program can be simply 7'rue?.

= By hypothesis there exists a dpl that is a LINE. If s' = s and then dpl =
true?; dpl’ and if s' = do(a, s), for same action a, and then dpl = a; dpl’. In both
cases dpl’ must be an LINE. In every model dpl’ reaches from s’ a final situation
of the original program p. Observe that such situation will be the same in every
model since the sequence of actions « starting from s’ is fixed by dpl’. It follows
that the sequence of action done by dpl starting from s reaches a situation s; such
that Azioms U {Sensed[c]|} = Do(p, end[o], s7). m
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