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Abstract. We study peer-to-peer data integration, where each peer models an
autonomous system that exports data in terms of its own schema, and data in-
teroperation is achieved by means of mappings among the peer schemas, rather
than through a unique global schema. We propose a multi-modal epistemic logi-
cal formalization based on the idea that each peer is conceived as a rational agent
that exchanges knowledge/belief with other peers, thus nicely modeling the mod-
ular structure of the system. We then address the issue of dealing with possible
inconsistencies, and distinguish between two types of inconsistencies, called lo-
cal and P2P, respectively. We define a nonmonotonic extension of our logic that
is able to reason on the beliefs of peers under both local and P2P inconsistency
tolerance. Tolerance to local inconsistency essentially means that the presence of
inconsistency within one peer does not affect the consistency of the whole sys-
tem. Tolerance to P2P inconsistency means being able to resolve inconsistencies
arising from the interaction between peers. We study query answering in the new
nonmonotonic logic, with the main goal of establishing its decidability and its
computational complexity. Indeed, we show that, under reasonable assumptions
on peer schemas, query answering is decidable, and is coNP-complete with re-
spect to data complexity, i.e., the size of the data stored at the peers.

1 Introduction

In this paper we study data integration in a peer-to-peer (P2P) architecture. In a P2P data
integration system (P2PDIS), each peer is an autonomous information system providing
part of the overall information available from a distributed environment, and acts both
as a client and as a server. Information integration in these systems does not rely on
a single global view, as in traditional data integration [35]. Instead, it is achieved by
establishing mappings between peers, and by exploiting such mappings to collect and
merge data from the various peers when answering user queries.

P2P data integration has been the subject of several investigations in the last years.
Recent papers focused on providing techniques for evolving from basic P2P networks
supporting only file exchanges to more complex systems like schema-based P2P net-
works, capable of supporting the exchange of structured contents. From papers like [29,



6, 27, 14, 23, 44] the idea of peer data management emerges: every peer is characterized
by a schema that represents the domain of interest from the peer perspective, and is
equipped with mappings to other peers [40], each mapping providing a semantic rela-
tionship between pairs of peers. Data integration in such systems is typically virtual:
data stored in one peer is not replicated in other peers, and when a query is posed to
a peer, query processing is done by both looking at local data, and collecting relevant
data from other peers according to the mappings. Cycles in the mappings pose chal-
lenging problems, and various proposals have been put forward to deal with them. For
example, in [14], starting from the observation that query answering in P2PDISs in the
presence of cycles in the mappings is undecidable under a first-order interpretation of
such mappings, an epistemic semantics is proposed that weakens the usual semantics
based on first-order logic [29], and allows for both a better modeling of the modular
structure of the system, and decidable query answering (even polynomially tractable
w.r.t. data complexity, under common assumptions on the various peer schemas). Some
papers look at peer data management under the perspective of exchanging data between
peers. Peers are again interconnected by means of mappings, but in this case, the focus
is on materializing the data flowing from one peer to another [21, 4].

In this paper we are interested in virtual P2P data integration, and thus we do not
deal with the issue of materializing exchanged data. In particular, we aim at addressing
an important problem that is still unexplored in formal approaches to P2P data integra-
tion, namely inconsistency tolerance, i.e., how to deal with inconsistencies in the data
stored by the peers.

The problem of dealing with inconsistency has its roots in studies in belief revision
and update [3, 25] in Artificial Intelligence, which deal with the problem of integrating
new information with previous knowledge. In the context of databases, where the un-
derlying theory takes the form of a database schema and the revision process focuses
on data [22], the general goal is to provide informative answers even when a database
does not satisfy its integrity constraints. Most of this work relies on the notion of repair
as introduced in [5]: a repair of a database is a new database that satisfies the constraints
in the schema, and minimally differs from the original one (see, e.g., [5, 11]). Recently,
some papers (see, e.g., [12, 9]) have tackled data inconsistency in a data integration set-
ting, where the basic idea is to apply the repairs to data retrieved from the sources, again
according to some minimality criteria. Instead, only few works deal with inconsisten-
cies in P2P architectures. The approach in [8] is based on the notion of “solution” for a
peer P , i.e., an instance for the peer database schema that respects both the mappings
and the trust relationships that P has with other peers, and stays as close as possible to
the available data in the system. This mechanism characterizes how each peer locally re-
pairs data collected from other peers. Instead, [16] proposes to identify those mappings
(called nogoods) causing inconsistencies with the local peer constraints, and use them
to compute those facts that are consequences of some consistent subset of the global
peer theory. We refer to Section 8 for a more detailed discussion on these approaches.

Differently from previous work, we provide here a formal semantics to the whole
P2PDIS that does not rely on a particular repairing strategy adopted by the peers.
Specifically, we follow the approach of [14], and we exend it in different ways:



– We want to stress the modularity of P2P architectures, i.e., the fact that each peer
is autonomous. To this end, we formalize a P2P data integration system in terms of
a multi-modal epistemic logic, namely K45n [31, 36], where each peer is modeled
as a rational agent that exchanges knowledge/belief with other peers. This is in line
with the idea of modeling a distributed information system in terms of multi-agent
modal logic [20]. Our formalization nicely models the modular structure of the
system, without resorting to any assumptions, such as acyclicity, on its topology.

– We want the P2PDIS to be inconsistency tolerant in two ways. First, we want a
P2PDIS to be able to “isolate” peers that are locally inconsistent, i.e., that contain
inconsistent data. Second, we aim at a system that is tolerant to P2P inconsistency,
i.e., is able to repair inconsistent data coming from different peers. In order to deal
with both types of tolerance, we introduce a novel nonmonotonic epistemic logic,
called K45A

n , which extends K45n with suitable nonmonotonic modal operators.
Within this logic, a P2PDIS can be formalized in such a way that (i) each locally
inconsistent peer is isolated, (ii) each locally consistent peer believes its own data,
and (iii) each locally consistent peer maximizes information coming from other
peers, but without falling into inconsistency.

– We want query answering in the P2PDIS to be decidable. To this aim, we consider
a (relatively simple) case of practical interest in which inconsistency may arise in
a P2PDIS, and exhibit an algorithm for this case that is sound and complete with
respect to our K45A

n -formalization of P2PDISs, thus showing that query answering
in such a setting is decidable. More precisely, we consider the setting in which P2P
mappings are GAV mappings [35], and each peer schema is a relational schema
with only key dependencies. Our algorithm works in coNP data complexity (i.e.,
the complexity with respect to the size of the data stored at the peers). We also
observe that the problem in the above setting is coNP-hard, thus showing that query
answering in our K45A

n -formalization of P2PDISs is coNP-complete already in the
simple case considered. We argue that our technique may be generalized to more
complex scenarios, and that actually query answering is always decidable in all
those cases in which query answering over a single peer is decidable.

The paper is organized as follows. In Section 2, we introduce the P2PDIS frame-
work that we will use in the rest of the paper. In Section 3, we illustrate the multi-modal
epistemic logic K45n, and in Section 4 we show how to formalize our P2P framework
in such a logic. In Section 5, we present K45A

n , which is an extension of K45n with
nonmonotonic features. In Section 6, we illustrate how to use such a logic to provide an
inconsistency tolerant formalization of the P2PDIS framework, and we argue about the
effectiveness of our formalization, by illustrating some of its basic formal properties.
In Section 7, we show that query answering in the new framework is decidable, and
discuss its computational complexity under GAV mappings and key dependencies on
the peer schemas. Finally, in Section 8 we discuss related work, and in Section 9 we
conclude the paper.

The present paper is an extended version of [13].



2 Framework

In this section we describe the framework for P2P data integration adopted in the present
paper3. We refer to a fixed, infinite, denumerable set Γ of constants. Such constants are
shared by all peers, and denote the data items managed by the P2PDIS. Moreover,
given a relational alphabet A, we denote with LA the set of function-free first-order
logic (FOL) formulas whose relation symbols are in A and whose constants are in Γ . A
FOL query over a relational alphabet A is a FOL open formula over A. A conjunctive
query (CQ) of arity n over A is a special kind of FOL query, written in the form

{x | ∃y. bodycq(x,y)}
where bodycq(x,y) is a conjunction of atoms of LA involving the free variables (also
called the distinguished variables of the query) x = x1, . . . , xn, the existentially quanti-
fied variables (also called the non-distinguished variables of the query) y = y1, . . . , ym,
and constants from Γ .

A P2P data integration system P = {P1, . . . , Pn} is constituted by a set of n peers,
each with its own identifier, that is unique in P . In the following, we assume that a peer
Pi is identified by its subscript i.

Each peer Pi ∈ P (cf. [29]) is specified by means of a tuple (G,S, L, M), where:

– G is the schema of Pi, which is a finite set of formulas of LAG
(representing lo-

cal integrity constraints), where AG is a relational alphabet (disjoint from the other
alphabets in P) called the alphabet of Pi. For convenience, we include in the lan-
guageLAG of peer Pi the special sentence⊥i that is false in every interpretation for
LAG . Intuitively, the peer schema provides an intensional view of the information
managed by the peer.

– S is the local source schema of Pi, which is simply a finite relational alphabet
(again disjoint from the other alphabets in P), called the local alphabet of Pi.
Intuitively, the local source schema describes the structure of the data sources of
the peer (possibly obtained by wrapping physical sources), i.e., the sources where
the real data managed by the peer are stored.

– L is a set of local mapping assertions between G and S. Each local mapping asser-
tion is an expression of the form

cqS ; cqG,

where cqS and cqG are two conjunctive queries of the same arity, respectively over
the local source schema S and over the peer schema G. The local mapping asser-
tions establish the connection between the elements of the local source schema and
those of the peer schema in Pi. In particular, an assertion of the form cqS ; cqG

specifies that all the data satisfying the query cqS over the sources also satisfy the
concept in the peer schema represented by the query cqG. In the terminology used
in data integration, the combination of peer schema, local source schema, and local
mapping assertions constitutes a GLAV data integration system [35] managing a
set of sound data sources S defined in terms of a (virtual) global schema G.

3 Our framework basically corresponds to the one presented in [14].



– M is a set of P2P mapping assertions, which specify the semantic relationships
that the peer Pi has with the other peers. Each assertion in M is an expression of
the form

cqj ; cq i,

where cq i, called the head of the assertion, is a conjunctive query over the peer
(schema of) Pi, while cqj , called the tail of the assertion, is a conjunctive query
of the same arity as cq i over (the schema of) one of the other peers in P . A P2P
mapping assertion cqj ; cq i from peer Pj to peer Pi expresses the fact that the
Pj-concept represented by cqj is mapped to the Pi-concept represented by cq i.
From an extensional point of view, the assertion specifies that every tuple that can
be retrieved from Pj by issuing query cqj satisfies cq i in Pi. Observe that no limi-
tation is imposed on the topology of the whole set of P2P mapping assertions in the
system P , and hence the set of all P2P mappings may be cyclic.

For each peer Pi ∈ P , the tuple (G,S, L,M) is intended to provide the specification
of the peer at the intensional level. To model the data managed by the system, we
now introduce the notion of extension for a P2PDIS P = {P1, . . . , Pn}. Namely, an
extension for P is simply a collection of extensions, one for each peer of P , i.e., a
collection D = {D1, . . . , Dn}, where each Di is an extension of (i.e., the set of tuples
satisfying) the predicates in the local source schema of peer Pi.

As already said, in our formalization of a P2PDIS, a single peer is seen as a data
integration system [35] equipped with a set M of P2P mappings assertions. This char-
acterization allows us to properly represent the typical scenario in which an organi-
zation, which has its own data sources within its own information systems, wants to
connect itself with other organizations in a network of peers to both export and import
data, still keeping hidden how information is internally managed. Hence, each organi-
zation shares in the peer network only its global view of the information it manages,
expressed in terms of a peer schema. Obviously, our formalization captures also those
situations in which peers have a simpler structure (e.g., are database systems exporting
their schema). On the other hand, one peer would like to allow (some) other peers to ac-
cess only portions of its schema, and to extract therefore only part of its own data, thus
setting the stage for the issues of privacy and authorization. These aspects are however
outside the scope of the present paper.

