
Agent Composition Synthesis based on ATL

Giuseppe De Giacomo and Paolo Felli
Dipartimento di Informatica e Sistemistica

SAPIENZA - Università di Roma
Via Ariosto 25 - 00185 Roma, Italy

{degiacomo,felli}@dis.uniroma1.it

ABSTRACT
Agent composition is the problem of realizing a “virtual”
agent by suitably directing a set of available “concrete”, i.e.,
already implemented, agents. It is a synthesis problem, since
its solution amounts to synthesizing a controller that suit-
ably directs the available agents. Agent composition has its
roots in certain forms of service composition advocated for
SOA, and it has been recently actively studied by AI and
Agents community. In this paper, we show that agent com-
position can be solved by ATL (Alternating-time Temporal
Logic) model checking. This results is of interest for at least
two contrasting reasons. First, from the point of view of
agent composition, it gives access to some of the most mod-
ern model checking techniques and state of the art tools,
such as MCMAS, that have been recently developed by the
Agent community. Second, from the point of view of ATL
verification tools, it gives a novel concrete problem to look
at, which puts emphasis on actually synthesize winning poli-
cies (the controller) instead of just checking that they exist.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Theory, Verification, Algorithms

Keywords
Agent composition, synthesis, model checking, ATL

1. INTRODUCTION
Agent composition is the problem of realizing a “virtual”

agent by suitably directing a set of available “concrete”, i.e.,
already implemented, agents. It is a synthesis problem,
whose solution amounts to synthesizing a controller that
suitably directs the available agents.

Agent composition has its roots in certain forms of service
composition advocated for SOA [20]. However agents pro-
vide a much more sophisticated context for the problem, and
in the last years, the research on agent composition within

Cite as: Agent Composition Synthesis based on ATL, Giuseppe De
Giacomo, Paolo Felli, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the AI and Agents community has been quite fruitful and
several composition techniques have been devised, based on
reduction to PDL satisfiability [6, 5, 17], on forms of sim-
ulation or bisimulation [10, 18, 4, 2], on LTL (Linear time
logic) synthesis [15, 14, 9, 12] and on direct techniques [19].

In this paper, we show that agent composition can be
solved by ATL model checking. ATL (Alternating-time
Temporal Logic) [1] is a logic whose interpretation structures
are multi-player game structures where players can collabo-
rate or confront each other so as to satisfy certain formulae.
Technically, ATL is quite close to CTL, with which it shares
excellent model checking techniques [3]. Differently from
CTL, when an ATL formula is satisfied then it means that
there exists a strategy, for the players specified in the for-
mula, that fullils the temporal/dynamic requirements in the
formula. ATL has been widely adopted by the Agents com-
munity since it allows for naturally specifying properties of
societies of agents [21, 8]. The interest of the Agents com-
munity has led to active research on specific model check-
ing tools for ATL, which by now are among the best model
checkers for verification of temporal properties [7].

We show that indeed agent composition can be naturally
expressed as checking a certain ATL formula over a spe-
cific game structure where the players are the virtual target
agent, the concrete available agents, and a controller, whose
actual controlling strategy has yet to be defined. The play-
ers corresponding to the target and to the available agents
team up togheter against the controller. The controller tries
to realize the target by looking, at each point in time, at the
action chosen by the target agent, and by selecting accord-
ingly who, among the available agents, actually performs
the action. In doing this the controller has to cope with
the choice of the action to perform by the target agent and
the nondeterministic choice of the next state of the available
agent that has been selected to perform the action. The ATL
formula essentially requires that the controller avoids errors,
where an error is produced whenever no available agents are
able to actually perform the target agent’s action currently
requested. If the controller has a strategy to satisfy the ATL
formula, then, from such strategy, a refined controller real-
izing the composition can be synthesized. In fact, we show
that by ATL model checking we get much more than a sin-
gle controller realizing a composition: we get a “controller
generator” [18] i.e., an implicit representation of all possible
controllers realizing a composition.

The results of this paper are of interest for at least two
contrasting reasons. First, from the point of view of agent
composition, it gives access to some of the most modern

model checking techniques and tools, such as MCMAS, that
have been recently developed by the Agent community. Sec-
ond, from the point of view of ATL verification tools, it gives
a novel concrete problem to look at, which puts emphasis on
actually synthesize winning policies (the refined controller)
instead of just checking that they exist, as usual in many
contexts where ATL is used for agent verification.

