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Abstract

Querying Description Logic knowledge bases has received great attention in
the last years. The need of coping with incomplete information is the distinguish-
ing feature with respect to querying databases. Due to this feature, we have to
deal with two conflicting needs: on the one hand, we would like to query the
knowledge base with sophisticated mechanisms provided by full first-order logic
as in databases; on the other hand, the presence of incomplete information makes
query answering a much more difficult task than in databases. In this paper we
advocate the use of an epistemic first-order query language, which is able to incor-
porate closed-world reasoning on demand, as a means for expressing sophisticated
queries over Description Logic knowledge bases. We show that through a subset
of this language, called EQL-Lite, we are able to formulate full first-order queries
over Description Logic knowledge bases, while keeping computational complexity
of query answering under control. In particular, we show that EQL-Lite queries
over DL-Lite knowledge bases are first-order reducible (i.e., can be compiled into
SQL) and hence can be answered in LogSpace through standard database tech-
nologies.

1 Introduction

Querying Description Logic (DL) knowledge bases has received great attention in the
last years. Indeed, the definition of suitable query languages, and the design of query
answering algorithms is arguably one of the crucial issues in applying DLs to ontology
management and to the Semantic Web [9].

Answering queries in DLs must take into account the open-world semantics of
such logics, and is therefore much more difficult than in Databases. For example,
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while First Order Logic (FOL) is the basis of any query language (e.g., relational
algebra and SQL) for relational databases [1], it is well-known that answering FOL
queries posed to DL knowledge bases is undecidable1. More precisely, to the best of
our knowledge, the most expressive class of queries that go beyond instance checking,
and for which decidability of query answering has been proved in DLs, is the class
of union of conjunctive queries [5, 14, 15]. This restriction on the query language
may constitute a serious limitation to the adoption of DLs technology in information
management tasks, such as those required in Semantic Web applications.

The open-world semantics of DLs on one hand is essential for representing incom-
plete information, but on the other hand may complicate the task of interpreting the
answers by the users, or may call for the need of reasoning about the incompleteness
of the knowledge base. For example, knowing that there are no parents with only
female children, one might become interested in asking for all parents whose known
chidren are all female. Note that querying mechanisms such as the one mentioned in
the example go beyond FOL.

To summarize, due to the need of coping with incomplete information in DL knowl-
edge bases, two conflicting requirements arise in querying: on one hand, we would like
to query the knowledge base with powerful mechanisms that are able to reason about
incompleteness, and on the other hand we aim at query languages that are both close
in expressive power to FOL, and decidable (and, possibly, computationally tractable).

This paper presents the following contributions:

• We define a new query language for DL knowledge bases, called EQL (see Sec-
tion 2), based on a variant of the well-known first-order modal logic of knowl-
edge/belief [12, 17, 13]. The language incorporates a modal operator K, that
is used to formalize the epistemic state of the knowledge base. Informally, the
formula Kφ is read as “φ is known to hold (by the knowledge base)”. Using this
operator, we are able to pose queries that reason about the incompleteness of
information represented by the knowledge base. For instance, a user can express
queries that are able to incorporate closed-world reasoning on demand.

• We show (see Section 3) that through a subset of this language, called
EQL-Lite(Q), we are able to formulate queries that are interesting both from
the expressive power point of view, and from the computational complexity per-
spective. Queries in EQL-Lite(Q) have atoms that are expressed using a specific
query language Q, and enjoy the property that they can be evaluated essentially
with the same data complexity (i.e., measured wrt the size of the ABox only)
as Q.

• We investigate the properties of EQL-Lite(Q) for the cases ofALCQI (Section 4)
and DL-Lite (Section 5) knowledge bases, under the assumption that Q is the
language of unions of conjunctive queries. We study the data complexity of query
answering for both cases. In particular, we show that answering such queries
over DL-Lite knowledge bases is LogSpace, and, notably, can be reduced to

1Indeed, query answering can be easily reduced to validity checking in FOL.



evaluating FOL queries over the ABox, when considered as a database. It follows
that query processing in this setting can be done through standard database
technologies.

