View-based Query Processing:
On the Relationship between Rewriting,
Answering and Losslessness*

Diego Calvanese!, Giuseppe De Giacomo?,

Maurizio Lenzerini?, and Moshe Y. Vardi®

1 Facolta di Scienze e Tecnologie Informatiche
Libera Universita di Bolzano/Bozen, Italy
calvanese@inf.unibz.it
2 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universita di Roma “La Sapienza”, Italy
{degiacomo,lenzerini}@dis.uniromal.it
3 Department of Computer Science
Rice University, Houston, U.S.A.
vardi@cs.rice.edu

Abstract. As a result of the extensive research in view-based query
processing, three notions have been identified as fundamental, namely
rewriting, answering, and losslessness. Answering amounts to computing
the tuples satisfying the query in all databases consistent with the views.
Rewriting consists in first reformulating the query in terms of the views
and then evaluating the rewriting over the view extensions. Losslessness
holds if we can answer the query by solely relying on the content of the
views. While the mutual relationship between these three notions is easy
to identify in the case of conjunctive queries, the terrain of notions gets
considerably more complicated going beyond such a query class. In this
paper, we revisit the notions of answering, rewriting, and losslessness and
clarify their relationship in the setting of semistructured databases, and
in particular for the basic query class in this setting, i.e., two-way regular
path queries. Our first result is a clean explanation of the relationship
between answering and rewriting, in which we characterize rewriting as a
“linear approximations” of query answering. We show that applying this
linear approximation to the constraint-satisfaction framework yields an
elegant automata-theoretic approach to query rewriting. As for lossless-
ness, we show that there are indeed two distinct interpretations for this

* This research has been partially supported by the EU funded Projects INFOMIX
(IST-2001-33570) and SEWASIE (IST-2001-34825), by MIUR - Fondo Speciale per lo
Sviluppo della Ricerca di Interesse Strategico - project “Societa dell’Informazione”,
subproject SP1 “Reti Internet: Efficienza, Integrazione e Sicurezza”, by MIUR -
Fondo per gli Investimenti della Ricerca di Base (FIRB) - project “MAIS: Multichan-
nel Adaptive Information Systems”, by project HYPER, funded by IBM through a
Shared University Research (SUR) Award grant, by NSF grants CCR-9988322, CCR-
0124077, CCR-0311326, 11S-9908435, 11S-9978135, EIA-0086264, and ANI-0216467,
by US-Israel BSF grant 9800096, by Texas ATP grant 003604-0058-2003, and by a
grant from the Intel Corporation.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. BIOH334] 2005.
© Springer-Verlag Berlin Heidelberg 2005

320 D. Calvanese et al.

notion, namely with respect to answering, and with respect to rewriting.
We also show that the constraint-theoretic approach and the automata-
theoretic approach can be combined to give algorithmic characterization
of the various facets of losslessness. Finally, we deal with the problem of
coping with loss, by considering mechanisms aimed at explaining lossi-
ness to the user.

1 Introduction

View-based query processing is the problem of computing the answer to a query
based on a set of views [27[31][3]. This problem has recently received much atten-
tion in several application areas, such as mobile computing, query optimization,
data warehousing, and data integration. A large number of results have been
reported in the last years, and several methods have been proposed (see [25] for
a recent survey).

As a result of the extensive research in this area, there is proliferation of
notions whose relationship to each other is not clear. Fundamentally, there seems
to be two basic approaches to view-based query processing. The first approach,
originating with [27], is the query-rewriting approach, which is based on the idea
of first reformulating the query in terms of the views and then evaluating the
rewriting over the view extensions. The other approach, originating with [I8],
is the query-answering approach, which takes a more direct route, trying to
compute the so-called certain tuples, i.e., the tuples satisfying the query in all
databases consistent with the views, on the basis of the view definitions and
the view extensions. The relationship between the two approaches has been
discussed (e.g., [8l14]), but not completely clarified, and is often ignored, see for
example [27,[5]21].

A related issue that has been studied in several papers is whether the infor-
mation content of the views is sufficient to answer completely a given query. We
say that a set of views is lossless with respect to a query, if, no matter what
the database is, we can answer the query by solely relying on the content of the
views. This concept has several applications, for example, in view selection [I5],
where we have to measure the quality of the choice of the views to materialize
in the data warehouse, or in data integration, where we may be interested in
checking whether the relevant queries can be answered by accessing only a given
set of sources [28]. Several papers have addressed the issue of losslessness implic-
itly [27,24}28] or explicitly [II]. It should be noted, however, that losslessness
is relative to the manner in which view-based query processing is performed,
since the goal is lossless query processing. Thus, there ought to be two distinct
notions of losslessness, with respect to query rewriting or with respect to query
answering. Recent discussions of losslessness, such as [28][T1], do not reflect this
distinction.

One reason for the confusion is that much of the work in this area has focused
on using conjunctive queries for both target queries and view definitions, cf. [25].
This setting turns out to be extremely well behaved. In particular, query rewrit-
ing and query answering coincide, if we allow the target query to be written as

View-based Query Processing 321

a union of conjunctive queries. Furthermore, losslessness with respect to query
rewriting and with respect to query answering also coincide, even if we require
rewriting by conjunctive queries (disallowing unions). These results, implicit or
explicit in [27], give the impression of a simple “terrain” of notions. Once, how-
ever, one goes even slightly beyond conjunctive queries or slightly modifies the
view model, the terrain of notions gets considerably more complicated, as has
already been observed in [3].