The rest of the paper is organized as follows. In Section 2,
we formally introduce the notion of agent composition. In
Section 3, we give some background notions on ATL needed
in the paper. In Section 4, we devise the encoding of agent
composition as an ATL model checking problem, and, in
Section 5, we show the soundness and completeness of the
proposed technique, as well as its optimality from the com-
putational complexity point of view. In Section 6, we discuss
how to use a concrete model checker for ATL, namely MC-
MAS, to do the composition synthesis. In Section 7, we
conclude the paper with a brief discussion on future work.

2. AGENT COMPOSITION
In this paper we address the Agent Composition Problem

following the approach proposed in [19, 17, 18]. In such
an approach, agents are characterized by their behaviour,
modeled as a transition system (TS), which captures the
agent executions, as well as the available choices that, at
each point, the agent has available for continuing its execu-
tion. Given a virtual target agent, i.e., an agent of which we
have the desired behavior but not its actual implementation,
and a set of available concrete agents, i.e., a set of agents,
each with its own behavior, that are indeed implemented,
the composition’s goal is to synthesize a controller, i.e., a
suitable software module, capable of implementing the tar-
get agent by suitably controlling the available agents. Such
a module realizes a target agent if and only if it’s able, at
every step, to delegate every action executable by the tar-
get to one of the available agent. Notice that, in doing this,
the controller has to take into account not only local states
of both the target and the available agents, but also their
future evolutions, delegating actions to available agents so
that all possible future target agent’s actions can continue
to be delegated. We call such a controller a composition of
the available agent that realizes the target agent.

Formally, an agent is a transition system, i.e., a tuple
S = 〈A, S, s0, δ, F 〉 where:

• A is the finite set of actions;

• S is the finite set of states;

• s0 is the initial state;

• δ ⊆ S ×A× S is the transition relation;

• F ⊆ S is the set of final states.

We often write s
a−→ s′ instead of 〈s, a, s′〉 ∈ δ. We as-

sume that, in each state s, there is at least one action a
that the agent can perform, i.e., there exists an s′ such that
s

a−→ s′. The agent can (but does not need to) legally ter-
minate whenever it is in a final state s ∈ F . Note that,
in general, agents are non-deterministic: δ is defined as a
transition relation; thus the state reached after performing
action a ∈ A from state s ∈ S cannot be foreseen. When the
transition relation is in fact a partial function from S×A to

t0

t1

ab

(a) St

s10

s11
a

a
b

s12

a

(b) S1

s20 s21

b
b

a

(c) S2

Figure 1: Target agent St and available agents S1,S2

t0

t1
s10
s20

s10
s21

s12
s20

s12
s21

s11
s21

s11
s20

a,1

b,2

b,2
b,2

a,2 a,1

a,1

a,2
b,2

b,2

a,1

b,1

a,2
b,2

a,1 b,1

a,1

ab

Figure 2: St simulated by S1,S2

S we say that the agent is deterministic. We say that non-
deterministic agents are partially (action) controllable in the
sense that when the agent is instructed to do an action,
the actual resulting state is unpredictable by the controller.
Conversely, we say that a deterministic agent is fully (ac-
tion) controllable. We assume that the available agents are
partially controllable while the target agent, i.e., the agent
that we want to realize, is fully controllable.

Figure 1 shows the graphic representation of a target agent
St and two available agents S1 and S2. Following a well-
established convention, we graphically represent states as
circles (nodes) and transitions as arrows (edges) labeled with
actions. Final states are double-circled.

In [18] it has been shown that checking for the existence
of an agent composition is equivalent to checking for the
existence of a variant of the simulation relation [10] between
the target agent and the available agents. Such a (non-
deterministic) simulation relation can be defined as follows.

Given a target agent St and n available agents S1, . . . ,Sn

with Si = 〈A, Si, si0, δ, Fi〉 and i = t, 1, · · · , n, a simulation
relation of St by S1, . . . ,Sn is a relation R ⊆ St×S1×· · ·×Sn

such that 〈st, s1, . . . sn〉 ∈ R implies:

• if st ∈ Ft then si ∈ Fi for i = 1, · · · , n;

• for each transition st
a−→ s′t in St there exists an index

j ∈ {1, . . . , n} such that the following holds:

– there exists at least one transition sj
a−→ s′j in Sj ;

– for all transitions sj
a−→ s′j in Sj we have that

〈s′t, s1 . . . , s
′
j . . . , sn〉 ∈ R (all agents but S| re-

main still).