Each peer in a P2PDIS can be queried by an external user or by another peer (both
acting as peer’s client). Queries to a peer Pi must be posed over the peer schema in a
query language that the peer can process, and which we call the language accepted by
Pi. In principle, each peer may have its own accepted query language. However, for
simplicity we assume that all peers in a P2PDIS accept the same query language, and
that such a language is a fragment of FOL that contains at least the class of conjunctive
queries (indeed, since for each Pj-to-Pi mapping assertion cqj ; cq i, by definition,
cqj is a conjunctive query, it is reasonable to require that such queries are accepted by
Pj).

A P2PDIS, together with one extension, is intended to be queried by a client. A
client enquires the whole system by accessing any peer P of P , and by issuing a query
q to P . The query q is processed by P if and only if q is expressed over the schema of
P and is accepted by P .



P2 Citizen2(name,dateOfBirth,citizenship)
P4 Citizen4(name,livesIn,citizenship)

Person1(name,livesIn,citizenship)

S3(id,dateOfBirth,citizenship)
(“Mary”,2000jan1,”Norway”)
(“Mary”,2000jan1,”France”)

S4(id,livesIn,citizenship)
(“Joe“,”Rome”,“Canada”)

Person3(name,livesIn,citizenship)
P1 P3

S1(id,livesIn)
(“Joe“,“Rome”)

S2(id,citizenship)
(“Joe“,“Italy”)

Fig. 1. A P2P system

Example 1. Let us consider the P2PDIS in Figure 1, in which we have 4 peers P1, P2,
P3, and P4, whose schemas contain only FOL formulas specifying key dependencies
on relations. For ease of presentation we use relation symbols with attribute names, and
underline the attributes corresponding to the key of the relation (when present).

The schema of peer P1 is formed by the relation symbol
Person1(name, livesIn, citizenship), where name is the key. P1 contains the local
source S1(id, livesIn), mapped to the peer schema by the local mapping asser-
tion {x, y | S1(x, y)} ; {x, y | ∃z. Person1(x, y, z)}, and the local source
S2(id, citizenship), mapped to the peer schema by the local mapping assertion
{x, y | S2(x, y)} ; {x, z | ∃y. Person1(x, y, z)}. Moreover, it has a P2P mapping
assertion {x, z | ∃y. Citizen2(x, y, z)} ; {x, z | ∃y. Person1(x, y, z)} relating
information in peer P2 to those in peer P1. Finally, P1 has an extension D1 represented
in Figure 1 by the facts S1("Joe","Rome"), S2("Joe","Italy").

The schema of P2 is composed by the relation symbol
Citizen2(name, dateOfBirth, citizenship), whereas the P2 local source schema
contains S3(id, dateOfBirth, citizenship), mapped to the peer schema through
the local mapping {x, y, z | S3(x, y, z)} ; {x, y, z | Citizen2(x, y, z)}. P2

has no P2P mappings, whereas it has an extension D2 represented by the facts
S3("Mary",2000jan1,"Norway"), S3("Mary",2000jan1,"France").

P3 has Person3(name, livesIn, citizenship) as schema, contains no local sources
(and therefore has no local mapping assertions and no local extensions), and has a P2P
mapping {x, y, z | Person1(x, y, z)} ; {x, y, z | Person3(x, y, z)} with P1, and a
P2P mapping {x, y, z | Citizen4(x, y, z)} ; {x, y, z | Person3(x, y, z)} with P4.

P4 has Citizen4(name, livesIn, citizenship) as schema, and a local source
S4(id, livesIn, citizenship) mapped to the peer schema through the local map-
ping {x, y, z | S4(x, y, z)} ; {x, y, z | Citizen4(x, y, z)}. P4 has
no P2P mappings, whereas it has an extension D4 represented by the fact
S4("Joe","Rome","Canada").

Obviously, the P2PDIS extension D is given by the union of D1, D2 and D4.



3 The multi-modal epistemic logic K45n

One of the goals of this paper is to present a multi-model epistemic formalization of the
framework described in the previous section. To this end, we will use a specific modal
epistemic logic, called K45n, which is the multi-modal version of the epistemic logic
K45 with n modal operators [33, 31, 36]. The aim of this section is to introduce such
logic.

The language L(K45n) of K45n is a first-order multi-modal language over a rela-
tion alphabet A (and fixed set Γ of constants) with a set K1, . . . ,Kn of modal opera-
tors. K45n formulas are inductively defined as follows:

– an atom r(c), where r ∈ A and c is a tuple of variable or constant symbols, is a
K45n formula;

– an equality t1 = t2, where t1 and t2 are variable or constant symbols, is a K45n

formula;
– if φ is a K45n formula, ¬φ and Kiφ, where i ∈ {1, . . . , n}, are K45n formulas;
– if ψ is a K45n formula with open variables x, ∃x.ψ is a K45n formula;
– if φ1 and φ2 are K45n formulas, φ1 ∧ φ2 is a K45n formula.

Formulas without occurrences of Ki are said to be objective formulas since they talk
about what is true. Instead, formulas of the form Kiφ are said to be subjective formulas
since they are used to formalize the epistemic state of an agent. Obviously there are
formulas that are neither objective nor subjective. Informally, a subjective formula Kiφ
should be read as “φ is known to hold by the agent i”. In fact, in K45n, we do not
have that what is known by an agent must hold in the real world: the agent can have
inaccurate knowledge of what is true, i.e., believe something to be true although in
reality it is false. Often this kind of knowledge is referred to as belief. On the other
hand, K45n states that the agent has complete information on what it knows, i.e., if
agent i knows φ then it knows of knowing φ, and if agent i does not know φ, then it
knows that it does not know φ. In other words, the following assertions hold for every
K45n formula φ (in such assertions, ⊃ denotes material implication):

Kiφ ⊃ Ki(Kiφ) known as the axiom schema 4,
¬Kiφ ⊃ Ki(¬Kiφ) known as the axiom schema 5.

On the other hand, the assertion Kiφ ⊃ φ does not hold, i.e., what is known is not
necessarily true.

To define the semantics of K45n, we start from first-order interpretations. In par-
ticular, we restrict our attention to first-order interpretations that share a fixed infinite
domain ∆. We further assume that for each domain element d ∈ ∆, we have a unique
constant cd ∈ Γ that denotes exactly d, and, vice versa, that every constant cd ∈ Γ
denotes exactly one domain element d ∈ ∆4. In particular this implies that equality
never holds between two distinct constants (i.e., we are imposing the unique name as-
sumption).

We adopt the so-called possible-worlds semantics (see e.g., [32, 31]): in a given
world (initial world) each agent believes a set of worlds (not necessarily containing the

4 In other words, the constants in Γ act as standard names [36].



E w1
P(a)     R(b)

S(d)

w2

R(c)

S(d) 

R1

R(b)

S(d)

R1 R1

R2

w3

R2

R1

R1

Fig. 2. A K45n-structure

initial world) be possibly the real world, and it believes that a sentence φ is true if φ is
true in all the worlds in this set. Conversely, the agent does not believe that φ is true if
there is a world in the set in which φ is not true.

As formal model for possible world semantics we consider K45n-structures. A
K45n-structure is a Kripke structure E of the form (W, {R1, . . . Rn}, V ), where:

– W is a set whose elements are the possible worlds;
– V is a function assigning to each w ∈ W a first-order interpretation V (w);
– each Ri, called the accessibility relation for the modality Ki, is a binary relation

over W , with the following constraints:

if (w1, w2) ∈ Ri and (w2, w3) ∈ Ri then (w1, w3) ∈ Ri, i.e., Ri is transitive;
if (w1, w2) ∈ Ri and (w1, w3) ∈ Ri then (w2, w3) ∈ Ri, i.e., Ri is Euclidean.

Intuitively, (wk, wj) ∈ Ri specifies that, in world wk, the agent i believes that wj

is a possible world.

In Figure 2, we give an example of a simple K45n-structure E =
(W, {R1, R2}, V ), which is represented as a labelled directed graph in which each
node is a world of W , and there is an edge labelled with Ri from wj to wk for
each (wj , wk) ∈ Ri. In the example, W = {w1, w2, w3}, and in world w1 we
have that PV (w1) = {a}, RV (w1) = {b}, SV (w1) = {d}, represented by facts
P (a), R(b) and S(d) in node w1. Analogously, V (w2) is represented by facts R(c)
and S(d) in node w2 and V (w3) is represented by facts R(b) and S(d) in node w3.
Furthermore, R1 = {(w1, w2), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w1, w3)}, and
R2 = {(w2, w1), (w1, w1)}.

A projection πi of a graph G representing a K45n-structure is the sub-graph of
G containing all the edges labelled with Ri and the nodes that they connect, i.e., it



is the sub-graph which represents only the accessibility relation Ri. Then, since each
accessibility relation of a K45n-structure is transitive and Euclidean, in each connected
component of a projection πi, each node is either (a) a node with only outgoing edges,
i.e., it is a root, or (b) a node connected via a direct edge to every other non-root node
of the projection πi, itself included (note that, by Euclidean property, if (wj , wk) ∈ Ri,
then also (wk, wk) ∈ Ri). In the example of Figure 2 each projection has exactly one
root, namely, w1 for the projection π1 corresponding to accessibility relation R1 and
w2 for the projection π2 corresponding to R2. Obviously, in general a projection may
have more than one root, or also none.

A K45n-interpretation is a pair (E,w), where E = (W, {R1, . . . Rn}, V ) is a
K45n-structure, and w is a world in W , called the initial world. A sentence (i.e., a
closed formula) φ is true in an interpretation (E, w) (or, is true on world w ∈ W in E),
written E, w |= φ iff:5

E, w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E, w |= φ1 ∧ φ2 iff E, w |= φ1 and E, w |= φ2

E, w |= ¬φ iff E, w 6|= φ
E, w |= ∃x. ψ iff E, w |= ψx

c for some constant c
E, w |= Kiφ iff E, w′ |= φ for every w′ such that (w,w′) ∈ Ri

Informally, an objective formula φ0 is true in (E, w) if φ0 is true in the initial world
w, no matter if it is true in all the other worlds of W , whereas a subjective formula
Kiφ is true in (E, w) if φ is true in all the worlds of W which are accessible from w,
according to Ri. In other words, Kiφ is true in (E, w) if φ is true in all worlds that the
agent i believes possible in the initial world w.

For the K45n-structure shown in Figure 2, we have, for example, that

E,w1 |= P (a) E, w2 6|= P (a)
E,w1 6|= K1R(b) E, w1 |= K1S(d)
E,w2 |= K2P (a) E, w2 |= K2(K1S(d)).

We say that a sentence φ is satisfiable if there exists a K45n-model for φ, i.e., a
K45n-interpretation (E,w) such that E, w |= φ, unsatisfiable otherwise. A model for
a set Σ of sentences is a model for every sentence in Σ. A sentence φ is logically
implied by a set Σ of sentences, written Σ |=K45n

φ, if and only if in every K45n-
model (E, w) of Σ, we have that E, w |= φ.

To the aim of the present paper, it is sufficient to consider in the following only
sentences form L(K45n) that are sentences of modal depth 1, i.e., such that there is
no nested occurrence of a modal operator (namely, there is no occurrence of a modal
operator within the scope of another modal operator). It is known that, in order to es-
tablish satisfiability or logical implication of L(K45n) sentences of modal depth of
at most 1, we can, without loss of generality, restrict our attention to canonical in-
terpretations (and therefore from now on we will only refer to such interpretations).
A canonical K45n-interpretation (E, w), is such that the (canonical) K45n-structure
E = (W, {R1, . . . , Rn}, V ) satisfies the following conditions:

5 We have used ψx
c to denote the formula obtained from ψ by substituting each free occurrence

of the variable x with the constant c.