In this paper, we revisit the notions of query answering, query rewriting,
and losslessness and clarify their relationship in the setting of semistructured
databases, which capture data that do not fit into rigid, predefined schemas,
and are best described by graph-based data models [6[122,[2]. The prevalent
model for semistructured data is that of edge-labeled graphs, in which nodes
describe data elements and edges describe relationships or values. (Extensions
to node-labeled graphs or to node-edge-labeled graphs are straightforward.)

Methods for extracting information from semistructured data necessarily
incorporate special querying mechanisms that are not common in traditional
database systems. One such basic mechanism is that of regular-path queries
(RPQs), which retrieves all pairs of nodes in the graph connected by a path
conforming to a regular expression [7,[4]. We allow in our regular path queries
also the inverse operator. The inverse operator is essential for expressing navi-
gations in the database that traverse the edges both backward and forward [I6].
We call such queries two-way regular path queries (2RPQs). Such path queries
are useful in real settings (see for example [61[7,29]), and are part of the core
of many query languages for semistructured data [4,20,17]. In our earlier work
we studied both query answering and query rewriting for 2RPQs [9]. For an
introductory survey on 2RPQs, see [13].

Our first result is a clean explanation of the relationship between query
rewriting and query answering. We view query answering as the more robust
notion among the two, since its definition is in terms of the information con-
tent of the view extensions. The certain tuples are the tuples whose presence in
the answer logically follows from the view extension. In contrast, query rewrit-
ing is motivated by the pragmatic need to access the view extensions using a
query language that is close, if not identical, to the language in which the target
query and the views were formulated. For example, [27] considered rewriting of
conjunctive queries by means of unions of conjunctive queries, [I2] considered
rewriting of RPQs by means of RPQs, and [J] considered rewriting of 2RPQs
using 2RPQs.

The setup we use in this paper is that of sound views, in which view extension
need not reflect global data completely. Thus, all we require from a view V;
defined in terms of a query @; is that its extension F; with respect to a global
database B is such that E; C @;(B). This setting corresponds to the long-
standing open-world approach for querying incomplete information [30]. In this
setting query answering can be characterized in terms of constraint satisfaction
(or, equivalently, the homomorphism problem [19]), with a constraint template
derived from the target query and view definition [I4].

322 D. Calvanese et al.

It now turns out that rewriting 2RPQs by means of 2RPQs amounts for
seeking a “linear approximation” of query answering. That is, we retrieve a pair
(¢,d) from the view extension only if its inclusion in the answer is logically
implied by a single path between ¢ and d in the view extension. (For 2RPQs
two-way paths are considered, while for RPQs one-way paths are considered.)
We show that applying this linear approximation to the constraint-satisfaction
framework yields the elegant automata-theoretic approach to query rewriting
of [12], extended naturally to 2RPQs.

Once the relationship between query answering and query rewriting is clari-
fied, we show that there are indeed two distinct notions of losslessness. Lossless-
ness with respect to query rewriting is what has been called exzactness in [12],
while losslessness with respect to query answering, which we view as the more
fundamental notion, is what has been studied in [II]. Since query rewriting is
an approximation of query answering, exactness is a stronger notion than loss-
lessness; exactness implies losslessness, but not vice versa. Exactness was taken
in [12] to be a measure of quality of query rewriting, but we now see that it con-
flates query rewriting with losslessness. A better way to measure the quality of
query rewriting is to measure its quality as an approximation. We say that query
rewriting is perfect if it is equivalent to query answering. Thus, exactness is the
conjunction of perfectness and losslessness (with respect to query answering). We
also show that the constraint-theoretic approach and the automata-theoretic ap-
proach can be combined to give algorithmic characterization of the three notions:
perfectness, losslessness, and exactness.

Finally, we consider lossiness, which we view as the central challenge of view-
based query processing, as lossiness is more likely to be the norm rather than the
exception. Once a schema designer has learned that a view decomposition is lossy
with respect to a certain query, how should this “loss” be dealt with? We believe
that database design tools should help users to “cope with loss”. In particular,
we believe that it would be useful to the user to understand what information is
lost by view-based query answering. We discuss a variety of mechanisms aimed
at explaining such lossiness to the user.

The paper is organized as follows. In Section [2] we recall the basic notions
related to view-based query processing, and in Section [l we recall the relationship
between query answering and constraint satisfaction. In Section 4] we discuss the
relationship between answering and rewriting. In Section [§] we study losslessness
with respect to rewriting for 2RPQs and in Section [@] losslessness with respect to
answering. For the latter we introduce the notion of linear fragment of certain
answers. In Section [7] we discuss the relationship between exactness, perfectness,
losslessness, and lossiness and conclude the paper.

2 Preliminaries

Following the usual approach in semistructured data [2], we define a semistruc-
tured database as a finite directed graph whose edges are labeled by elements
from a given finite alphabet Y. Each node represents an objects and an edge
from object = to object y labeled by r, denoted r(z,y), represents the fact that

View-based Query Processing 323

relation r holds between x and y. Observe that a semistructured database can be
seen as a (finite) relational structure over the set X' of binary relational symbols.
A relational structure (or simply structure) B over X is a pair (AB,-B), where
AB is a finite domain and -B is a function that assigns to each relation symbol
in r € X a binary relation 75 over AB also denoted by r(B).