2 Epistemic query language

We make use of a variant of the well-known first-order modal logic of knowl-
edge/belief [12, 16, 13] (see also [7, 11]), here called EQL. The language EQL is a
first-order modal language with equality and with a single modal operator K, con-
structed from concepts, interpreted as unary predicates, and roles/relations, inter-
preted as binary/n-ary predicates, and an infinitely countable set of disjoint constants
(a.k.a., standard names [13]) corresponding to elements of an infinite countable fixed
domain ∆. In EQL, the modal operator is used to formalize the epistemic state of the
knowledge base. Informally, the formula Kφ should be read as “φ is known to hold
(by the knowledge base)”.

Under this view, a DL knowledge base corresponds to a finite set of FOL sentences
(i.e., closed FOL formulas), capturing what is known about the world. We query such
information by using (possibly open) EQL formulas possibly involving K.

In the following, we use the symbol c (possibly with subscript) to denote a constant,
the symbol x to denote a variable, and φ, ψ to denote arbitrary formulas.

A world is a first-order interpretation (over ∆). An epistemic interpretation is a
pair E,w, where E is a (possibly infinite) set of worlds, and w is a world in E. We
inductively define when a sentence (i.e., a closed formula) φ is true in an interpretation
E,w (or, is true in w and E), written E,w |= φ, as follows:2

E,w |= c1 = c2 iff c1 = c2
E,w |= P (c1, . . . , cn) iff w |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w 6|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constant c
E,w |= Kψ iff E,w′ |= ψ for every w′ ∈ E

Formulas without occurrences of K are said to be objective since they talk about
what is true. Observe that in order to establish if E,w |= φ, where φ is an objective
formula, we have to look at w but not at E: we only need the FOL interpretation w.
All assertions in the DL knowledge base are indeed objective sentences.

Instead, formulas where each occurrence of predicates and of the equality is in the
scope of the K operator are said to be subjective, since they talk about what is known
to be true. Observe that for a subjective sentence φ, in order to establish if E,w |= φ
we do not have to look at w but only at E. We use such formulas to query what the
knowledge base knows. In other words, through subjective sentences we do not query
information about the world represented by the knowledge base; instead, we query
the epistemic state of the knowledge base itself. Obviously there are formulas that

2For a formula φ with free variables x1, . . . , xn, we use φx1,...,xn
c1,...,cn

to denote the formula obtained from
φ by substituting each free occurrence of the variable xi with the constant ci, for each i ∈ {1, . . . , n}.



are neither objective nor subjective. For example ∃x.P (x) is an objective sentence,
K(∃x.P (x) ∧ ¬KP (x)) is a subjective sentence, while ∃x.P (x) ∧ ¬KP (x) is neither
objective nor subjective.

In our setting, among the various epistemic interpretations, we are interested in
specific ones that guarantee minimal knowledge over a DL knowledge base. Namely:
let Σ be a DL knowledge base (TBox and ABox), and let Mod(Σ) be the set of
all FOL-interpretations that are models of Σ. Then a Σ-EQL-interpretation is an
epistemic interpretation E,w where E = Mod(Σ). We say that a sentence φ is Σ-
EQL-satisfiable if there exists a Σ-EQL-model for φ, i.e., a Σ-EQL-interpretation
E,w such that E,w |= φ. Otherwise, we say that φ is Σ-EQL-unsatisfiable. Observe
that for objective formulas this notion of satisfiability becomes the standard notion of
FOL-satisfiability (relative to Σ). A sentence φ is EQL-logically implied by Σ, written
Σ |=EQL φ, if every Σ-EQL-interpretation is a Σ-EQL-model of φ.

It is worth mentioning some characterizing properties of EQL.

Proposition 1 For every DL knowledge base Σ and every EQL sentence φ we have:

Σ |=EQL Kφ ⊃ φ
Σ |=EQL Kφ ⊃ KKφ
Σ |=EQL ¬Kφ ⊃ K¬Kφ

These are the standard S5 axioms of modal logic. The first one expresses that “what is
known is true” (knowledge is accurate), and the latter two express that the knowledge
base has “complete knowledge on what is known and not known”.