R1 R2 Rn-1 Rn.....
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Fig. 3. A Canonical Interpretation

1. for each w′ ∈ W such that w′ 6= w there exists Ri ∈ {R1, . . . , Rn} such that
(w,w′) ∈ Ri.

2. for each w′ ∈ W there exists no Ri ∈ {R1, . . . , Rn} such that (w′, w) ∈ Ri;
3. for each w′, w′′ ∈ W such that w′ 6= w and w′′ 6= w, and for each Ri ∈
{R1, . . . , Rn}, if (w′, w′′) ∈ Ri then (w′′, w′) ∈ Ri.

In other words, each world w′ ∈ W , different from w, is accessible from w via at least
one accessibility relation Ri, while w is not accessible by any world (including itself).
Moreover, give a relation Ri, the set σi = {w′ | (w,w′) ∈ Ri} (which does not contain
w) forms a strongly connected graph, called the Ki-cluster of the structure E.

In Figure 3, such a graph is given in a compact form. The edge Ri is a representa-
tive of all the edges from w to nodes in σi. Furthermore, the nodes in the Ki-cluster σi

are collectively depicted as a cloud to render that they are a strongly connected compo-
nent. Notice that different Ki-clusters may be overlapping, since different accessibility
relations may have pairs of worlds in common.

4 Formalization of P2P data integration systems in K45n

By virtue of the characteristics mentioned in the previous section, and based on the
premise that each peer in the system can be seen as a rational agent, we argue that
K45n is well-suited to formalize P2PDISs of the kind presented in Section 2. The goal
of this section is to present such a formalization.



Let P = {P1, . . . , Pn} be a P2PDIS. For each peer Pi = (G,S, L,M) we use a
modal operator Ki to formalize its epistemic state, i.e., specify the sentences that Pi

believes to hold. To this aim, we transform the specification of Pi in a such way that
each formula expressed on its alphabet or on its local alphabet, is put in the scope of the
modality Ki. Formally, for each Pi we define the K45n theory TK(Pi) as follows:

– Schema G of Pi: for each sentence φ in G, TK(Pi) contains the sentence

Kiφ

Observe that φ is a function-free first-order sentence expressed in the alphabet of
Pi, which is disjoint from the alphabets of all the other peers in P . The intended
meaning of Kiφ is that peer Pi believes that the sentence φ holds, and for an epis-
temic interpretation (E, w) to satisfy Kiφ, φ has to be true in all worlds believed
possible from w according to the accessibility relation Ri in E. Therefore, we as-
cribe to Pi the characteristic of believing all assertions that specify the correspond-
ing peer schema.

– Local mapping assertions L between G and the local source schema S: for each
mapping assertion {x | ∃y. bodycqS

(x,y)} ; {x | ∃z. bodycqG
(x, z)} in L,

TK(Pi) contains the sentence

Ki(∀x.∃y. bodycqS
(x,y) ⊃ ∃z. bodycqG

(x, z))

Analogously to sentences in G, local mapping assertions are considered local
knowledge of the peer and therefore are put in the scope of Ki. In other words,
each peer believes its own mappings to its local sources.

– P2P mapping assertions M : for each P2P mapping assertion {x |
∃y. bodycqj

(x,y)} ; {x | ∃z. bodycqi
(x, z)} between the peer j and the peer

i in M , TK(Pi) contains the sentence

∀x. Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z)) (1)

In words, this sentence captures the following intuition: for each tuple of values t,
if peer j believes the sentence ∃y. bodycqj

(t,y), then peer i believes the sentence
∃z. bodycqi

(t, z).

We denote by TK(P) the theory corresponding to the P2PDIS P , i.e., TK(P) =⋃
i=1,...,n TK(Pi). Now, in order to take into account also the extensions of the sys-

tem P in our K45n formalization, we specify an additional axiom to be added to
TK(P) for modeling the data stored at the various peers. In particular, an extension
D = {D1, . . . , Dn} for a P2PDIS P is modeled as a K45n sentence DB(D) repre-
senting all facts corresponding to the tuples stored in the peer sources, i.e., DB(D) =∧n

i=1 DB(Di) where DB(Di) = Ki(
∧

t∈rDi r(t)).
To sum up, the pair (P,D) constitued by a P2PDIS P and one extension D =

{D1, . . . , Dn} for P , is formalized as the K45n theory TK(P) ∪ DB(D). Notice that
all sentences in the theory have modal depth 1.



Example 2. We provide now the formalization of the P2PDIS of Example 1. The theory
TK(P1) modeling peer P1 is the conjunction of:

K1(∀x, y, y′, z, z′. Person1(x, y, z) ∧ Person1(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K1(∀x, y. S1(x, y) ⊃ ∃z. Person1(x, y, z))
K1(∀x, z. S2(x, z) ⊃ ∃y. Person1(x, y, z))
∀x, z. K2(∃y. Citizen2(x, y, z)) ⊃ K1(∃y. Person1(x, y, z))

Notice that in the first row, the FOL sentence in the scope of the modal operator K1

encodes the key dependencies specified over the peer schema (the same will be done in
the following for the other peers). Furthermore, at the extensional level, the peer P1 is
modeled by the formula

DB(D1) = K1(S1("Joe","Rome") ∧ S2("Joe","Italy")).

The theory TK(P2) modeling peer P2 is the conjunction of:

K2(∀x, y, y′, z, z′. Citizen2(x, y, z) ∧ Citizen2(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K2(∀x, y, z. S3(x, y, z) ⊃ Citizen2(x, y, z))

At the extensional level, the peer P1 is modeled by the formula

DB(D2) = K2(S3("Mary","2000jan1","Norway")∧
S3("Mary","2000jan1","France")).

The theory TK(P3) modeling peer P3 is the conjunction of:

K3(∀x, y, y′, z, z′. Person3(x, y, z) ∧ Person3(x, y′, z′) ⊃ y = y′ ∧ z = z′)
∀x, y, z. K1(Person1(x, y, z)) ⊃ K3(Person3(x, y, z))
∀x, y, z. K4(Citizen4(x, y, z)) ⊃ K3(Person3(x, y, z))

No extension is given for peer P3, and hence no formula modeling such extension is
needed.

The theory TK(P4) modeling peer P4 is the conjunction of:

K4(∀x, y, y′, z, z′. Citizen4(x, y, z) ∧ Citizen4(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K4(∀x, y, z. S4(x, y, z) ⊃ Citizen4(x, y, z))

At the extensional level, the peer P1 is modeled by the formula

DB(D2) = K2(S4("Joe","Rome","Canada")).

Finally, DB(D) = DB(D1) ∧DB(D2) ∧DB(D4).

As we said in Section 2, a client of the P2PDIS interacts with one of the peers,
say peer Pi, posing a query to it, where a query q is an open formula q(x) with free
variables x expressed in the language accepted by Pi (we recall that such a language is
a subset of first-order logic).



It is immediate to specify what is the meaning in our K45n formalization of a
query q posed to a peer Pi = (G, S, L, M) of P with respect to an extension D. In
particular, the semantics of query q is defined as the set of tuples that satisfy such query
in every model of the K45n theory representing (P,D), i.e., ANSK45n

(q, i,P,D) =
{t | TK(P)∪DB(D) |=K45n

Kiq(t)}, where q(t) denotes the sentence obtained from
the open formula q(x) by replacing all occurrences of the free variables in x with the
corresponding constants in t.

As we said at the beginning of this section, we argue that K45n is well-suited to
formalize P2PDISs. Indeed, one possible choice for formalizing such systems is classi-
cal first order logic (FOL). In this case, P2P mappings would be simply represented as
logical implication, analogously to local mappings. However, in [14] we present several
motivations for resorting to epistemic logic. One of the main motivations, is that query
answering in cyclic P2PDISs is undecidable, even for empty peer schemas, whereas,
due to the fact epistemic logic weakens the semantics of P2P mappings, query answer-
ing becomes decidable (and, actually, it can be solved in polynomial time in the size
of the extension of the system, for commonly adopted forms of peer schemas). So, it is
interesting to comment on how K45n weakens the meaning of P2P mappings wrt classi-
cal FOL. The basic idea is that, by using the K45n formalization of a P2P mapping (see
sentence 1 above), only tuples that are believed to satisfy {x | bodycqj

(x,y)} are forced
to satisfy {x | bodycqi

(x,y)}, and therefore only such tuples flow from peer Pj to peer
Pi. This is somehow coherent with the following intuitive reading of the above map-
ping: in order for peer Pi to deduce which are the tuples satisfying {x | bodycqi

(x,y)},
it should issue query {x | bodycqj

(x,y)} to peer Pj , and conclude that all the corre-
sponding answers will satisfy query {x | bodycqi

(x,y)}.
Another interesting observation on the difference between the FOL semantics and

the epistemic semantics has to do with the “direction” of the P2P mapping. While in
FOL, a P2P mapping from peer Pj to peer Pi may cause knowledge flowing from peer
Pi to peer Pj , this cannot happen in epistemic logic. Indeed in FOL an implication of
the form αj ⊃ βi is equivalent to ¬βi ⊃ ¬αj . Now, if ¬βi can be deduced in the peer
Pi then ¬αj holds in peer Pj and therefore, together with the formulas in the schema
of Pj , ¬αj may affect answers to queries posed to Pj . On the contrary, in the K45n

formalization, the above mapping would be represented by the formula Kjαj ⊃ Kiβi,
whose converse is ¬Kiβi ⊃ ¬Kjαj . Now, if Ki¬βi holds in peer Pi, then the above
mapping only implies that ¬Kjαj holds in peer Pj (and it does not imply Kj¬αj).
However, since both the schema of Pj and the queries to Pj are formalized through
formulas of the form Kjφ, where φ is objective, the above conclusion ¬Kjαj does
not affect answers to queries posed to Pj . The only exception to this is if the peer Pj

logically implies Kjαj : in this case we get inconsistency of both peers. We will deal
with such an issue in the next section.

Finally, observe that the formalization presented above originates from the one pro-
posed in [14], but extends it in two ways. First, we have moved from a logic that makes
use of a single modal operator to multi-modal epistemic logic, so as to stress that we
are modeling each peer as an autonomous agent. Second, we have moved from the epis-
temic logic S5 to K45, hence dropping the assumption that what is believed by an agent
is actually true. This allows for having models of the whole system even if one or more



peers are inconsistent and hence the system has no FOL models. These changes set the
stage for the treatment of inconsistencies to be presented next.

5 Nonmonotonic extension of K45n

The P2PDIS formalization presented in the previous section is not well suited for man-
aging the presence of inconsistent data. Indeed, as shown in the next section, query
answering under our K45n formalization becomes meaningless (i.e., any tuple is in
the answer to any query), when a peer in the system is locally inconsistent, i.e., its lo-
cal data contradict the peer schema, or when data coming into a peer from other peers
contradict the peer schema when combined together, or when combined with data lo-
cally managed by the peer. In order to provide a new formalization of P2PDISs, suited
to deal with inconsistencies, in this section we introduce a nonmonotonic extension of
the multi-modal logic K45n. The new formalization of inconsistency tolerant P2PDISs
based on such a nonmonotonic logic will then be given in the next section.

Informally, we extend K45n by adding a new set of modal operators A1, . . . ,An

to the modal language. Then, following (and generalizing) the semantic construction of
the logic MKNF [37], the modal operators K1, . . . ,Kn are interpreted as epistemic op-
erators of minimal knowledge, and the modal operators A1, . . . ,An are interpreted as
epistemic operators of justified assumption [39], which corresponds to (the complement
of) the well-known notion of negation as failure [38].