A query is a function from relational structures to relations, assigning to each
relational structure over a given alphabet a relation of a certain arity. In this
paper we deal mainly with binary queries. A regular-path query (RPQ) over X
is defined in terms of a regular language over X. The answer Q(B) to an RPQ
Q@ over a database B is the set of pairs of objects connected in B by a directed
path traversing a sequence of edges forming a word in the regular language L(Q)
defined by Q.

RPQs allow for navigating the edges of a semistructured databases only in
the forward direction. RPQs extended with the ability of navigating database
edges backward are called two-way regular-path queries (2RPQs) [9]. Formally,
we consider an alphabet X* = X U {r~ | » € X} which includes a new symbol
r~ for each relation symbol r in 3. The symbol r~ denotes the inverse of the
binary relation r. If p € X+, then we use p~ to mean the inverse of p, i.e., if p is
r, then p~ is r—, and if p is r—, then p~ is r. A 2RPQ over X' is defined in terms
of a regular language over ¥*. The answer Q(B) to a 2RPQ Q over a database
B is the set of pairs of objects connected in B by a semipath that conforms to
the regular language L(Q). A semipath in B from z to y (labeled with p; - - - py,)
is a sequence of the form (xo,p1,21,...,Zn—1,Pn, Tn), where n > 0, o = z,
z, = y, and for each z;_1,p;, z;, we have that p; € X%, and, if p; = r then
(xi—1,m;) € r(B), and if p; = r~ then (z;,x;,-1) € r(B). Intuitively, a semipath
(o, P1,21,- -+, Tn—1,Pn,Tn) corresponds to a navigation of the database from
o to z,, following edges forward or backward, according to the sequence of
edge labels p; ---p,. Note that the objects in a semipath are not necessarily
distinct. A semipath is said to be simple if no object in it appears more than
once. A linear database with endpoints z and y is a database constituted by a
single simple semipath from x to y. We say that a semipath (zg,p1,...,Pn, Tn)
conforms to a 2RPQ Q if p1 - - - p,, € L(Q). Summing up, a pair (z,y) of objects
is in the answer Q(B) if and only if, by starting from z, it is possible to reach
y by navigating on B according to one of the words in L(Q). The notions above
can be extended to two-way path queries, which are defined similarly to 2RPQs,
but without requiring the language to be regular.

Consider now a semistructured database that is accessible only through a
collection of views expressed as 2RPQs, and suppose we need to answer a 2RPQ
over the database only on the basis of our knowledge on the views. Specifically,
the collection of views is represented by a finite set V of wview symbols, each
denoting a binary relation. Each view symbol V' € V has an associated view
definition V¥, which is a 2RPQ over X. A V-extension € is a relational structure
over V. We consider views to be sound [3,[23], i.e., we model a situation where
the extension of the views provides a subset of the results of applying the view
definitions to the database. Formally, given a set V of views and a database B,

324 D. Calvanese et al.

we use V*(B) to denote the V-extension & such that V(£) = V¥ (B), for each
V € V. We say that a V-extension & is sound wrt a database B if £ C V¥ (B).
In other words, for a view V € V, all the tuples in V(&) must appear in V*(B),
but V*(B) may contain tuples not in V(€).

Given a set V of views, a V-extension &, and a query @ over X, the set of
certain answers (under sound views) to @ with respect to V and & is the set of
pairs (z,y) of objects such that (x,y) € Q(B) for every database B wrt which
€ is sound, i.e., & C V¥(B). View-based query answering consists in deciding
whether a given pair of objects is a certain answer to () with respect to V and
E. Given a set V of views and a query (), we denote by certg,y the query that,
for every V-extension &, returns the set of certain answers to) with respect to
VY and £.

View-based query answering has also been tackled using an indirect approach,
called view-based query rewriting. According to such an approach, a query @ over
the database alphabet is processed by first reformulating) into an expression
of a fixed query language over the view alphabet V (called rewriting), and then
evaluating the rewriting over the view extensions. Formally, let @Q be a query
over the database alphabet, and let @), be a query over the view alphabet V. We
say that @, is a rewriting of Q under sound views V (or simply, with respect to
views V), if for every database B and for every V-extension & with £ C V¥(B),
we have that Q,.(£) C Q(B). Since 2RPQs are monotone, by results in [14]
(Proposition 13 and 24), rewritings admit the following simpler characterization.
A 2RPQ Q. is a rewriting of a 2RPQ @ if, for every database I3, we have that
Q,(V*(B)) C Q(B). We make use of this characterization in the following.

Obviously, in view-based query rewriting, we are not interested in arbitrary
rewritings, but we aim at computing rewritings that capture the original query
at best. Let C be a query class in which rewritings are expressed. A query @, in
C is a C-mazximal rewriting of Q under V if (7) it is a rewriting of @ under V, and
(i) for each query @/ in C that is a rewriting of @ under V and for each database
B and each V-extension £ with & C V*(B), we have that Q/.(£) C Q,.(€). Since
in this paper we are focusing on 2RPQs, we are interested in the case where also
rewritings are 2RPQs over the view alphabet V), i.e., rewritings are expressed in
the same language as queries over the database.

Throughout the paper, we will assume that RPQs are expressed as finite state
automata over an appropriate alphabet. Besides standard (one-way) determinis-
tic and non-deterministic finite state automata over words (1DFAs and 1NFAs,
respectively), we assume familiarity with two-way automata (2NFAs) [26].