Proposition 2 For every DL knowledge base Σ and every objective EQL sentence φ
we have:

Σ |= φ iff Σ |=EQL Kφ
Σ 6|= φ iff Σ |=EQL ¬Kφ

The above proposition relates knowledge to FOL logical implication. It says that
if an objective sentence φ is logically implied then it is known, and vice-versa, that
if φ is not logically implied then it is not known. Notably, the latter property is a
consequence of the minimal knowledge semantics that we are adopting. Observe also
that, as a consequence of this, every objective sentence is either known or not known
by a DL knowledge base.

Proposition 3 For every subjective EQL formula φ with free variables x1, . . . , xn

there is another subjective EQL formula φ′, with free variables x1, . . . , xn, such that:
(i) every occurrence of a subformula of the form Kψ in φ′ is such that ψ is a non-
subjective formula and Kψ occurs in φ; (ii) for every epistemic interpretation E,w,
we have that E,w |= ∀x1, . . . , xn.φ ≡ φ′.

The above proposition says that we do not gain expressive power by putting in
the scope of the K operator a formula that is already subjective. In other words,
if we start from formulas of the form Kψ, where ψ is not subjective, as the basic
building blocks of the language, then applying the full EQL constructs actually gives



the same expressive power as applying the first-order constructs only. By the way, to
get the sentence φ′ from φ we simply need to “push inward” the K operators through
subjective subformulas, stopping when we get to subformulas that are not subjective,
and simplifying KKψ to Kψ whenever possible.

Finally we provide the definition of EQL-queries.

Definition 4 An EQL-query is an EQL-formula q with free variables x1, . . . , xn, for
n ≥ 0, written q[x1, . . . , xn].

Given a Σ-EQL-interpretation E,w, we say that an n-tuple (c1, . . . , cn) of constants
in ∆ satisfies an EQL-query q[x1, . . . , xn] in E,w, written E,w |= q[c1, . . . , cn], if
E,w |= qx1,...,xn

c1,...,cn . A tuple (c1, . . . , cn) of constants in ∆ is a certain answer to q over
Σ, denoted Σ |=EQL q[c1, . . . , cn], if E,w |= q[c1, . . . , cn] for every Σ-EQL-interpretation
E,w.

Given two EQL-queries q[x1, . . . , xn] and q′[x1, . . . , xn] we say that q[x1, . . . , xn]
is contained in (resp., equivalent to) q′[x1, . . . , xn] if for every Σ-EQL-interpretation
E,w and every n-tuple (c1, . . . , cn) of constants in ∆ we have that E,w |= q[c1, . . . , cn]
implies (resp., if and only if) E,w |= q[c1, . . . , cn].

Example 5 Consider the DL knowledge base Σ constituted by the following TBox
T and ABox A:

T = { Male v ¬Female }
A = { Female(mary),Female(ann),Female(jane),Male(bob),

Male(john),Male(paul),PARENT(bob,mary),PARENT(bob, ann),
PARENT(john, paul),PARENT(mary, jane) }

Suppose we want to know the set of males that have only female children. This
corresponds to the following first-order query q1:

q1[x] = Male(x) ∧ ∀y.PARENT(x, y) → Female(y)

It is easy to verify that the set of certain answers of q1 over Σ is empty. In particular,
bob is not a certain answer to the above query, since (due to the open-world semantics
of DLs) there are models of Σ in which the interpretation of PARENT contains pairs
of elements of the form (bob, x) and the interpretation of Male contains the element
x.

Suppose now that we want to know who are the persons all of whose known children
are female. This can be expressed by the following EQL query q2:

q2[x] = Male(x) ∧ ∀y.(KPARENT(x, y)) → Female(y)

It is immediate to verify that the certain answers over Σ of the query q2 are bob
and paul. In fact, for each Σ-EQL-interpretation E,w (we recall that E = Mod(Σ)),
(bob,mary) and (bob, ann) are the only pairs (x, y) such that Σ |=EQL KPARENT(x, y);
moreover, paul is a certain answer because he is male and has no known children.
Analogously, it can be seen that no other constant is in the set of certain answers of
q2 over Σ.