5.1 Adding modal operators of negation as failure

First, we introduce the languageL(K45A
n ), which is an extension ofL(K45n) obtained

by adding to the first-order modal language a new set of modal operators, A1, . . . ,An.
In order to define the semantics of L(K45A

n ) sentences, we first give the notion of
canonical K45A

n -interpretation. Such a notion is similar to the one given for the logic
K45n, but presents the restriction that both the set of worlds W and the world interpre-
tation function V are now fixed. This restriction is introduced for technical reasons, in
order to allow for a well-founded definition of a preference order between structures,
which will be introduced in Section 5.2 (see e.g., [37]). However, such a restriction does
not affect the semantics of K45A

n (with respect to satisfiability of a formula of modal
depth 1).

Let I be the set of all FOL interpretations (over our relational alphabet) with fixed
domain ∆, we define the set of worlds Wc = W0 ∪W1, where:

W0 = {(I, 0) | I ∈ I}
W1 = {(I, 1) | I ∈ I}

That is, Wc contains two distinct elements for each FOL interpretation I ∈ I. The
worlds from W0 will be the ones from which the initial world of K45A

n interpretations
will be picked, while the worlds from W1 will be used for all the other possible worlds
in K45A

n interpretations.
Moreover, we define the following world interpretation function Vc : Wc → I:

for each j ∈ {0, 1} and for each w = (I, j) ∈ Wc, Vc(w) = I.



Namely, I is the interpretation that Vc associates with a world (I, j) in Wc .
A canonical K45A

n -interpretation (E, w), is such that the (canonical) K45A
n -

structure E = (Wc, {R1, . . . , Rn, Ra
1 , . . . , Ra

n}, Vc) satisfies the following conditions:

– Wc and Vc are defined as above;
– w ∈ W0;
– if (w′, w′′) ∈ Ri or (w′, w′′) ∈ Ra

i , then w′′ ∈ W1;
– each Ri and each Ra

i are binary relations over W satisfying the conditions imposed
on canonical K45n-interpretations (see conditions 1, 2, and 3 in Section 3).

Notice that, from the above definition, it follows that all canonical K45n-structures
are defined over the same set of worlds Wc and the same world interpretation function
Vc. Furthermore, with respect to K45n-structures, K45A

n -structures have n additional
accessibility relations Ra

1 , . . . , Ra
n. Such relations account for the additional modal op-

erators A1, . . . ,An.
Under the above conditions, we can alternatively (and more com-

pactly) represent a canonical K45A
n -interpretation (E, w) (with E =

(Wc, {R1, . . . , Rn, Ra
1 , . . . , Ra

n}, Vc)) by a pair (E′, w) where E′ is the tuple
(σ1, . . . , σn, σa

1 , . . . , σa
n) such that, for every i ∈ {1, . . . , n}, σi is the Ki-

cluster of E, i.e., σi = {w′ | (w, w′) ∈ Ri} and σa
i is the Ai-cluster of E, i.e.,

σa
i = {w′ | (w,w′) ∈ Ra

i } (cf. the definition of cluster of a canonical K45n-structure
given in Section 3). That is, a canonical K45A

n -structure can be represented by 2n set
of worlds, where each such set is a subset of W1. In the following, when considering a
canonical K45A

n -interpretation E, we implicitly refer to its compact representation E′.
The notion of truth of an L(K45A

n ) sentence in a world of a K45A
n -interpretation is

analogous to the notion given in Section 3 for L(K45n) sentences, with the addition of
the following rule:

– E, w |= Aiφ iff E, w′ |= φ for each w′ such that (w,w′) ∈ Ra
i

Analogously to the K45n logic, it can be shown that, for a formula ϕ ∈ L(K45A
n )

of modal depth 1, ϕ is true in an arbitrary K45A
n -interpretation iff ϕ is true in a canonical

K45A
n -interpretation. In other words, restricting to the set of worlds Wc and interpret-

ing Wc according to Vc does not change satisfiability of formulas of modal depth 1.
Consequently, from now on we restrict our attention to canonical K45A

n -interpretations
only.

5.2 Nonmonotonic semantics

So far, the logic K45A
n does not appear as a significant extension of the logic K45n:

in particular, according to the above notion of truth, the new modal operators Ai are
treated just like any Ki operator in K45n, so there is no apparent reason to distinguish
the Ai’s operators from the Ki’s.

Actually, the different (nonmonotonic) meaning of the two sets of modal operators
in K45A

n with respect to K45n is due to the following notion of K45A
n -model for a

sentence φ, which is obtained by imposing a preference order over K45A
n -structures

satisfying φ.
Below we define a relation ≤K between canonical K45A

n -structures which agree on
their A-clusters, i.e., on the accessibility relations Ra

i ’s.



Definition 1. Let E = (σ1, . . . , σn, σa
1 , . . . , σa

n) and E′ = (σ′1, . . . , σ
′
n, σa

1 , . . . , σa
n)

be canonical K45A
n -structures. We say that E is K-contained in E′ (denoted by E ≤K

E′) if, for each i ∈ {1, . . . , n}, σi ⊆ σ′i.

Intuitively, if E is K-contained in E′, then E′ has less (or equal) knowledge with
respect to the modal operators Ki than E, since adding possible worlds (by adding
worlds to the K-clusters σi) enlarges the relations Ri interpreting the Ki’s operators.

For instance, it can be immediately verified that, if E is K-contained in E′, then, for
each first-order sentence φ and for each w ∈ W , if E′, w |= Kiφ then E, w |= Kiφ,
but not necessarily vice-versa.

We now prove that the relation ≤K between K45A
n -structures is well-defined, since

it constitutes a partial order.

Proposition 1. The relation ≤K between K45A
n -structures constitutes a partial order.

Proof. It is immediate to see that, from the definition of canonical K45A
n -

interpretations and Definition 1, reflexivity, antisymmetry and transitivity of ≤K hold.
Consequently, ≤K is a partial order.

Definition 2. Let φ ∈ L(K45A
n ) be a formula of modal depth 1, let E =

(σ1, . . . , σn, σa
1 , . . . , σa

n) be a canonical K45A
n -structure, and let w ∈ W0. The canoni-

cal K45A
n -interpretation (E,w) is a K45A

n -model for φ if the following conditions hold:

1. E, w |= φ;
2. σi = σa

i for each i ∈ {1, . . . , n};
3. there exists no canonical K45A

n -structure E′ such that E′ 6= E, E′, w |= φ, and
E ≤K E′.

A K45A
n -model for a set Σ of sentences is a K45A

n -model for every sentence in Σ.
A sentence φ is K45A

n -entailed by a set Σ of sentences, written Σ |=K45A
n

φ, if and

only if E, w |= φ in every K45A
n -model (E,w) of Σ.

The above semantics formalizes the idea of selecting K45A
n -structures that satisfy

two intuitive principles:

1. knowledge is minimal, which is realized through the notion of preference between
structures;

2. assumptions are justified by knowledge, which is realized by the fact that, for each
i, the meaning of the operators Ai and Ki is the same, since σi = σa

i .

Such semantic principles of minimal knowledge and justified assumptions are well-
known in nonmonotonic reasoning [39, 38, 42]. In particular, we recall that the princi-
ple of justified assumption exactly corresponds to the semantics of the modal operator
in Moore’s autoepistemic logic [42]. Moreover, as illustrated in [37–39], the justified
assumption operator exactly formalizes the complement of the notion of negation as
failure in logic programming under the stable model semantics.

Remark. From the technical viewpoint, the above preference semantics for the logic
K45A

n is a non-trivial extension of analogous semantic constructions underlying other



nonmonotonic modal logics. The main difference with respect to such previous con-
structions is that here, due to the presence of multiple modal operators, we cannot im-
pose the condition that the preferred models of a theory always correspond to structures
in which each accessibility relation is total (which has a syntactic counterpart in the
so-called stable sets of modal formulas [43]). Consequently, minimality of knowledge
in the preferred models is imposed via a different, although simple, condition (formally
stated by Definition 1), which can be seen as a generalization of analogous minimal-
ity criteria in previous nonmonotonic modal formalisms like MKNF [37] or ground
nonmonotonic modal logics [19].

To gain some intuition on the use of the operators Ki and Ai under the non-
monotonic semantics, let us look at a few examples.

Example 3. Consider the formula

Φ1 = Kiα

where α is an objective sentence (i.e., a sentence without occurrences of the modal
operators), which can be read as “peer” i knows α. Then, the only K45A

n -models of
the above formula Φ1 according to Definition 2 are the ones whose Ki-cluster includes
all the worlds whose associated FOL interpretation satisfies α. Intuitively, this realizes
a minimal knowledge semantics for the modal operator Ki, since, in all K45A

n -models
of Φ1, peer Pi only knows α, and therefore, for every objective sentence β such that β
is not a logical consequence of α in FOL, Kiα |=K45A

n
¬Kiβ, i.e., peer Pi does not

know β.6

Example 4. Consider the formula

Φ2 = ¬Aj⊥j ⊃ Kiα

where α is an objective sentence, which can be read as if peer j is consistent then peer
i knows α. Indeed, the above formula Φ2 is equivalent to Aj⊥j ∨Kiα. Now, consider
a canonical K45A

n interpretation (E, w) that satisfies Φ2. Then, either E,w |= Kiα or
E, w |= Aj⊥j . In the first case, the K45A

n interpretation is a K45A
n -model of Φ2 if it

has the form described in the previous example. In the latter case, the Aj-cluster of E is
empty. Now, from Definition 2, (E, w) can be a K45A

n -model of Φ2 only if (i) the Kj-
cluster of E is also empty, and (ii) every canonical K45A

n interpretation obtained from
(E, w) by extending the Kj-cluster of E does not satisfy Φ2. However, it is immediate
to see that the last condition is false, since Φ2 dose not impose any condition on the Kj-
cluster of E. Hence, (E, w) can not be a K45A

n -model of Φ2. Therefore, the formula Φ2

is actually equivalent to Kiα (since it has the same K45A
n -models of Kiα). Conversely,

if we conjoin Φ2 with the formula Kj⊥j (i.e., peer Pj is inconsistent), then the K45A
n -

models of Φ2 ∧ Kj⊥j coincide with the K45A
n -models of Kj⊥j , hence Φ2 becomes

vacuous and has no impact of the knowledge of peer Pi.

6 Observe that this new semantics for the operators Ki does not actually affect per se the answers
to the queries allowed in our framework, as explained in Section 4.



Example 5. Consider the formula

Φ3 = ¬Ai¬α ⊃ Kiα

where α is a (FOL-satisfiable) objective sentence, which can be read as if it is consis-
tent for peer i to assume α, then peer i knows α. Observe that this corresponds to a
well-known form of default rule [41]. Following the line of reasoning in the previous
example, it can be shown that the formula Φ3 is actually equivalent to Kiα, since it has
the same K45A

n -models of Kiα. But if we conjoin Φ3 with the formula Ki¬α, then
the K45A

n -models of Φ3 ∧Ki¬α coincide with the K45A
n -models of Ki¬α, hence Φ3

becomes vacuous and does not lead to inconsistency of peer Pi.

Example 6. Finally, to further explain the differences between the operators Ki and Ai,
we show that the two modalities are not equivalent. In particular, suppose that α is an
objective sentence. We now prove that adding the formula

Φ4 = Kiα ≡ Aiα

to a theory T actually changes the set of K45A
n -models of T . Since Kiα ≡ Aiα cor-

responds to the conjunction of the two formulas Kiα ⊃ Aiα and Aiα ⊃ Kiα, we
consider such two formulas:

– first, given any theory T , it is easy to see that the set of K45A
n -models of T and the

set of K45A
n -models of T ∪ {Kiα ⊃ Aiα} coincide;

– conversely, we now show that the formula Aiα ⊃ Kiα in general does not pre-
serve the set of K45A

n -models. The only K45A
n -models of the empty theory are

K45A
n interpretations of the form (E,w) where E is the structure in which both

the Ki-cluster and the Ai-cluster of E coincide with the entire set of worlds W1.
Conversely, the set of K45A

n -models of Aiα ⊃ Kiα also contains all the K45A
n

interpretations of the form (E′, w) where E′ is such that both the Ki-cluster and
the Ai-cluster of E′ coincide with the set of worlds from W1 whose associated
FOL interpretation satisfies α.