Let St be the target agent and S1 . . . ,Sn be the avail-
able agents. A state st ∈ St is simulated by a state
〈s1, . . . , sn〉 ∈ S1 × · · · × Sn (〈s1, . . . , sn〉 simulates st), de-
noted st � 〈s1, . . . , sn〉, if and only if there exists a simula-
tion relation R of St by S1 . . . ,Sn such that R(st, s1, . . . , sn).
Extending this notion to the whole agents, we say that
St is simulated by S1 . . . ,Sn (or S1 . . . ,Sn simulate St) iff
s0t � 〈s01, . . . , s0n〉, where s0t and s0i, with i = 1, . . . , n,
are the initial states of the target agent and of the avail-
able agents, respectively. Figure 2 shows a graphical repre-
sentation of the simulation relation R between target agent
the available agents, where filling patterns (possibly over-
lapping) are used to denote similar states.

As shown in [18], we obtain the following fundamental
result:

Theorem 1. [18] A composition of the available agents
S1, . . . ,Sn realizing the target agent St exists if and only if
St is simulated by S1, . . . ,Sn.

In other words, in order to checking for the existence of
a composition it is sufficient to (i) compute the maximal
simulation relation of St by S1, . . . ,Sn and (ii) check whether
〈s0t, s01, . . . , s0n〉 is in it.

Theorem 1 thus relates the notion of simulation relation to
the one of agent composition showing, basically, that check-
ing for the existence of an agent composition is equivalent to
checking for the existence of a simulation relation between
the target agent and the available agents. To actually syn-
thesize a controller from the simulation we compute the so
called composition generator, or CG for short. Intuitively,
the CG is a program that returns, for each state the avail-
able agents may potentially reach while realizing a target
history, and for each action the target agent may do in such
a state, the set of all available agents able to perform the tar-
get agent’s action, while guaranteeing that every future tar-
get agent’s actions can still be fulfilled. The CG is directly
obtained by the maximal simulation relation as follows:

Definition 1. (Composition Generator) Let St be a target
agent and S1, . . . ,Sn be n available agents, sharing the set
of actions A, such that St is simulated by S1, . . . ,Sn and let
Sg = {〈st, s1, . . . , sn〉 | st ≺ 〈s1, . . . , sn〉}. The Composition
Generator (CG) for St by S1, . . . ,Sn is the function:

ωg : Sg ×A → 2{1,...,n} such that for sg = 〈st, s1, . . . , sn〉 ∈
Sg and a ∈ A

ωg(sg, a) = {i | st
a−→ s′t is in St and

si
a−→ s′i is in Si and

s′t � 〈s1, . . . , s
′
i, . . . , sn〉}

CG is a function ωg that given the states of the target
and available agents, which are in simulation, and given an
action, outputs the set of all available agents able to per-
form that action in their current state, while preserving the
simulation. If there exists a composition of St by S1, . . . ,Sn,
then the composition generator CG generates compositions,
called generated compositions, by picking up one among the
available agents returned by function ωg, at each step of the
(virtual) target agent execution, starting with all (target and
available) agents in their respective initial state.

Next theorem guarantees that all compositions can be gen-
erated by the composition generator.

Theorem 2. [18] Let St and S1, . . . ,Sn be as above.
A controller P of s01, . . . , s0n for St is a composition of
S1, . . . ,Sn realizing St if and only if it is a generated com-
position.

3. ATL
Alternating-time Temporal Logic [1] is a logic that can

predicate on moves of a game played by a set of players. For
example, let Σ be the set of players and A ⊆ Σ, then the
ATL formula 〈〈A〉〉ϕ asserts that there exists a strategy for
players in A to satisfy the state predicate ϕ irrespective of
how players in Σ\A evolve. The temporal operators are “♦”
(eventually), “�” (always), “©” (next) and “U” (until). The
ATL formula 〈〈p1, p2〉〉♦ϕ captures the requirement“players
p1 and p2 can cooperate to eventually make ϕ true”. This
means that there exists at a winning strategy that p1 and
p2 can follow to force the game to reach a state where ϕ is
true.

ATL formulae are constructed inductively as follows:

• p, for propositions p ∈ Π are ATL formulae;

• ¬ϕ and ϕ1∨ϕ2 where ϕ,ϕ1 and ϕ2 are ATL formulae,
are ATL formulae;

• 〈〈A〉〉©ϕ and 〈〈A〉〉�ϕ and 〈〈A〉〉ϕ1Uϕ2, where A ⊆ Σ
is a set of players and ϕ,ϕ1 and ϕ2 are ATL formulae,
are ATL formulae.

We also use the usual boolean abbreviations.
ATL formulae are interpreted over concurrent game struc-

tures: every state transition of a concurrent game structure
results from a set of moves, one for each player. Formally,
such a structure is a tuple S = 〈k,Q,Π, π, d, δ〉 where:

• k ≥ 1 is the number of players, each identified by an
index number: Σ = {1, . . . , k}.