3 Answering and Constraint Satisfaction

In this work we make use of the tight relationship between view-based query
answering for RPQs and 2RPQs and constraint satisfaction, which we recall
here.

A constraint-satisfaction problem (CSP) is traditionally defined in terms of a
set of variables, a set of values, and a set of constraints, and asks whether there
is an assignment of the variables with the values that satisfies the constraints.

View-based Query Processing 325

A characterization of CSP can be given in terms of homomorphisms between
relational structures [I9]. Here we consider relational structures whose relations
are of arbitrary arity.

A homomorphism h : A — B between two relational structures A and B over
the same alphabet is a mapping h : A4 — AB such that, if (cy,...,c,) € r(A),
then (h(c1),...,h(cy)) € r(B), for every relation symbol r in the alphabet. Let A
and B be two classes of structures. The (uniform) constraint-satisfaction problem
CSP(A, B) is the following decision problem: given a structure A € A and a
structure B € B over the same alphabet, is there a homomorphism h : A — B?
When B consists of a single structure B and A is the set of all structures over the
alphabet of B, we get the so-called non-uniform constraint-satisfaction problem,
denoted by CSP(B), where B is fixed and the input is just a structure A € A.
As usual, we use CSP(B) also to denote the set of structures A such that there
is a homomorphism from A to B. From the very definition of CSP it follows
directly that every CSP(A, B) problem is in NP.

A tight relationship between non-uniform CSP and view-based query answer-
ing for RPQs and 2RPQs has been developed in [I0,14]. Such a relationship is
based on the notions of constraint template, associated to the query and view
definitions, and constraints instance, associated to the view extension. Formally,
given a 2RPQ @ and a set V of 2RPQ views, the constraint template CT gy of
@ with respect to V is the relational structure C' defined as follows.

— The alphabet of C'is VU{U;, Uy}, where each view denotes a binary relation
symbol, and U; and Uy are unary relation symbols.

— Let AQ = (X*, 89, ng, 0%, F?) be a INFA for @, where X7 is the alphabet,
S is the set of states, S(? is the set of initial states, o® is the transition
relation, and F is the set of final states. The structure C' = (A®,.%) is
given by:

o AC = QSQ;

o e U;(C) iff SOQ Co;

o eUs(C)iff e N FQ = ()

for a view V € V, we have that (01,02) € V© iff there exists a word

q1--qr € L(V¥) and a sequence Ty, ..., T} of subsets of S¥ such that

the following hold:
1. T() =01 and Tk = 02,
2. if s € Ty and (s, q;41,t) € 09 then t € Ty, for 0 < i < k, and
3. if s €T and (s,q; ,t) € o9 thent € T;_q, for 0 < i < k.

Intuitively, the constraint template represents for each view V how the states
of A (i.e., of the INFA for @) change when we follow database edges accord-
ing to what specified by words in L(V*). Specifically, the last condition above
corresponds to saying that a pair of sets of states (01, 02) is in V(C) if and only
if there is some word w in L(V¥) such that the following holds: if we start from
a state in oy on the left edge of w and move back and forth on w according to
the transitions in A9, then, if we end up at the left edge of w we can be only in
states in o1, and if we end up at the right edge of w we can be only in states in

326 D. Calvanese et al.

09; similarly, if we start from a state in oo on the right edge of w. Moreover, the
sets of states in U;(C) contain all initial states of A9, while the sets of states in
U;(C) do not contain any final state of A?. This takes into account that we aim
at characterizing counterexamples to view-based query answering, and hence we
are interested in not getting to a final state of A?, regardless of the initial state
from which we start and how we follow transitions.

Observe that, to check the existence of a word ¢ ---qx € L(V*) and of a
sequence Ty, ..., T} of subsets of S such that conditions 1-3 above are satisfied,
we can resort to a construction analogous to the one in [32]. Hence, such a check
can be done in polynomial space in the size of @), and in fact in nondeterministic
logarithmic space in the size of V¥,

Given a V-extension £ and a pair of objects ¢, d, the constraint instance £%
is the structure I = (A, .T) over the alphabet V U {U;,U;} defined as follows:

— Al = A® U {c,d};
- V() =V(E), for each V € V;
= Ui(I) = {c}, and Us(I) = {d}.

The following theorem provides the characterization of view-based query an-
swering in terms of CSP.

Theorem 1 ([14]). Let Q be a 2RPQ, V a set of 2RPQ views, £ a V-extension,
and ¢, d a pair of objects. Then, (c,d) & certgy(E) if and only if there is a
homomorphism from £%? to CTgy.

4 Relationship Between Rewriting and Answering

The relationship between answering and rewriting in view-based query process-
ing is not always well understood. As we said before, one reason for the confusion
is that much of the work in this area has focused on a setting based on conjunctive
queries, where answering and rewriting coincide. Indeed, if we allow the target
query to be written as a union of conjunctive queries (UCQs), then the UCQ-
maximal rewriting of the query computes exactly the certain answers. Things
get more complicated with RPQs and 2RPQs. Interestingly, we show next that
we can use the above characterization of view-based query answering in terms
of CSP, to characterize also query rewriting, thus providing a clean explanation
of the relationship between answering and rewriting.

A preliminary observation is that one can restrict the attention to linear
databases when looking for counterexamples to rewritings.