From the above argument, it follows that adding the formula Kiα ≡ Aiα to a theory T
in general changes the set of K45A

n -models of T .

6 Inconsistency tolerance

We now modify our basic framework so as to be able to handle inconsistency. In partic-
ular, we want the P2PDIS to be inconsistency-tolerant in the following sense:

1. When a peer is locally inconsistent, i.e., data at the sources in Pi contradict, via the
local mapping, the peer schema, making the whole peer inconsistent, the P2PDIS
should be equivalent to the one obtained by eliminating the peer Pi from the system.
In other words, an inconsistent peer should be “isolated” from the other peers: in
this way, a local inconsistency does not affect the overall consistency (and meaning)
of the system.



2. In the presence of P2P inconsistency, i.e., when in a peer Pi the data coming from
another peer Pj (through a P2P mapping) contradict the local data of Pi (or the data
coming to Pi from another peer Pk), the peer Pi should not reach an inconsistent
state: rather, it should discard a minimal amount of the data retrieved from the other
peers in order to preserve consistency.

We point out that the focus of this paper is how to deal with the inconsistency that
may arise in P2PDISs due to peer interactions. More precisely:

1. We do not specifically study inconsistency that may locally arise in a peer because
its own data contradict local constraints specified on the peer schema. According
to this vision, we do not want to impose any particular assumption on the ability of
the peer to deal with local inconsistency, hence we consider each peer as a black
box. Under this assumption of modularity, the most natural way to deal with the
presence of an inconsistent peer in the overall P2P system is to isolate it;

2. Our treatment of P2P inconsistency is based on the assumption that each peer
prefers its local data to the data coming from other peers, while it does not make
any preference between data coming from different peers. We believe that these are
reasonable assumptions, which may reflect the intended behavior of a P2PDIS in
many application scenarios. Of course, these assumptions may not always be the
appropriate ones: in particular, they might be refined and/or generalized (e.g., by
using meta information on the reliability of different peers). The study of such more
involved forms of P2P inconsistency tolerance is outside the scope of the present
paper.

Formally, the above notions of local inconsistency and P2P inconsistency can be
stated as follows. Let P = {P1, . . . , Pn} be a P2PDIS and D = {D1, . . . , Dn} be an
extension D for P . We say that:

– A peer Pi ∈ P is locally inconsistent wrt Di if T −K (Pi) ∪ DB(Di) |=K45n
Ki⊥i,

where T −K (Pi) is obtained from TK(Pi) by dropping the sentences formalizing the
P2P mappings (otherwise we say that Pi is locally consistent wrt Di).

– A peer Pi ∈ P is P2P inconsistent wrt D if Pi is locally consistent wrt Di and
TK(P) ∪DB(D) |=K45n

Ki⊥i.

To capture systems that are inconsistency-tolerant we move from a formalization
based on the logic K45n to a new one given in terms of the nonmonotonic multi-modal
logic K45A

n . Indeed, K45A
n is particularly well suited for the treatment of both local

and P2P inconsistency.

Handling local inconsistency. To capture tolerance w.r.t. local inconsistency, we need
to refine the epistemic formalization of P2P mapping assertions presented in Section 4
as follows: for each P2P mapping assertion of peer Pi, we replace in TK(Pi) the sen-
tence (1) with

∀x.¬Aj⊥j ∧Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z)).

Informally, the above sentence captures the following intuition: for each tuple of
values t, if peer Pj knows the sentence ∃y. bodycqj

(t,y) and Pj is not locally incon-
sistent, then peer Pi knows the sentence ∃z. bodycqi

(t, z). In other words, information



flows from Pj to peer Pi through a P2P mapping assertion only if Pj is locally consis-
tent. A part of the modification in the P2P mapping assertions described above, the new
formalization of a P2PDIS coincides with the K45n one given in Section 4 (both at the
intensional and extensional level).

Notice that, if a peer Pj is locally inconsistent, the P2PDIS system has K45A
n -

models anyway. Formally, in a K45A
n -model (E, w) of the P2PDIS, in which E =

(σ1, . . . , σn, σa
1 , . . . , σa

n) is a K45A
n -canonical structure, we have that σj = σa

j = ∅,
i.e., there are no worlds accessible from the initial world w for the modality Kj and
the modality Aj . This implies that any n-tuple of values t is in the answer to any query
of arity n posed to Pj , but implies that also ¬Aj⊥j evaluates to true. Therefore, the
addition of ¬Aj⊥j in the formalization of any Pj-to-Pi mapping assertion prevents the
peer Pi to retrieve meaningless data from peer Pj . In other words, the above formal-
ization makes the P2PDIS tolerant to local inconsistency, in the sense that it isolates
the peers that are locally inconsistent, by simply dropping the P2P mapping assertion,
whose K45A

n formalization given above indeed becomes the trivial sentence “true”.
Obviously, if a client directly queries an inconsistent peer it gets contradicting, hence
meaningless, answers.

We finally remark that for a P2PDIS P without locally inconsistent peers, the new
formalization of P coincides with the formalization in the logic K45n (see Proposi-
tion 2 below).

Example 7. Consider the P2PDIS of Example 1. The K45A
n formalization, limited to

the treatment of local inconsistency, is easily obtained from the K45n one by substitut-
ing the P2P mapping assertions in TK(P1) and TK(P3) of Example 2 with the following
assertions:

∀x, z.¬A2⊥2 ∧K2(∃y. Citizen2(x, y, z)) ⊃ K1(∃y. Person1(x, y, z))
∀x, y, z.¬A1⊥1 ∧K1(Person1(x, y, z)) ⊃ K3(Person3(x, y, z))
∀x, y, z.¬A4⊥4 ∧K4(Citizen4(x, y, z)) ⊃ K3(Person3(x, y, z)).

It is easy to see that P2 is locally inconsistent, since from tuples stored in its lo-
cal source S2 it concludes facts Citizen2("Mary","2000jan1","Norway") and
Citizen2("Mary","2000jan1","France"), which violate the key dependency in
Citizen2. However, thanks to the above formalization, P2 turns out to be isolated from
the other peers, and therefore the P2P mapping in TK(P1) connecting P2 to P1 has no
effects in the P2PDIS.

Handling both local and P2P inconsistency. We now take into account P2P incon-
sistency. In particular, we formalize, in K45A

n , P2PDISs that are inconsistency-tolerant
wrt both local and P2P mappings. Again, the K45A

n theory representing the P2PDIS
P , denoted by TA(P), is similar to the theory TK(P) defined in Section 4, but with
an important difference on how to formalize P2P mapping assertions: we replace each
sentence of the form (1) with

∀x.¬Aj⊥j∧Kj(∃y. bodycqj
(x,y))∧¬Ai(¬∃z. bodycqi

(x, z)) ⊃ Ki(∃z. bodycqi
(x, z))



Informally, the above sentence captures the following intuition: for each tuple of
values t, if peer Pj is consistent and knows the sentence ∃y. bodycqj

(t,y), and the
sentence ∃z. bodycqi

(t, z) is consistent with what peer Pi knows, then Pi knows the
sentence ∃z. bodycqi

(t, z). In other words, information flows from Pj to peer Pi through
a P2P mapping assertion only if adding such information to Pi does not give rise to a
P2P inconsistency in peer i. More precisely, the meaning of the above sentence in K45A

n

is that exactly a maximal amount of information (i.e., a maximal set of tuples) consistent
with peer i flows from peer j to peer i through the P2P mapping assertion.

We remark that the above semantics implies that: (i) when inconsistency arises be-
tween local data and non-local data in a peer, i.e., when data coming from the peer
sources through the local mapping contradicts the data retrieved by a peer through a P2P
mapping, then the peer always prefers the local data. Formally, in this case there is one
K45A

n -model for the P2PDIS, which represents the situation in which non-local data
is discarded; (ii) when inconsistency arises between two different pieces of non-local
data, i.e., when a piece of data retrieved by a peer through a P2P mapping contradicts
another piece of data retrieved through the P2P mappings, then no preference is made
between these two pieces of information, in the sense that in this case there are two
K45A

n -models for the P2PDIS, each of which represents the situation in which one of
the two pieces of data is discarded.

Finally, the semantics ANSK45A
n
(q, i,P,D) of a query q posed to a peer Pi of a

P2PDIS P wrt an extension D is defined as for K45n, except that now we have to take
into account the K45A

n formalization of the P .

Example 8. Consider again the P2PDIS of Example 1. The K45A
n formalization can

be now obtained from the K45n one by substituting the P2P mapping assertions in
TK(P1) and TK(P3) of Example 2 with the following assertions:

∀x, z.¬A2⊥2 ∧K2(∃y. Citizen2(x, y, z)) ∧ ¬A1(¬∃y. Person1(x, y, z)) ⊃
K1(∃y. Person1(x, y, z))

∀x, y, z.¬A1⊥1 ∧K1(Person1(x, y, z)) ∧ ¬A3(¬Person3(x, y, z)) ⊃
K3(Person3(x, y, z))

∀x, y, z.¬A4⊥4 ∧K4(Citizen4(x, y, z)) ∧ ¬A3(¬(Person3(x, y, z)) ⊃
K3(Person3(x, y, z)).

It is easy to see that P3 gets from P1 that Person3("Joe","Rome","Italy")
and from P4 that Person3("Joe","Rome","Canada"), but since name is a key for
Person3, taking together such two facts would give rise to an inconsistency. In fact,
according to our new formalization, in each K45A

n -model of the P2PDIS, we have that
either the sentence K3(Person3("Joe","Rome","Italy")) holds or the sentence
K3(Person3("Joe","Rome","Canada")) holds, and hence P3 does not know the
citizenship of "Joe". However, P3 still knows that "Joe" lives in "Rome". In Figure
4 we present the two possible forms that each K45A

n -model may assume. In each model
(E, w), where E = (Wn, {R1, R2, R3, R4, R

a
1 , Ra

2 , Ra
3 , Ra

4}, Vn), we have that R2 =
Ra

2 = ∅ (since P2 is locally inconsistent), in the projection π1, representing both the
accessibility relation R1 and Ra

1 , the worlds belonging to the completely connected
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Fig. 4. Canonical Interpretations for the P2PDIS of Example 8

subgraph of π1 are represented by the set

σ1 = {w ∈ Wn | Vn(w) |= Person1("Joe","Rome","Italy")∧
s1("Joe","Rome") ∧ s2("Joe","Italy")},

the worlds in the completely connected subgraph of the projection π4 are represented
by the set

σ4 = {w ∈ Wn | Vn(w) |= Citizen4("Joe","Rome","Canada")∧
s4("Joe","Rome","Canada")},

whereas the worlds in the completely connected subgraph of the projection π3 are rep-
resented by either the set

σ3 = {w ∈ Wn | Vn(w) |= Person4("Joe","Rome","Italy"),

for models of the first form, or

σ3 = {w ∈ Wn | Vn(w) |= Person4("Joe","Rome","Canada"),

for models of the second form. Notice that the interpretation associated to the initial
world w ∈ Wn is actually of no matter for establishing that (E,w) is a K45A

n -model
of the L(K45A

n ) theory formalizing the P2PDIS together with its extension.
Given the query q = {x | ∃y. Person3("Joe", x, y)} posed to P3, we

have that ANSK45A
n
(q, 3,P,D) = {"Rome"}, while for the query q′ = {y |

∃x. Person3("Joe", x, y)} we have ANSK45A
n
(q, 3,P,D) = ∅.