Example 6 Suppose now that we want to know who are the single children according
to what is known, i.e., the known children who have no known sibling. This can be
expressed by the following EQL query q3:

q3[x] = ∃y.(KPARENT(y, x)) ∧ ∀z.(KPARENT(y, z)) → z = x

It is immediate to verify that the certain answers over Σ of the query q3 are paul and
jane.

3 EQL-Lite(Q)

We introduce now the query language EQL-Lite(Q). Such a language is parameterized
with respect to a basic query language Q, which is a subset of EQL. Informally, EQL-
Lite(Q) is the first-order query language with equality whose atoms are formulas of
the form Kq where q is a Q-query, i.e., a query in Q.

To define EQL-Lite(Q) formally, we first need to introduce the notion of domain
independence for first-order queries, which is the semantical restriction on first-order
logic that is needed to get the equivalence to relational algebra [1]. A first-order query
q is domain independent if for each pair of FOL interpretations I1 and I2, respectively
over domains ∆I1 ⊆ ∆ and ∆I2 ⊆ ∆, for which P I1 = P I2 for all atomic relations P ,
we have that qI1 = qI2 3.

Given a subset Q of EQL, we call epistemic atom in Q an expression of the form
Kq[x1, . . . , xn], where q[x1, . . . , xn] is a Q-query.

Definition 7 An EQL-Lite(Q) query is a formula ψ that:

• is constructed according to the following syntax:

ψ ::= a | x1 = x2 | ψ1 ∧ ψ2 | ¬ψ | ∃x.ψ,
where a is an epistemic atom in Q, and

• is domain-independent, when we consider epistemic atoms as atomic formulas.

Observe that in EQL-Lite(Q) we do not allow for nesting of the K operator outside
the expressions of the basic query languageQ. Indeed, we now show that allowing such
nested occurrences of the epistemic operator does not actually increase the expressive
power of EQL-Lite(Q).

Proposition 8 Let EQL-Lite(Q)+ be the extension of EQL-Lite(Q) obtained by
adding to the abstract syntax for EQL-Lite(Q) formulas the rule

ψ ::= Kψ

For each query q ∈ EQL-Lite(Q)+, there exists a query q′ ∈ EQL-Lite(Q) such that q
is equivalent to q′.

3For an interpretation I over domain ∆I and a FOL query q[x1, . . . , xn], we use qI to denote
the result of the evaluation of q in I, i.e., the set of tuples (c1, . . . , cn) of constants in ∆I such that
φx1,...,xn

c1,...,cn
is true in I.



The above property is an immediate consequence of Proposition 3, since EQL-Lite(Q)
queries are subjective EQL formulas, where the K operator is applied to non subjective
(in fact objective) subformulas only, and hence each EQL-Lite(Q)+ query can be
reduced to an equivalent EQL-Lite(Q) query by pushing inward the K operator,
stopping in front of the epistemic atoms, and simplifying KKψ to Kψ whenever
possible.

In spite of its expressive richness, EQL-Lite(Q) enjoys an interesting complexity
characterization of query answering. In the rest of the paper, when we speak about
the computational complexity of the query answering problem we actually refer to
the computational complexity of the recognition problem associated with query an-
swering [1]. Let Q be a query language and L a DL language, and let us assume
that the query language Q over L-knowledge bases has data complexity CQ,L, i.e., the
complexity of answering queries in Q over L-knowledge bases measured in the size of
the data of the knowledge base is CQ,L.

Let us further consider the following restriction over queries and knowledge bases.

Definition 9 Given a knowledge base Σ in L, a query q in Q is Σ-range-restricted,
if the certain answers of q over Σ contain only elements of adom(Σ), where adom(Σ)
denotes the set of constants occurring in Σ. By extension, an EQL-Lite(Q) query is
Σ-range-restricted if each of its epistemic atoms involves a Σ-range-restricted query.

The class of Σ-range-restricted queries is perfectly natural in this setting: indeed, it
can be shown that if the set of certain answers of a query q on a knowledge base Σ
contains elements that are not in adom(Σ), then the set of certain answers is infinite.

Example 10 The following in an EQL-Lite(Q) query, where Q is the language of
atomic queries:

q4[x] = (KMale(x)) ∧ ∀y.(KPARENT(x, y)) → (KFemale(y))

It is easy to verify that for the knowledge base Σ given in Example 5, q4 is Σ-range-
restricted.