Lemma 1 ([9]). Let Q be a 2RPQ, V a set of 2RPQ views, and w a word over
VE. Then w is not a rewriting (note that w can be viewed as a 2RPQ) of Q
with respect to V if and only if there exists a linear database B with endpoints
c and d, and a view extension £ with & C V¥(B), such that (c,d) € w(&) but

(¢,d) & Q(B).

Making use of this result, we are able to exploit the constraint template itself
as a INFA that recognizes the words that do not belong to a rewriting. However,

View-based Query Processing 327

we have first to take care of the fact that only direct view symbols appear in
the constraint template, while a rewriting is a 1INFA over direct and inverse
view symbols. To do so, we extend the constraint template by adding to the
alphabet, for each symbol V' € V, also the inverse symbol V~. Then we define
(01,02) € V™ ¢ if and only if (02,01) € VC. We denote the resulting constraint
template with CT3 0.v- Observe that the construction of CTS o from CTqy
takes into account the perfect symmetry that we have when movmg along direct
and inverse database and view symbols.

Now, C = CT v can be viewed directly as a INFA A™" over V*| by taking
the domain of C' as the set of states of A™", the extension of U; and Uy in C
respectively as the set of initial and final states, and by deriving the transition
relation of A™ from the extension of the various v € V* as follows: A™ has a
transition (o1, v,07) if and only if (o1, 09) € v©

Let A™" be a INFA accepting the complement of A™". Then the following
characterization of the 2RPQ-maximal rewriting holds.

Theorem 2. Let QQ be a 2RPQ and V a set of 2RPQ views. Then A™" is the
2RPQ-mazimal rewriting of Q with respect to V.

The above characterization provides a nice combination of the constraint
based [10] and automata theoretic [9] approaches to view-based query process-
ing for 2RPQs, and goes into the heart of view-based rewriting. A (language)
rewriting accepts a pair (c,d) if there is a path between ¢ and d such that, if
we view this path as a linear view extension, then (¢, d) is in the certain answer
with respect to this view extension. That means that there is no homomorphism
from this path into the constraint template. Indeed, for a path, the existence of
a homomorphism into the constraint template means that the path is accepted
by the template, viewed as an automaton. Naturally, the difference with view-
based query answering, is that we are not limited to linear view extensions only.
Suppose that V; and V; connect the same pair of objects in a view extension. In
rewriting we have to ignore this and allow the choice of distinct pairs of objects
for the two views in a counterexample database. Query answering instead takes
into account that the two pairs of objects are the same. Thus, query answering
is more precise than query rewriting. On the other hand, the simplification in-
troduced by query rewriting allows to have polynomial time evaluation in the
size of the data, while query answering is coNP-complete [§].

Finally, observe that the above construction provides also optimal upper
bounds for the problems of computing the 2RPQ-maximal rewriting and of
determining whether such a rewriting is nonempty [9]. Indeed, the constraint
template, and hence the INFA A™" can be constructed in EXPTIME and is of
exponential size [I4]. Hence, its complement A™", which provides the 2RPQ-
maximal rewriting, is of double exponential size and can be constructed in 2EX-
PTIME. On the other hand, if we only want to check its emptiness, we can com-
plement A™ on the fly, getting an EXPSPACE upper bound. All these bounds
are tight [12].

328 D. Calvanese et al.

5 Losslessness with Respect to Rewriting

We deal now with the problem of analyzing the loss of information in view-
based query processing, and of characterizing the quality of certain answers and
of rewritings. For this purpose, we make use of the following basic notions.

— To determine whether the information content of a set of views is sufficient to
answer completely a given query, we make use of the notion of losslessness [24]
11]. In [I1], a set of views V is said to be lossless with respect to a query Q,
if for every database B we have that Q(B) = certg y(V*(B)).

— As for rewritings, equivalence of a rewriting to the original query, modulo
the view definitions, is called exactness (cf. [27,12]). Formally, a rewriting
Q. in a certain query class C is an exact rewriting of Q with respect to views
V), if for every database B we have that Q(B) = Q.. (V¥ (B)).

— Finally, to determine whether we lose answering power by resorting to rewrit-
ing, we can compare rewritings with the certain answers, with the aim of
checking whether the two are actually equivalent. A rewriting @, in a cer-
tain query class C is a perfect rewriting of @ with respect to views V, if for
every database B and every view extension € with £ C V*(B) we have that

certov(€) = Qr(E).

The first notion aims at determining possible loss with respect to view-based
query answering, and will be discussed in the next section. The other two notions
deal with the loss of information in the case of rewritings, and are discussed
below.

In the case of conjunctive queries, the best rewriting of a conjunctive query
@ is a union of conjunctive queries. Therefore, checking exactness amounts to
verifying whether @ is contained in the UCQ-maximal rewriting. The latter is
a, possibly exponential, union of conjunctive queries, each of linear size. Since
a conjunctive query is contained in a union of conjunctive queries only if it is
contained in one of its disjuncts, it suffices to check whether there is a single
conjunctive query in the rewriting that is equivalent to @, after substituting the
view definitions. This can be done in NP in the size of Q). As for perfectness,
we already observed that the maximal rewriting computes exactly the certain
answers. Therefore, the maximal rewriting is always perfect.