We finally remark that due to the fact that, in the presence of inconsistency, each
peer prefers its local data to the data coming from other peers, situations may arise
in which apparently equivalent queries posed to different peers produce different an-
swers. Assume for instance a simple setting P with peers P1 and P2. P1 has a relation
L1 in its local schema, and G1 in its global schema. P2 has a relation L2 in its lo-
cal schema, and G2 in its global schema. All relations have two attributes (Name and



City), and Name is the key in both global relations. The local mappings of P1 and
P2 simply copy the local data to the global schemas. In addition, we have the follow-
ing P2P mappings {n, c | G1(n, c)} ; {n, c | G2(n, c)} and {n, c | G2(n, c)} ;

{n, c | G1(n, c)}. Finally, let the extension of the local sources D be composed of
D1 = {L1("Joe","Norway")} and D2 = {L2("Joe","Italy"), and let q1 be the
query q1(x, y) = G1(x, y) and q2(x, y) = G2(x, y). Notice that G1 and G2 are “con-
ceptually equivalent” (due to the form of the P2P mappings), however we have that
ANSK45A

n
(q1, 1,P,D) = {("Joe","Norway")} and ANSK45A

n
(q2, 2,P,D) =

{("Joe","Italy")}, which is due to the fact that each peer prefer its local data to
the data coming from the other peer. This behavior is in fact not surprising in the light
of the principle of modularity underlying our semantics. Indeed, in many application
scenarios, in the presence of inconsistent data, it is perfectly reasonable to get different
answers (to “equivalent” queries) from different peers.

Fundamental properties of the K45A
n formalization. Next, we report some proper-

ties of the K45A
n formalization of P2PDISs that clarify from a formal point of view

how such a formalization captures the notions of local inconsistency tolerance and P2P
inconsistency tolerance.

We start by emphasizing that the formalization of a P2PDIS based on K45A
n is a

“conservative extension” of the one based on K45n, in the sense that, if no peer is
locally inconsistent, and the data at the sources do not give rise to P2P inconsistencies,
then the semantics of queries is the same in the two logics.

Proposition 2. Let P be a P2PDIS and let D be an extension for P such that each
peer in P is neither locally inconsistent, nor P2P inconsistent wrt D. Then, for
each peer Pi ∈ P and for each query q posed to Pi, ANSK45A

n
(q, i,P,D) =

ANSK45n
(q, i,P,D).

Then, we turn our attention to local inconsistency tolerance. The following proposi-
tion shows that the P2PDIS is tolerant to local inconsistency, in the sense that it isolates
the peers that are locally inconsistent.

Proposition 3. Let P be a P2PDIS, let D be an extension for P , let Pi ∈ P be a
peer locally inconsistent wrt Di, and let P ′ = P − {Pi}. Then, for each query q
posed to a peer Pj ∈ P different from Pi, we have that ANSK45A

n
(q, j,P,D) =

ANSK45A
n
(q, j,P ′,D).

Moreover, the following proposition shows that the new formalization enjoys the
basic property for being tolerant to P2P inconsistency, namely that locally consistent
peers always provide meaningful answers.

Proposition 4. Let P be a P2PDIS and letD be an extension for P . If Pi ∈ P is locally
consistent wrt Di, then TA(P) ∪DB(D) 6|=K45A

n
Ki⊥i.

7 Decidability and complexity of query answering

In this section we study decidability and complexity of query answering in the frame-
work of P2PDISs defined above. We do so by focusing on a specific class of P2PDISs,



which we call GAVKD -P2PDISs. Such a class is characterized by simple peer schemas
(i.e., relational schemas with key dependencies) and a simple kind of local mappings
(which are indeed GAV mappings [35]). Such peers are one of the simplest kinds of
peers in which inconsistency may arise. As for P2P mappings, we consider them in
their full generality, without posing any restriction on their form.

Specifically, for such a case we devise below an algorithm that is based directly on
the multimodal epistemic semantics, making use of the notion of first-order extension
(FOE) typical of nonmonotonic epistemic logics (see e.g. [18]).7

We start by defining formally the class of GAVKD -P2PDISs.

Definition 3. A GAVKD -P2PDIS is a P2PDIS such that:

– each peer schema is a relational schema with key dependencies;
– in each peer, the local mappings are global-as-view (GAV) mappings, i.e., map-

pings of the form

{x | ∃y. bodycqr
(x,y)} ; {x | r(x)}

where r is a relation of the peer schema of Pi. In other words, a GAV mapping
defines a relation of Pi as a view (conjunctive query cqr) over the sources of Pi.

From now on, we restrict our attention to the class of GAVKD -P2PDISs, and study
query answering in such systems.

We now present an algorithm to solve the decision problem associated with query
answering in GAVKD -P2PDISs. We start by giving some auxiliary definitions.

Definition 4. Let m be the following P2P mapping assertion:

{x | ∃y. bodycqj
(x,y)} ; {x | ∃z. bodycqi

(x, z)} (2)

and let t be a tuple of constants. Then:

– we denote by prec(m, t) the first-order sentence ∃y. bodycqj
(t,y);

– we denote by cons(m, t) the first-order sentence ∃z. bodycqi
(t, z).

Definition 5. Let P be a GAVKD -P2PDIS and let D be an extension for P . For each
peer Pi ∈ P , we denote by Ti(P,D) the following set of facts:

Ti(P,D) = {r(t) | r is a global relation in the schema of Pi and t ∈ qDr }
where qr is the query over the peer sources that defines the GAV local mapping for r.

Informally, Ti(P,D) denotes the extension of r that is computed by evaluating the
local mapping query qr relative to r on the extension D.

From now on, for each peer Pi ∈ P , we denote by KD(Pi) the set of first-order
sentences representing the key dependencies occurring in the schema of Pi: e.g., the KD
that states that the first attribute of a relation r of arity 2 is the key of r is represented
by the sentence

∀x, y, z. r(x, y) ∧ r(x, z) → y = z

7 Such an approach is to be contrasted with the one in [13], which is more indirect since it based
on reducing the query answering problem into the problem of evaluating a Disjunctive Datalog
program.



Definition 6. Let P be a GAVKD -P2PDIS and let D be an extension for P . For each
peer Pi ∈ P , let T u

i be the following set of first-order sentences:

T u
i = KD(Pi)
∪ Ti(P,D)
∪ {∃z. bodycqi

(t, z) | there exists a P2P mapping assertion of the form (2) in P
and t is a tuple of constants occurring in D}

A first-order extension (FOE) for P and D is an n-tuple (T1, . . . , Tn) where each Ti is
a FOL theory such that Ti ⊆ T u

i .

The intuition behind a FOE is that every FOL theory Ti in a FOE represents the
epistemic state of peer Pi. More specifically, we use the FOE F = (T1, . . . , Tn) for
P and D to represent a K45A

n -structure (σ1, . . . , σn, σa
1 , . . . , σa

n) such that, for each
i ∈ {1, . . . , n}, σi = σa

i and

σi = {(I, 1) | I |= Ti}.

Moreover, as we will show in the following, in order to characterize the epistemic
states of the peer Pi in P for a given extension D in the K45A

n -models for TA(P) ∪
DB(D), it is sufficient to only consider subsets of the first-order sentences occurring
in the theories T u

i . In other words, we can characterize the behaviour of the system P
for the extension D by only looking at all the FOEs that can be built upon the set of
sentences T u

1 , . . . , T u
n .

We now formally define the correspondence between FOEs and canonical K45A
n -

structures.

Definition 7. Let P be a GAVKD -P2PDIS, let D be an extension for P , and let E be a
canonical K45A

n -structure. The FOE for P and D induced by E, denoted by FE , is the
FOE (T1, . . . , Tn) such that every Ti is defined as follows:

Ti = {φ | φ ∈ Ti(P,D) and E,w |= Kiφ for each w}

Definition 8. Let P be a GAVKD -P2PDIS, letD be an extension for P , let F be a FOE
for P and D. The K45A

n -structure associated with F , denoted by EF , is the canonical
K45A

n -structure (σ1, . . . , σn, σa
1 , . . . , σa

n) in which, for each i ∈ {1, . . . , n}, σi = σa
i

and σi is the following set of worlds:

σi = {(I, i) | I |= Ti}

Then, we define the algorithm verify-FOE, which, given a FOE F for P and D, is
able to verify whether the K45A

n -structure associated with F identifies a K45A
n -model

for the theory TA(P) ∪DB(D).

Algorithm verify-FOE(P,D,F)
Input: P2PDIS P , extension D, FOE F = (T1, . . . , Tn) for P and D
Output: true if for each w ∈ Wc, (EF , w) a K45A

n -model for TA(P) ∪DB(D),
false otherwise



begin
for each i ∈ {1, . . . , n} do T ′i := Ti(P,D);
repeat
F ′ := (T ′1, . . . , T

′
n);

if there exists P2P mapping assertion m (between Pj and Pi) and tuple t
such that Tj is satisfiable

and T ′j |= prec(m, t)
and Ti 6|= ¬cons(m, t)
and T ′i 6|= cons(m, t)

then T ′i := T ′i ∪ {cons(m, t)}
until (T ′1, . . . , T

′
n) = F ′;

if F = (T ′1, . . . , T
′
n) then return true else return false

end

Then, we define the algorithm not-answer, which is able to nondeterministically
verify whether a tuple t is not in the answers to a query q posed to a peer of P for a
given extension D.

Algorithm not-answer(P,D, i, q, t)
Input: P2PDIS P , extension D, query q to peer Pi ∈ P , tuple t
Output: true if t 6∈ ANSK45A

n
(q, i,P,D), false otherwise

begin
if there exists FOE F = (T1, . . . , Tn) for P and D
such that verify-FOE(P,D,F) returns true and Ti 6|= q(t)
then return true else return false

end

We now prove termination and give a computational characterization of the algo-
rithm not-answer. To this aim, we start by showing two auxiliary lemmas.

Lemma 1. Let P be a GAVKD -P2PDIS, let D be an extension for P , let Ti ⊆ T u
i ,

and let q be a Boolean conjunctive query, i.e., a sentence of the form ∃y. body(t,y).
Deciding whether Ti |= q can be done in time polynomial with respect to the size of D.

Proof. It is possible to check whether Ti |= q by building the following database in-
stance (set of facts) B from Ti:

1. For each fact of the form r(t) ∈ Ti(P,D), we add the fact r(t) to B.
2. For each sentence ∃z. body(t, z) in Ti, with body(t, z) = a1(t, z)∧ . . .∧ ak(t, z),

we add the facts a1(t, s), . . . , ak(t, s) to B, where s is a tuple of soft constants,
i.e., constant symbols from an alphabet Σ disjoint from the alphabet of constants
Γ . For every sentence, we use different soft constants to represent the existential
variables in the sentence.

3. Then, we apply the equalities implied by the key dependencies KD(Pi) to the data-
base instance B built so far. For instance, if key(r) = 1, for each pair of facts
r(t1, t2, t3), r(t′1, t

′
2, t

′
3) such that t1 = t′1, we derive the equalities t2 = t′2 and

t3 = t′3. The derived equalities may be of two forms:



(a) at least one of the two terms, say t1, is a soft constants. In this case, we apply
the substitution t1 ← t2 to the whole database instance;

(b) both terms are syntactically different “hard” (i.e., non-soft) constants. In this
case, we conclude that B is inconsistent w.r.t. the key dependencies (since the
key dependencies imply that two different objects are the same).

4. We iteratively apply the above step until either we conclude that B is inconsistent
w.r.t. the key dependencies or there are no more new derived equalities.

It is immediate to verify that the above construction of the database B can be done
in time polynomial in the size of D. Moreover, the database B thus constructed allows
us to decide whether Ti |= q. In fact, it is easy to see that:

– Ti is unsatisfiable iff B is inconsistent w.r.t. the key dependencies;
– if B is consistent, then Ti |= q iff the query q is true when evaluated on the database
B.

Consequently, Ti |= q iff either B is inconsistent or the query q is true when evaluated
on B.

Lemma 2. Let P be a GAVKD -P2PDIS, let D be an extension for P , let Ti ⊆ T u
i , and

let q be a Boolean conjunctive query, i.e., a sentence of the form ∃y. body(y). Deciding
whether Ti |= ¬q can be done in time polynomial with respect to the size of D.