Observe that, by Proposition 2, we have complete information on each instantiation
of the epistemic atoms of an EQL-Lite(Q) query, i.e., either the instantiated epistemic
atom is entailed by Σ or its negation is entailed by Σ. Now, answering a Σ-range-
restricted EQL-Lite(Q) query amounts to evaluating a domain independent first-order
query whose variables range over adom(Σ) and whose instantiated epistemic atoms
Kq[c1, . . . , cn] can be checked by verifying whether (c1, . . . , cn) is a certain answer
of q over the knowledge base. We know that evaluating a first-order query over
a given database is in LogSpace in data complexity [1], and, by our assumption,
computing whether a tuple of elements of adom(Σ) is in the relation corresponding to
the extension of an epistemic atom, can be done in CQ,L in data complexity. Hence, we
immediately derive the following result on the data complexity of answering Σ-range-
restricted EQL-Lite(Q)-queries, where we denote with CC2

1 the class of languages
recognized by a C1-Turing Machine that uses an oracle in C2.



Theorem 11 Let Q be a query language over L-knowledge bases that is in CQ,L with
respect to data complexity. Let Σ be an L-knowledge base, and q a Σ-range-restricted
EQL-Lite(Q) query. Then, answering q over Σ is in LogSpaceCQ,L with respect to
data complexity.

Among the various choices of the basic query languageQ in EQL-Lite(Q), a promi-
nent role is played by unions of conjunctive queries (UCQs). In fact, the language
of UCQs is currently the most expressive subset of first-order logic for which query
answering over DL knowledge bases is known to be decidable [5, 15]. Consequently, in
the following we will focus on EQL-Lite(UCQ), and will call such a language simply
EQL-Lite.

4 Answering EQL-Lite queries over ALCQI knowledge
bases

As a consequence of the properties shown in the previous section, we now provide
a computational characterization of answering Σ-range-restricted EQL-Lite queries
in ALCQI. It is known that answering unions of conjunctive queries over ALCQI
knowledge bases is coNP-complete with respect to data complexity [15]. Based on
this characterization and on Theorem 11, we are able to show the following result.

Theorem 12 Let Σ be an ALCQI-knowledge base, and q a Σ-range-restricted EQL-
Lite query. Then, answering q over Σ is in Θp

2 with respect to data complexity.

We recall that Θp
2 = ∆p

2[O(log n)] = PNP [O(log n)] [10, 8], i.e., Θp
2 is the class of

the decision problems that can be solved in polynomial time through a logarithmic
number of calls to an NP-oracle. Such a class is considered as “mildly” harder than
the class NP, since a problem in Θp

2 can be solved by solving “few” (i.e., a logarithmic
number of) instances of problems in NP. Consequently, answering EQL-Lite queries in
ALCQI (and in all the DLs in which answering UCQs is a coNP-complete problem)
is “mildly harder” than answering UCQs.

5 Answering EQL-Lite queries over DL-Lite knowledge
bases

In this section we study EQL-Lite queries posed over DL-Lite knowledge bases. DL-
Lite [6, 3] is a DL specifically tailored to capture basic ontology languages, while
keeping low complexity of reasoning, in particular, polynomial in the size of the in-
stances in the knowledge base. Answering UCQs in DL-Lite is in LogSpace with
respect to data complexity4. Moreover all UCQs in DL-Lite are Σ-range-restricted.
As a consequence of Theorem 11 we get that moving from UCQs to EQL-Lite does
not blow up computational complexity of the query answering problem.

4It is easy to see that all results for CQs in [6, 3] can be extended to UCQs.



Theorem 13 Answering EQL-Lite queries over DL-Lite knowledge bases is in
LogSpace with respect to data complexity.

We point out that membership in LogSpace for the problem of answering UCQs
over DL-Lite knowledge bases follows from a notable property of such a DL language,
namely, FOL-reducibility of query answering [4]. Intuitively, FOL-reducibility means
that query answering can be reduced to evaluating queries over the database corre-
sponding to the ABox of a DL knowledge base, which therefore can be maintained in
secondary storage. More formally, given an ABox A involving membership assertions
on atomic concept and roles only, we define IA as the interpretation constructed as
follows:

– aIA = a for each constant a,
– AIA = {a | A(a) ∈ A} for each atomic concept A, and
– P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role P .