In the case of 2RPQs, things are more complicated. Exactness is studied
in [9], where it is shown that verifying the existence of an exact rewriting is
2EXPTIME-complete. On the other hand, perfectness is a new notion, and we
provide here a method for checking perfectness of the 2RPQ-maximal rewrit-
ing A™" of a query Q. Exploiting the fact that 2RPQs are monotone, by
results in [14], this amounts to check whether for all databases B we have
that certgy(V¥(B)) € A™¥(V¥(B)). To do this check, we can in principle
directly use the technique in [I4] based on wview-based containment (see [14]
for definitions): the 2RPQ-maximal rewriting A™" is a INFA of double ex-
ponential size in @, and checking whether for all databases B we have that
certg y(V¥(B)) C A™ (V¥ (B)) amounts to checking whether Q is view-based
contained in A™", which can be done in NEXPTIME in @ and A™" [I4]. This

View-based Query Processing 329

gives us a NSEXPTIME upper bound. However, we can do better, by making use
of the fact that we have obtained the INFA A™" for the rewriting by comple-
mentation, and thus by application of the subset construction. This allows us to
characterize non-membership in the answer set to A™" by homomorphism into
a structure C = (A®,-), called the rewriting constraint template CTR prew y of
A" defined as follows:

— The alphabet of C is V¥ U {U;,U;}, where U; and U; denote unary relation
symbols.
— Let A™ = (V*, 8,5, 0, F) be a INFA for the complement of the rewriting
(see Section [). Then
° AC — 25'.

b

[] o O
Q
m
\%s.
£
Q
N
2!

(01,09) € r¢ iff o(o1,7) C 03 and o(09,77) C 0y.

To characterize perfectness of the rewriting in terms of CSP, we need to
introduce proper constraint templates (see also [14]). Given the rewriting con-
straint template CT z-w), a proper constraint template CTZ’T@,N is obtained by
eliminating from U; all but one element o and from Uy all but one element S3.

Lemma 2. Let Q be a 2RPQ and V be a set of 2RPQ views. Then the 2RPQ-
mazximal rewriting of Q with respect to V is perfect if and only if for every proper
constraint template C’TRj’,fwﬁv of CTR grew v, there exists a homomorphism from
OTRArew’VCLﬂ to CTQ,V.

The above characterization provides us with a tighter upper bound than the
one discussed above.

Theorem 3. Let QQ be a 2RPQ and V be a set of 2RPQ views. Then checking
whether the 2RPQ-maximal rewriting of Q) with respect to V is perfect can be
done in N2EXPTIME in the size of Q and in NEXPTIME in the size of V.

We conjecture that such an upper bound is tight.

6 Losslessness with Respect to Answering

We now turn to verifying losslessness with respect to answering. We want to
verify whether a set of views V is lossless with respect to a query @, i.e., verifying
whether certg y is equivalent to @ (cf. [11]).

In the case of conjunctive queries, we already observed that the maximal
rewriting computes exactly the certain answers. Therefore, losslessness with re-
spect to answering and losslessness with respect to rewriting coincide. The case
of RPQs and 2RPQs is much more involved. Losslessness with respect to answer-
ing for RPQs was studied in [11]. In the rest of this section we study losslessness
with respect to answering for 2RPQs.

The main step toward this goal is to characterize the linear fragment of certain
answers. Formally, the linear fragment of certain answers clingy for a 2RPQ

330 D. Calvanese et al.

Q@ with respect to a set V of 2RPQ views is the maximal two-way path query@
@' over X such that, for every database B we have that Q'(B) C certg,v(V(B)).
The following result shows that, in order to characterize the linear fragment of
certain answers it is sufficient to restrict the attention to linear databases, i.e.,
databases constituted by a single semipath.

Lemma 3. Let Q' be two-way path query. Then, if there is a database B and a
pair of objects (c,d) in B such that (c,d) € Q'(B) and (c,d) & certgv(V*(B)),
then there is a linear database By with endpoints ¢’ and d' such that (¢,d') €
Q' (By) and (c',d') & certgy(V*(By)).

Hence, to construct the linear fragment of certain answers, we characterize the
set of linear databases of the form B = (¢, ¢1,%1,42,- .-, qm,Tm), for some m,
such that (zg,z.,) & certg,y(V(B)). By Theorem/[I] this holds if and only if there
is a homomorphism from the constraint instance V(B)¥*m to the constraint
template CTq,y. In other words, (zo,zm) & certg,y(V(B)) if and only if there
is a function ¢(-) (i.e., the homomorphism) that labels zo,...,z,, with sets of
states of the INFA A% = (X*, 59 Ség, 0%, FQ) for Q such that the following
conditions (which we call CT-conditions) hold:

— 55 C xo);
— U(z) N FQ = 0
— for each pair of objects z; and x}, in B and each view V in V, we have that, if
(zj,z) € V¥(B) then there exists a word ¢ - - - g, € L(V¥) and a sequence
To, ..., Ty of subsets of S® such that the following hold:
1. Ty = l(z;) and T}, = £(zp),
2. if s € T; and (s, q;41,t) € 09 then t € T, 1, for 0 < i < k, and
3. if s € T; and (s,q; ,t) € o9 then t € T;_q, for 0 < i < k.

Thus, we are looking for words of the form £y, q1, ..., Gm, {m, where each ¢; is a
set of states of A¥, representing ¢(z;), and that satisfies the above conditions.
As shown by the following lemma, we can construct a INFA that accepts such
words, and then project away the ¢; transitions.

For a word w € X*", we denote with B%? the linear database constituted by
a path from a to b spelled by w (with arbitrary intermediate nodes).