• Q is a finite, non-empty, set of states.

• Π is a finite, non-empty, set of boolean, observable,
state propositions.

• π : Q → 2Π is a labeling function which returns the
set of propositions satisfied in each q ∈ Q.

• In each state q ∈ Q, each player a ∈ {1, . . . , k}
has da(q) ≥ 1 available moves, identified with num-
bers {1, . . . , da(q)}. A move vector for q is a tuple
〈j1, . . . , jk〉 such that 1 ≤ ja ≤ da(q) for each player
a. We denote with D(q) the set {1, . . . , d1(q)} × . . .×
{1, . . . , dk(q)} of move vectors for q ∈ Q.

• For each state q ∈ Q and each move vector
〈j1, . . . , jk〉 ∈ D(q), a state q′ = δ(q, j1, . . . , jk) ∈ Q re-
sults from state q if every player i ∈ {1, . . . , k} chooses
move ji. δ is called transition function and q′ is said
to be a successor of q.

Once the notion of successor is given, we can provide a
formal definition of winning strategy: given a game structure
S as above, a strategy for player a ∈ Σ is a function fa that
maps every non-empty finite state sequence λ ∈ Q+ to one
of its moves, i.e., a natural number such that if the last state
of λ is q then fa(λ) ≤ da(q).

A computation of S is an infinite sequence λ = q0, q1, q2 . . .
of states such that for each i ≥ 0, the state qi+1 is a successor

of qi. The strategy fa determines, for every finite prefix
λ of a computation, a move fa(λ) for player a. Hence, a
strategy fa induces a set of computations that player a can
enforce. Given a state q ∈ Q, a set A ⊆ {1, . . . , k} of players,
and a set Fa = {fa | a ∈ A} of strategies, one for each
player in A, we define the outcomes of Fa from q to be
the set out(q, FA) of q-computations that the players in A
collectively can enforce when they follow the strategies in
FA. A computation λ = q0, q1, q2, . . . is then in out(q, FA)
if q0 = q and for all positions i > 0 every player a follows the
strategy fa to reach the state qi+1, that is, there is a move
vector 〈j1, . . . , jk〉 ∈ D(qi) such that ja = fa(λ[0, i]) for all
players a ∈ A, and δ(qi, j1, . . . , jk) = qi+1.

Now we can provide a formal definition of the satisfaction
relation: we write S, q |= ϕ to indicate that the state q
satisfies formula ϕ with respect to game structure S. |= is
defined inductively as follows:

• q |= p, for propositions p ∈ Π, iff p ∈ π(q).

• q |= ¬ϕ iff q 6|= ϕ.

• q |= ϕ1 ∨ ϕ2 iff q |= ϕ1 or q |= ϕ2.

• q |= 〈〈A〉〉 © ϕ iff there exists a set FA of strategies,
one for each player in A, such that for all computations
λ ∈ out(q, FA), we have λ[1] |= ϕ.

• q |= 〈〈A〉〉�ϕ iff there exists a set FA of strategies, one
for each player in A, such that for all computations
λ ∈ out(q, FA) and all positions i ≥ 0, we have λ[i] |=
ϕ.

• q |= 〈〈A〉〉(ϕ1 Uϕ2) iff there exists a set FA of strate-
gies, one for each player in A, such that for all com-
putations λ ∈ out(q, FA), there exists a position i ≥ 0
such that λ[i] |= ϕ2 and for all positions 0 ≤ j < i, we
have λ[j] |= ϕ1.

As for operator“♦”(eventually), we observe that 〈〈A〉〉♦ϕ
is equivalent to 〈〈A〉〉(trueUϕ).

Concerning computational complexity, the cost of ATL
model-checking is linear in the size of the game structure,
as for CTL, a very well-known temporal logic used in model
checking[3], of which ATL is an extension.

4. AGENT COMPOSITION VIA ATL
Now we look at how to use ATL for synthesizing com-

positions. To do so we introduce a concurrent game struc-
ture for the agent composition problem, reducing the search
for possible compositions to the search for winning strate-
gies in the multi-player game played over it. Given a tar-
get agent St and n available agents S1, . . . ,Sn with Si =
〈A, Si, s0i, δi, Fi〉 with i = t, 1, . . . n, we define a game struc-
ture NGS for our problem as follows.

We start by slightly modifying the available agents Si (i =
1, . . . , n) by adding a new state erri, disconnected, through
δi, to the other states, and such that erri 6∈ Fi.