Then, query answering in a DL L is FOL-reducible if for every query q (of a given
language) and every TBox T expressed in L, there exists a FOL query q1 such that for
every ABox A, we have that (T ,A) |=EQL q[c1, . . . , cn] if and only if (c1, . . . , cn)IA ∈
qIA1 . In other words, q1 is evaluated over the ABox A considered as a database.
Observe that FOL-reducibility is a very nice property from a practical point of view.
Indeed, in all such cases in which query answering can be reduced to evaluation of
a suitable domain independent FOL query q1, then q1 can be expressed in relational
algebra, i.e., in SQL. Therefore, query answering can take advantage of optimization
strategies provided by current DBMSs (which are in charge of properly managing
ABoxes in secondary storage).

Now, it turns out that FOL-reducibility is also at the basis of the membership
in LogSpace of answering EQL-Lite queries over DL-Lite knowledge bases, as the
following theorem shows.

Theorem 14 Answering EQL-Lite queries in DL-Lite is FOL-reducible. Further-
more, the resulting FOL-queries are domain independent.

Proof (sketch). We make use of the algorithm for FOL-reducibility of UCQs over DL-
Lite knowledge bases presented in [3]. More precisely, given a DL-Lite TBox T and
an EQL-Lite query ψ over T , we execute the algorithm of [3] for each epistemic atom
Kq[x1, . . . , xn] of ψ, giving as inputs to each such execution the union of conjunctive
queries q[x1, . . . , xn] and the DL-Lite TBox T . Then, we substitute to each epistemic
atom Kq[x1, . . . , xn] of ψ the union of conjunctive queries q′[x1, . . . , xn] produced by
the corresponding execution of the rewriting algorithm, thus obtaining (provided some
further syntactic transformations) a FOL query q1. Now, it is possible to show that
q1 is domain independent, and that for every ABox A, (T ,A) |=EQL q[c1, . . . , cn] iff
(c1, . . . , cn)IA ∈ qIA1 , thus proving the claim.

As a consequence, to perform query answering of EQL-Lite queries in DL-Lite, we
can rely on traditional relational DBMSs.



Recently, different versions of DL-Lite have been considered, and an entire family
of “lite” DLs, namely, the DL-Lite family, has been defined [4]. Roughly speaking,
DLs of such a family differ one another for the set of constructs allowed in the right-
hand side and in the left-hand side of inclusion assertions between concepts and/or
roles specified in the TBox (e.g., allowing in certain cases for the presence of existential
qualified quantification on the right-hand side, or conjunctions of concepts in the left-
hand side), as well as the possibility of specifying functionality assertions on roles,
inclusion assertions between roles, and n-any relationships in addition to binary roles.
Notably, the DLs of the DL-Lite family are the maximal logics allowing for FOL-
reducibility of answering unions of conjunctive queries [4]. As for answering EQL-Lite
queries, we point out that Theorem 14 also holds for all the DLs belonging to the
DL-Lite family.

6 Conclusions

Motivated by various needs related to querying DL knowledge bases, we have proposed
the query language EQL, based on a variant of the well-known first-order modal
logic of knowledge/belief. Then, we have studied a subset of this language, called
EQL-Lite(Q), arguing that it allows for formulating queries that are interesting both
from the expressive power point of view, and from the computational complexity
perspective. Finally, we have investigated the properties of EQL-Lite(Q) for the cases
of ALCQI and DL-Lite knowledge bases, under the assumption thatQ is the language
of unions of conjuntive queries. In particular, we have shown that answering EQL-
Lite(Q) in the latter setting is LogSpace in data complexity, and, notably, can be
done through standard database technologies.

We are working specifically on EQL-Lite(Q) for DL-Lite knowledge bases, for the
case where Q is the query language whose queries are either a UCQ or a comparison
atom involving values taken from a set of given domains. We are currently implement-
ing such an extended language with the goal of enhancing the querying capabilities of
the QuOnto system [2].
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