Lemma 4. Let Q be a 2RPQ and V be a set of 2RPQ views. Then we can
construct in double exponential time in Q and V¥ two 1INFAs A™™ and A"
such that:

— A™in gecepts all words w € X% such that (a,b) &€ certgy(V(BSY)).
— A" accepts all words w € X% such that (a,b) € certg y(V(BLY)).

Both 1NFAs A™™ and A" have a number of states that is doubly expo-
nential in both @ and V¥. Obviously, the two automata accept complementary

4 Recall from Section [that two-way path queries are a generalization of 2RPQs in
which the language used to define a query is not required to be regular.

View-based Query Processing 331

languages. However, in the proof of the above lemma we show how to construct
A directly, instead of complementing A™", to avoid an additional exponential
blowup.

Theorem 4. Let Q be a 2RPQ and V be a set of 2RPQ views, and A™™ and
Aln the 1NFAs defined as above. Then A" is the linear fragment clingy of the
certain answers of Q) with respect to V.

Corollary 1. The linear fragment of a 2RPQ with respect to a set of 2RPQ
views is a 2RP(Q).

Now we can deal with checking losslessness with respect to answering. To
check whether a set V of 2RPQ views is lossless with respect to a 2RPQ query
@, we have to check whether for all databases B, we have that Q(B) is con-
tained in the certain answers certg (V¥ (B)). Since Q is itself a 2RPQ, and
hence a path query, it suffices to check whether @) is contained in the linear
fragment of the certain answers, i.e., whether for all databases B we have that
Q(B) C cling,y(B). By exploiting the characterization of the linear fragment
of the certain answers in terms of 1NFAs provided above, we get the following
upper bound, which is tight already for RPQs [11].

Theorem 5. Let Q) be a 2RPQ and V be a set of 2RPQ) views. Then checking
whether V is lossless with respect to Q can be done in EXPSPACE in the size of
Q and V*.

Observe that when we have that a set of views is lossless with respect to a
query, we have also, as a side effect, that the linear fragment of certain answers
is equivalent to the certain answers, since both are equivalent to the query. Now
it is natural to try to understand when the linear fragment of certain answers is
equivalent to the certain answers, independently of losslessness with respect to
answering. Indeed, in this case, since the certain answers are actually expressible
as a 2RPQ over the database, we directly get a characterization of the certain
answers in the same language used for expressing the query and thus in terms
that are understandable to the user.

Given a 2RPQ @ and a set of 2RPQ views V, checking whether the linear frag-
ment of certain answers is equivalent to the certain answers amounts to check-
ing whether for every database B we have that certg (V¥ (B)) C clingy(B).
Consider the INFA A¥" constructed above, recognizing the linear fragment
cling,y of the certain answers of). One can verify that the certain answers
cert gin vy Of ABm with respect to V are actually equivalent to A“" itself. Hence,
the above check amounts to verifying whether for all databases B3, we have that
certg.y(V¥(B)) C cert gin (V¥ (B)). This is a form of view-based containment,
and by [14] it can done in NEXPTIME in the size of Q and A"". Considering
that A"" has a number of states that is doubly exponential in the size of @ and
V¥, we get the following upper bound.

Theorem 6. Let Q) be a 2RPQ and V be a set of 2RP(Q) views. Then checking
whether the certain answers certgy of QQ with respect to V is equivalent to its
linear fragment can be done in NSEXPTIME in the size of Q and V¥ .

We conjecture that such an upper bound can be improved.

332 D. Calvanese et al.

7 Discussion

In this paper, we have revisited the notions of answering, rewriting and lossless-
ness in the context of view-based query processing in semistructured databases.
In particular the richness of RPQs and 2RPQs allows us to uncover several sub-
tle distinctions between the notions of rewriting and answering, and losslessness
with respect to them. Such distinctions are completely blurred when focusing on
conjunctive queries, due to the fact that rewriting and answering collapse.

Let @ be a 2RPQ, V a set of 2RPQ views, and let R79) denote the 2RPQ-
maximal rewriting of Q with respect to V. Then, by definition and by results
in [I4] exploiting the fact that 2RPQs are monotone, we know that for every
database B, the following holds:

REF(VE(B)) €V clingy(B) P certou(V¥(B)) ¥ Q(B)

Notice that we start from a database B and are evaluating certq,y and RgY

over a particular view extension, namely V*(B), instead of an arbitrary view
extension £ that is sound with respect to B, i.e., such that & C V¥(B). This is
due to the fact that our aim is to understand whether there is loss. It is clear
that when £ is a strict subset of V¥ (B) then loss may occur, but this has nothing
to do with the “quality” of the views.

It is now of interest to consider the cases in which some or all of the above
inclusions are actually equalities, since these correspond to the notions studied
in this paper.

L. If RS is exact, i.e., is equivalent to @ (modulo the view definitions), then all
three inclusions are actually equalities. Hence, not only we have losslessness
with respect to rewriting but we also have both that the views are lossless
with respect to answering and that RS is perfect. Thus exactness of the
maximal rewriting is the strongest notion, combining both losslessness of the
views and perfectness of the rewriting.

2. If RS is perfect, i.e., is equivalent to certg,y, then inclusions (1) and (2)
are actually equalities. In this case, we also get that certg,y has to coincide
with cling,y. By Corollary [[l we can conclude that the certain answers are
expressible as a 2RPQ over B.