Proof. The proof is very similar to the proof of the above lemma. Indeed, we can decide
whether Ti |= ¬q by building (in time polynomial in the size of D) a database instance
B in a way analogous to the above proof. The only difference lies in the fact that, in
step 2 of the construction of B, we have to also add to the database B a set of facts
(with soft constants) representing the Boolean conjunctive query q. Then, it is easy to
verify that the database B thus constructed is inconsistent w.r.t. the key dependencies
iff Ti |= ¬q(t).

We are now ready to prove that the algorithm verify-FOE(P,D,F) terminates and
can be executed in time polynomial in the size of D.

Lemma 3. Let P be a GAVKD -P2PDIS, D an extension for P , F a FOE for P and
D. The algorithm verify-FOE(P,D,F) terminates and runs in polynomial time with
respect to the size of D.

Proof. The proof follows from the following facts:

– every set of sentences T u
i has size polynomial in the size of D, consequently every

FOE for P and D has size polynomial in the size of D;
– for each i, the set of facts Ti(P,D) can be computed in time polynomial with re-

spect to the size ofD, since such a set can be computed by evaluating the local GAV
mapping queries over the extension D, which in turn corresponds to the standard
evaluation of a set of conjunctive queries over a relational database;



– the number of executions of the repeat–until loop is bound to the number of in-
stantiations of the P2P mapping assertions on the constants occurring in D, since
every iteration can be executed at most once for each instantiation of a P2P mapping
assertion. Consequently, such a number is polynomial in the size of D;

– in every iteration of the repeat–until loop:
1. as explained above, the number of instantiations of the P2P mapping assertions

to which the condition of the if statement must be checked is polynomial in the
size of D;

2. by Lemma 1, satisfiability of Tj can be verified in time polynomial in the size
of D;

3. by definition of prec(m, t) and by Lemma 1, T ′j |= prec(m, t) can be verified
in time polynomial in the size of D;

4. by definition of cons(m, t) and by Lemma 2, Ti |= ¬cons(m, t) can be verified
in time polynomial in the size of D;

5. by definition of cons(m, t) and by Lemma 1, T ′i |= cons(m, t) can be verified
in time polynomial in the size of D.

Consequently, every iteration of the repeat–until loop can be executed in time
polynomial in the size of D.

Based on the above property, we now show termination and complexity of the algo-
rithm not-answer.

Theorem 1. Let P be a GAVKD -P2PDIS, D an extension for P , Pi ∈ P , q ∈ L
a query of arity n over Pi, and t a n-tuple of constants in Γ . The algorithm not-
answer(P,D, i, q, t) terminates and runs in nondeterministic polynomial time with re-
spect to the size of D (i.e., in data complexity).

Proof. The proof follows immediately from Lemma 3 and from the fact that, by
Lemma 1, Ti 6|= q(t) can be checked in polynomial time with respect to the size of
D.

Then, we turn our attention to the correctness of the algorithm not-answer with
respect to the K45A

n formalization of P2PDISs. We start with some auxiliary lemmas.

Lemma 4. Let F = (T1, . . . , Tn) be a FOE for P and D, let EF be the K45A
n -

structure associated with F , and let q denote a Boolean conjunctive query, i.e., a sen-
tence of the form ∃y. body(t,y). Then, for each w ∈ W0, EF , w |= q iff Tj |= q.

Proof. The proof is immediate from the definition of EF .

Lemma 5. LetF = (T1, . . . , Tn) be a FOE forP andD, let EF be a canonical K45A
n -

structure associated with F , and let q denote a Boolean conjunctive query. Then, for
each w ∈ W0, EF , w |= ¬q iff Ti 6|= ¬q.

Proof. Again, the proof follows immediately from the definition of EF .



Lemma 6. Let P be a GAVKD -P2PDIS, let D be an extension for P , and let (E, w)
be a K45A

n -interpretation such that E, w |= TA(P) ∪ DB(D). Then, for each i ∈
{1, . . . , n} and for each sentence φ ∈ Ti(P,D), E, w |= Kiφ.

Proof. The proof follows from the fact that the sentences representing the local map-
pings of peer Pi in TA(P) together with DB(D) necessarily imply that the sentence
Kiφ

′ is satisfied, for every fact φ′ in Ti(P,D).

Then, we define the set of sentences grD(TA(P)) that constitutes a partial ground-
ing, over the constants occurring in D, of the sentences in TA(P) representing P2P
mappings.

Definition 9. We define grD(TA(P)) as the L(K45A
n ) theory obtained from TA(P) by

substituting each sentence (encoding a P2P mapping assertion (2) in P) of the form

∀x.¬Aj⊥j∧Kj(∃y. bodycqj
(x,y))∧¬Ai(¬∃z. bodycqi

(x, z)) ⊃ Ki(∃z. bodycqi
(x, z))

with the set of sentences

¬Aj⊥j ∧Kj(∃y. bodycqj
(t,y)) ∧ ¬Ai(¬∃z. bodycqi

(t, z)) ⊃ Ki(∃z. bodycqi
(t, z))

for every tuple t of constants occurring in D.

We now prove that the above partial grounding grD(TA(P)) constitutes a correct
representation of TA(P).

Lemma 7. Let P be a GAVKD -P2PDIS, let D be an extension for P . A
K45A

n interpretation (E, w) is a K45A
n -model for TA(P) ∪ DB(D) iff (E, w) is a

K45A
n -model for grD(TA(P)) ∪DB(D).

Proof. First, by definition of the semantics of K45A
n , the theory TA(P) ∪ DB(D) is

equivalent to grΓ (TA(P)) ∪ DB(D), where grΓ (TA(P)) is the theory in which each
sentence encoding a P2P mapping assertion (2) is replaced by the set of sentences

¬Aj⊥j∧Kj(∃y. bodycqj
(t′,y))∧¬Ai(¬∃z. bodycqi

(t′, z)) ⊃ Ki(∃z. bodycqi
(t′, z))

(3)
for every tuple t′ of constants occurring in Γ . Thus, to prove the thesis we show that
adding to grD(TA(P))∪DB(D) an instance of the above sentence (3) for t′ containing
at least one constant not occurring inD does not change the set of K45A

n -models for the
theory. Let t′ be such a tuple and let m(t′) denote the sentence of the above form (3).
Then, let (E, w) be any K45A

n -model for grD(TA(P)) ∪ DB(D): it is immediate to
verify that the sentence Kj(∃y. bodycqj

(t′,y)) is not satisfied in (E, w). This implies

M,w |= m(t′), which in turn implies that (E,w) is a K45A
n -model for grD(TA(P))∪

DB(D) ∪ {m(t′)}. Since the above holds for every m(t′), it follows that (E, w) is a
K45A

n -model for grΓ (TA(P)) ∪ DB(D), and therefore (E, w) is a K45A
n -model for

TA(P) ∪DB(D).
Then, let (E,w) be a K45A

n -model for TA(P) ∪ DB(D) and suppose there ex-
ists a tuple t′ with at least one constant not occurring in D and such that E, w |=



Kj(∃y. bodycqj
(t′,y)). Then, there exists at least a first-order interpretation I such

that I 6|= (∃y. bodycqj
(t′,y)) and, for each tuple t of constants from D and for each

P2P mapping assertion (2), I |= (∃y. bodycqj
(t,y)) iff E, w |= Kj(∃y. bodycqj

(t,y)):
therefore, (I, 1) 6∈ σj , where σj is the j-th cluster in E. Now it is immediate to verify
that the K45A

n -structure E′ obtained from E by adding the world (I, 1) to σj , is such
that E′, w |= grΓ (TA(P)) ∪ DB(D), and therefore E′, w |= grΓ (TA(P)) ∪ DB(D),
thus by Definition 2 (E,w) is not a K45A

n -model for TA(P) ∪DB(D). Contradiction.
Consequently, for each tuple t′ with at least one constant not occurring in D, and for
each P2P mapping assertion (2), E, w |= ¬Kj(∃y. bodycqj

(t′,y)). This in turn implies

that (E, w) is a K45A
n -model for grD(TA(P)) ∪DB(D).

Then, we prove an important property that states that the K45A
n -structure associated

with the FOE FE induced by a canonical K45A
n -structure E coincides with the K45A

n -
structure E.

Lemma 8. Let P be a GAVKD -P2PDIS, let D be an extension for P , let (E, w) be
a K45A

n -model for TA(P) ∪ DB(D), let FE be the FOE for P and D induced by
E, and let EFE be the canonical K45A

n -structure associated with the FOE FE . Then,
E = EFE .

Proof. Let E = (σ1, . . . , σn, σa
1 , . . . , σa

n) with σi = σa
i for each i, and let EFE =

(σ′1, . . . , σ
′
n, σ′a1 , . . . , σ′an ) with σ′i = σ′ai for each i. First, since by Definition 8 each

σ′i is the set of worlds {(I, 1) | I |= T ′i}, and since, for each φ ∈ T ′i and for each
w ∈ W0, E,w |= Kiφ, it follows that σi ⊆ σ′i for each i ∈ {1, . . . , n}. Now, suppose
E 6= EFE

: then, there exists i such that σi ⊂ σ′i, hence there exists a world w1 such that
w1 ∈ σ′i − σi. Let w be any world in W0 and let E′′ be the canonical K45A

n -structure
obtained from E by adding to the world w1 to the set σi. Now, from Definition 7, and
from Definition 8, it follows that, for each world w and for each formula φ ∈ T u

i ,
E, w |= Kiφ iff EFE

, w |= Kiφ. Consequently, E′′, w |= grD(TA(P)) ∪ DB(D),
therefore by Lemma 7 E′′, w |= TA(P)∪DB(D), hence by Definition 2 it follows that
(E, w) is not a K45A

n -model for TA(P) ∪ DB(D), thus contradicting the hypothesis.
Consequently, E = EFE .

We are now ready to prove correctness of the algorithm verify-FOE.

Lemma 9. Let P be a GAVKD -P2PDIS, let D be an extension for P , let F be a FOE
for P and D, and let EF be the K45A

n -structure associated with F . Then, verify-
FOE(P,D,F) returns true iff, for each w ∈ W0, (EF , w) is a K45A

n -model for
TA(P) ∪DB(D).

Proof. By Lemma 7, we have to prove that verify-FOE(P,D,F) returns true iff
(EF , w) is a K45A

n -model for grD(TA(P)) ∪DB(D).
(⇐): Suppose verify-FOE(P,D,F) returns false. Let F = (T1, . . . , Tn), and let

(T ′1, . . . , T
′
n) be the FOE computed by the algorithm after the execution of the repeat–

until loop. Then, there exists i such that Ti 6= T ′i . Let w be any world in W0. There are
two possible cases:



– Ti ⊇ T ′i for each i, and there exists i such that Ti ⊃ T ′i . Let E′ be the K45A
n -

structure E′ = (σ′1, . . . , σ
′
n, σ1, . . . , σn). Then, E′, w |= grD(TA(P)) ∪ DB(D),

and since EF is K-contained in E′, from Definition 2 it follows that (EF , w) is not
a K45A

n -model for grD(TA(P)) ∪DB(D).
– there exists i such that there exists a sentence φ such that φ ∈ T ′i − Ti. But this

immediately implies that EF , w 6|= grD(TA(P))∪DB(D), since for each sentence
cons(m, t) which is added by the algorithm to T ′i , the sentence Kicons(m, t) must
necessarily be satisfied in order to satisfy the sentences in grD(TA(P)) ∪DB(D).
Consequently, (EF , w) is not a K45A

n -model for grD(TA(P)) ∪DB(D).

(⇒): Suppose verify-FOE(P,D,F) returns true. Then, it is immediate to verify
that, for each w ∈ W0, EF , w |= grD(TA(P))∪DB(D). Now suppose (EF , w) is not
a K45A

n -model for grD(TA(P))∪DB(D). Then, by Definition 2 there exists a K45A
n -

structure E′ such that EF is K-contained in E′ and E′, w |= grD(TA(P)) ∪ DB(D)
for each world w. Now, from Definition 7, and from Definition 8, it follows that there
exists i and a sentence φ ∈ Ti such that E′, w 6|= Kiφ and EF , w |= Kiφ. There are
two possible cases:

1. φ ∈ Ti(P,D). In this case, observe that the sentences representing the local map-
pings of Pi in TA(P) together with DB(D) necessarily imply Kiφ

′ for every fact
φ′ in Ti(P,D). Therefore, E′, w 6|= TA(P) ∪ DB(D), thus contradicting the hy-
pothesis;

2. φ is of the form ∃z. bodycqi
(t, z) such that there exists a mapping assertion of

the form (2) in P . Now, since by hypothesis verify-FOE(P,D,F) returns true, it
follows that F can be reconstructed starting from Ti(P,D) and iteratively apply-
ing the P2P mapping assertions as rules that are necessarily “fired” by the knowl-
edge of peer Pi, which is expressed by the sentences in T ′i incrementally collected
so far by the algorithm. Therefore, by induction on the structure of F (the struc-
ture is derived by the construction of F done by verify-FOE(P,D,F), it can be
proved that the hypothesis EF , w 6|= Kiφ implies that there exists a fact φ′ in
Ti(P,D) such that EF , w 6|= Kiφ

′, which, as shown in the previous point, implies
that E′, w 6|= TA(P) ∪DB(D), thus contradicting the hypothesis.

Consequently, the above canonical K45A
n -structure E′ does not exist, which implies

that (EF , w) is a K45A
n -model for TA(P) ∪DB(D).

Finally, we prove correctness of the algorithm not-answer.

Theorem 2. LetP be a GAVKD -P2PDIS,D an extension forP , Pi ∈ P , q ∈ L a query
of arity n over Pi, and t an n-tuple of constants in Γ . Then, t ∈ ANSK45A

n
(q, i,P,D)

iff not-answer(P,D, i, q, t) returns false.

Proof. (⇒): Let EF = (Wn, {R1, . . . , Rn, Ra
1 , . . . , Ra

n}, Vn). Suppose not-
answer(P,D, i, q, t) returns false. Then, there exists a FOE F = (T1, . . . , Tn) such
that verify-FOE(P,D,F) returns true and Ti 6|= q(t). Let EF be the K45A

n -structure
associated with F . From Lemma 9, it follows that, for each world w, (EF , w) is a
K45A

n -model for TA(P) ∪ DB(D). Finally, from Lemma 4, and since Ti 6|= q(t), it
follows that t 6∈ ANSK45A

n
(q, i,P,D).



(⇐): Suppose t ∈ ANSK45A
n
(q, i,P,D). Then, there exists a K45A

n -interpretation
(E, w) such that (E,w) is a K45A

n -model for TA(P) ∪ DB(D) and M, w 6|= q(t).
Let FE be the FOE for P and D induced by E. By Lemma 8, the canonical K45A

n -
structure EFE

associated with FE is equal to E, consequently, by Lemma 9, verify-
FOE(P,D,FE) returns true. Moreover, by Definition 8, it follows that E, w |= Kiq(t)
iff Ti |= q(t). Consequently, not-answer(P,D, i, q, t) returns true.

Based on Theorem 1 and Theorem 2, we are able to characterize the computational
complexity of query answering in GAVKD -P2PDISs.

Theorem 3. Let P be a GAVKD -P2PDIS, D an extension for P , Pi ∈ P , q ∈ L a
query of arity n over Pi, and t a n-tuple of constants in Γ . The problem of establishing
whether t ∈ ANSK45A

n
(q, i,P,D) is coNP-complete with respect to the size of D (i.e.,

in data complexity).

Proof. The hardness part can be proved by a reduction of the three-colorability problem
to our problem. The proof is obtained by adapting in a straightforward way the proof
showed in [11] for establishing coNP-hardness of query answering in the setting of a
single inconsistent database with key dependencies.
Membership in coNP is an immediate consequence of Theorem 1 and Theorem 2.

In fact, the algorithm and the results above can be extended to deal with P2PDISs
whose peers are more general than in GAVKD -P2PDISs. For example, we may allow for
both generalized equality-generating dependencies as constraints in the peer schemas
(instead of key dependencies) and GLAV local mappings (instead of GAV mappings).
In this case, it can be shown that both Lemma 1 and Lemma 2 still hold, and hence also
Theorem 1 and Theorem 2.

8 Related work

The P2P paradigm was made popular by systems like Napster or Gnutella, that were
designed to handle semantic-free, large-granularity requests for objects by identifier
(essentially, sharing of video or music files) [27]. Recently, a novel line of research,
P2P data integration, has focused on the problem of extending the P2P paradigm to
the richer setting considered also in this paper: each peer is seen as an autonomous
information system characterized by a schema that represents the domain of interest
from the peer perspective; the peer is equipped with mappings providing the semantic
relationship to other peers [40], and thus provides and exchanges part of the overall
information available from a distributed environment [29, 6, 14, 23, 44, 15].

A first proposal in this direction, outlining the characteristic features of peer data
management systems, has been the Piazza system [27, 29], in which data stored locally
at each peer are described in terms of materialized views, and additionally peer map-
pings, interpreted under standard first-order semantics, are used to retrieve data from
other peers. Due to the adoption of first-order semantics, query answering is decidable
only in the case of absence of cycles in peer mappings, or when such cycles are used



only for data replication. In [30], a version of the Piazza system is presented, in which
data is modeled in XML, and peers export their schemas in XML Schema. An algo-
rithm for query reformulation in that setting is given. Several techniques for optimiz-
ing reformulations, based on pruning and minimizing navigation paths, efficient search
strategies, and pre-computing semantic paths via mapping composition are presented
in [44].

In the rest of the section we concentrate on work related to the management of
inconsistency that is relevant to our setting. As mentioned, the problem of dealing with
inconsistency has been studied extensively in Artificial Intelligence in the area of belief
revision and update [3, 25], which addresses the issue of updating existing information
with new one, with the aim of maintaining consistency by performing minimal changes
(under different assumptions for minimality). In general, these studies assume that the
underlying theory is an arbitrary first-order or propositional theory, and that revision
or updates are done through arbitrary formulas. In the context of databases, the theory
takes the form of a database schema, and the revision process focuses on data [22].
Thus, research in this setting has concentrated on algorithmic and complexity results
specialized for this case. The general goal is to provide informative answers even when a
database does not satisfy its integrity constraints (see, for example, [5, 11, 26, 45]). Most
of these papers rely on the notion of repair as introduced in [5]: a repair of a database
is a new database that satisfies the constraints in the schema, and minimally differs
from the original one. The inference task of consistent query answering corresponds to
determining whether a given tuple is in the answer to a query in all databases that are
minimal repairs of the given inconsistent database.

The above results are not specifically tailored to the case of different consistent
sources that are mutually inconsistent, which is the case of interest in data integration.
More recently, some papers (see, e.g., [7, 12, 10]) have tackled data inconsistency in
a data integration setting, where sources are required to be mutually consistent with
respect to constraints specified in a global schema. In this setting, the basic idea is
to consider repairs as applied to data retrieved from the sources, again under some
minimality criteria, and the relevant task is again that of consistent query answering,
performed according to such repairs.

Only few, recent papers address the problem of dealing with inconsistencies in P2P
data integration. The approach in [8] makes use of trust relationships between pairs
of peers that, together with P2P mappings, determine how to consider data exchanged
between peers. When data retrieved from the local sources and from other peers contra-
dict the integrity constraints of a peer P , first P tries to repair its own data according to
what the dependencies to more trusted peers prescribe. Then, keeping those trusted de-
pendencies satisfied, P tries to repair its own data or the data coming from those peers
whom it trusts equally to itself. This is formalized through the notion of solution for a
peer P , i.e., an instance for the peer database schema that stays as close as possible to
the available data in the system, and that is obtained through a two-step repair process,
respecting both the mappings and the trust relationships. As for repairs, solutions are
not actually computed and data coming from other peers is not actually changed. In-
stead, the notion of solution is used to define peer-consistent answers, as those tuples
in the answer to the query for every solution for the peer. It is worth noting that in [8]



this notion is relative to a certain peer, since the notion of solution, on which it is based,
depends on the considered peer.

A further proposal for dealing with inconsistencies in a P2P setting is the one
adopted in the SOMEWHERE system [2, 16], in which each local peer theory is a set
of propositional clauses, and P2P mappings are propositional clauses involving vari-
ables of distinct peers that state semantic correspondences between different vocabu-
laries. The semantics of the system is straightforward, since the global theory of the
P2P system is simply the set of all propositional clauses constituting the local peer
theories and the P2P mappings. One of the challenges has been in devising a totally
decentralized algorithm for computing (propositional) consequences, without any peer
having access to the global theory. Such an algorithm has been implemented in the
SOMEWHERE platform, and its scalability up to a thousand peers has been evaluated
in [1]. In SOMEWHERE, the problem of local inconsistencies is not addressed and local
peer theories are assumed to be consistent. Instead, inconsistencies due to mappings
are dealt with through the notion of a nogood, which is a set of mappings that, when
added to the local peer theories, makes them inconsistent. A distributed algorithm is
proposed to compute and store at the peers all the minimal nogoods. These are then
used to computed well-founded consequences, i.e., consequences of a consistent sub-
set of the global peer theory. Hence, the approach is similar to ours, in the sense that
it does not resolve inconsistencies by repairing data, but computes answers to queries
according to the semantics ignoring inconsistent information (i.e., nogoods).

We also mention the approach proposed in [15], which resembles our proposal in
that it adopts a non-standard semantics for the P2P mappings. In that work, P2P map-
pings are formalized as logic programs with preferences, interpreted under a weak-
minimal model semantics. Such an approach corresponds to importing in each peer the
maximal subsets of facts that, together with the local data and the data imported from
other peers, do not contradict its constraints. The approach can also cope with local
inconsistencies, by first repairing the local database, using a classical notion of repair
based on maximal consistent subsets.

We finally notice that in the very last years some work on repairing inconsistent
databases has focused on the problem of singling out tractable cases for consistent query
answering [17, 24, 28]. Tractability in these approaches is reached by posing suitable
limitations on both the query language and the form of integrity constraints allowed on
the database schema, which in some cases allow for solving consistent query answering
via rewriting in first-order logic [24, 28]. We point out that, due to the inherently recur-
sive nature of computation caused by the (cyclic) P2P mappings, such techniques are
not directly applicable to our P2P setting.

9 Conclusions

In this paper we have proposed a multi-modal nonmonotonic formalization for P2PDISs
which allowed us to properly model the modularity of a P2P system, isolate local in-
consistency, and suitably handle data imported from different peers which are mutually
inconsistent. Focusing on a specific P2PDIS in which peers have a simple structure that,
however, already allows for inconsistencies to arise, but P2P mappings are fully general



(including the possibility of making cycles in the P2P network) we have characterized
the computational complexity of query answering with respect to data complexity as
coNP-complete. The upper-bound has been established by devising an algorithm for
query answering that is derived directly from the basic properties of the multi-modal
epistemic semantics. Such an algorithm can be extended to deal also with peers that
have a richer structure than the one considered here. More generally, the technique
developed in [14], which is based on the construction of a Datalog program to be eval-
uated over the data distributed in the peers, can be adapted to deal also with the kinds
of inconsistencies considered here, by resorting to Disjunctive Datalog [13].

The setting reported here can be extended in several directions. First, we can re-
move the assumption that all peers share a common alphabet of constants by making
use of mapping tables [34]. Then, an important issue is finding tractable subclasses of
our inconsistency-tolerant framework, i.e., restrictions on the schema/mapping/query
languages which allow for polynomial query answering. Also, we believe that prefer-
ences between peers can be smoothly integrated in our framework, following the lines
of [8]. Finally, it would be interesting to study the case in which each peer in the system
has its own strategy for resolving data inconsistency.
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