3. If V is lossless with respect to @, i.e., we have losslessness with respect to
answering, then inclusion (3) is actually an equality. Moreover, in this case,
since @ is itself a 2RPQ), and hence is linear, then certg) has also to be linear
and has to coincide with cling y. Hence inclusion (2) is also an equality. In
this case we know that there is not loss of information related to the fact
that we are answering the query based on a set of views.

4. Finally, if V is lossy with respect to @, i.e., we have lossiness with respect to
answering, we can check whether inclusion (2) is actually an equality, i.e.,
whether the certain answers are actually expressible as a 2RPQ over the
database. If this is the case, we directly get a characterization of the certain
answers in the same language used for expressing the query, namely 2RPQs
over the database, and thus in terms that are understandable to the user.

View-based Query Processing 333

More generally, if V is lossy with respect to @ and inclusion (2) is a proper

inclusion, we would like to provide an explanation for the answers that are
actually returned or, equivalently, for the loss of information. Indeed, in this
case, we know that there will be at least one view extension such that, in order
to show that a tuple is not a certain answer, we need to resort to a non-linear
database. It remains to be investigated whether the techniques we provide for
doing the check allow one also to extract such a counterexample database to
exhibit to the user.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

S. Abiteboul. Querying semi-structured data. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT’97), pages 1-18, 1997.

S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to
Semistructured Data and XML. Morgan Kaufmann, Los Altos, 2000.

S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. of the 17th ACM PODS Symp., pages 254-265, 1998.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query
language for semistructured data. Int. J. on Digital Libraries, 1(1):68-88, 1997.
F. N. Afrati, C. Li, and P. Mitra. Answering queries using views with arithmetic
comparisons. In Proc. of the 21st ACM PODS Symp., pages 209-220, 2002.

P. Buneman. Semistructured data. In Proc. of the 16th ACM PODS Symp., pages
117-121, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization technique for unstructured data. In Proc. of the ACM SIGMOD Ini.
Conf. on Management of Data, pages 505-516, 1996.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Answering regular
path queries using views. In Proc. of the 16th IEEE Int. Conf. on Data Engineering
(ICDE 2000), pages 389-398, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Query processing
using views for regular path queries with inverse. In Proc. of the 19th ACM PODS
Symp., pages 58—66, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
processing and constraint satisfaction. In Proc. of the 15th IEEE Symp. on Logic
in Computer Science (LICS 2000), pages 361-371, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Lossless regular
views. In Proc. of the 21st ACM PODS Symp., pages 5866, 2002.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of reg-
ular expressions and regular path queries. J. of Computer and System Sciences,
64(3):443-465, 2002.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular
path queries. SIGMOD Record, 32(4):83-92, 2003.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
containment. In Proc. of the 22nd ACM PODS Symp., pages 56—67, 2003.

R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view selection
problem. In Proc. of the 27th Int. Conf. on Very Large Data Bases (VLDB 2001),
pages 59-68, 2001.

J. Clark and S. DeRose. XML Path Language (XPath) version 1.0 — W3C rec-
ommendation 16 november 1999. Technical report, World Wide Web Consortium,
1999.

334

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

D. Calvanese et al.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
query language for XML. Submission to the World Wide Web Consortium, 1998.
Available at http://www.w3.org/TR/NOTE-xml-ql|

O. M. Duschka and M. R. Genesereth. Answering recursive queries using views.
In Proc. of the 16th ACM PODS Symp., pages 109-116, 1997.

T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction. SIAM J. on Computing, 28:57-104, 1999.

M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the
boat with Strudel: Experiences with a web-site management system. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data, pages 414-425, 1998.

S. Flesca and S. Greco. Rewriting queries using views. IEEE Trans. on Knowledge
and Data Engineering, 13(6):980-995, 2001.

D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide
Web: A survey. SIGMOD Record, 27(3):59-74, 1998.

G. Grahne and A. O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of LNCS, pages 332-347. Springer, 1999.

S. Grumbach and L. Tininini. On the content of materialized aggregate views. In
Proc. of the 19th ACM PODS Symp., pages 47-57, 2000.

A.Y. Halevy. Answering queries using views: A survey. Very Large Database J.,
10(4):270-294, 2001.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries
using views. In Proc. of the 14th ACM PODS Symp., pages 95-104, 1995.

C. Li, M. Bawa, and J. D. Ullman. Minimizing view sets without losing query-
answering power. In Proc. of the 8th Int. Conf. on Database Theory (ICDT 2001),
pages 99-113, 2001.

T. Milo and D. Suciu. Index structures for path expressions. In Proc. of the 7th
Int. Conf. on Database Theory (ICDT’99), volume 1540 of LNCS, pages 277-295.
Springer, 1999.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 119-140. Plenum Publ. Co., 1978.

J. D. Ullman. Information integration using logical views. In Proc. of the 6th
Int. Conf. on Database Theory (ICDT’97), volume 1186 of LNCS, pages 19-40.
Springer, 1997.

M. Y. Vardi. A temporal fixpoint calculus. In Proc. of the 15th ACM POPL Symp.,
pages 250-259, 1988.

http://www.w3.org/TR/NOTE-xml-ql

	Introduction
	Preliminaries
	Answering and Constraint Satisfaction
	Relationship Between Rewriting and Answering
	Losslessness with Respect to Rewriting
	Losslessness with respect to answering
	Discussion