We also define two convenient notations:

• Acti(s) that denotes the set of actions available to
the agent i (i = t, 1, . . . , n) in its local state s, i.e.,
Acti(s) = {a ∈ A |< s, a, s′ >∈ δi for some s′}.

• Succi(s, a) that denotes the set of possible successor
states for player i (i = t, 1, . . . , n) when it performs

action a from its local state s, i.e., Succi(s, a) = {s′ ∈
Si |< s, a, s′ >∈ δi}.

The game structure NGS = 〈k,Q,Π, π, d, δ〉 is defined as
follows.

Players.
The set of players Σ is formed by one player for each

available agent, one player for the target agent, and one
player for the controller. Each player is identified by an
integer Σ = {1, . . . , k}.

• i ∈ {1 . . . n} for the available agents (n = k − 2)

• t = k − 1 is the target virtual agent

• k is the controller

Game structure states.
The states of the game structure are characterized by the

following finite range functions:

• statei : returns the current state of the agent i (i =
t, 1, . . . , n); it ranges over s ∈ Si.

• sch : returns the scheduled available agent, i.e., the
agent that performed the last action; it ranges over
i ∈ {1, . . . , n}.

• actt : returns the action requested by the target, it
ranges over a ∈ A.

• finali : returns whether the current state statei of
agent i is final or not (i = t, 1, . . . , n); it ranges over
booleans.

Q is the set of states obtained by assigning a value to each
of these functions, and Π is the set of propositions of the
form (f = v) corresponding to assert that function f has
value v. Notice that we can use directly finite range func-
tions, without fixing any specific encoding for the technical
development that follows.

The function π, given a state q of the game structure
returns the values for the various functions. For simplicity,
we will use the notation statei(q) = s instead of (statei =
s) ∈ π(q).

Initial states.
The initial states Q0 of the game structure are those q0

such that:

• every agent is in its local initial state, statei(q0) = s0i

and finali(q0) = true iff s0i ∈ Fi (i = t, 1, . . . , n),

• actt(q0) = a for some action a ∈ Act(s0t), and

• sch(q0) = 1 (this is a dummy value, which will be not
used in any way during the game).

Players’ moves.
The moves that the player i (i = 1, . . . , n), representing

the available agent Si, can perform in a state q are:

Movesi(q) =

8<: {s′ | s′ ∈ Succi(statei(q), actt(q))}
if Succi(statei(q), actt(q)) 6= ∅

{erri} otherwise.

a, 1,
 s10, s20, t0

a, 2,
 s11, s21, t0 b, 2,

 s11, s20, t1

a, 1,
 err, s20, t0

b, 2,
 s10, err, t1

<s11,err,b,2>
<s12,err,b,2>

b, 1,
 s11, s20, t1

a, 2,
 s11, s20, t0

<err,s21,a,2>

<err,s20,a,2>

b, 1,
 s12, s20, t1

b, 1,
 s12, s21, t1

a, 1,
 s10, s20, t0

b, 2,
 s11, err, t1<s12,err,b,1>

a, 2,
 s12, err, t0 a, 1,

 s10, s21, t0

<s11,err,b,2>
<s12,err,b,2>

<s11,err,b,1>

<s12,s20,b,1>

<err,s20,a,1>
<err,s21,a,1>

<s12,s20,b,2>
<s10,err,a,1>

<s10,err,a,2>
<s12,s20,b,1>

<s10,s20,a,1>
<s10,s21,a,1>

<s11,err,b,1>

<err,s20,a,1>
<err,s21,a,1> <s12,err,b,2>

<s12,err,b,1>

<err,s20,a,2>

<err,s21,a,2>

<s12,err,b,1>

b, 1,
 s11, s21, t1

<s10,err,b,1>

(a)

state1 state2 statet act

s10 s20 t0 a {1}
s10 s20 t1 b {2}
s10 s21 t0 a {2}
s11 s20 t0 a {1}
s11 s20 t1 b {2}
s11 s21 t0 a {1,2}
s12 s20 t1 b {1}
s12 s21 t1 b {1}

(b)

Figure 3: (a) A fragment of a game structure and (b) the corresponding ωACG

The moves that the player k, representing the controller, can
do in a state q are:

Movesk(q) = {1, . . . , n}.

The moves that the player t, representing the target agent
St, can perform in a state q are (with a little abuse of nota-
tion, and recalling that the target agent is deterministic):

Movest(q) = Actt(Succ(statet(q), actt(q))).

Notice that the player t chooses in the current turn the
action that will be executed next.

The number of moves is di(q) = |Movesi(q)| and, wlog,
we can associate some enumeration of the elements in
Movesi(q).

Game transitions.
The game transition function δ is defined as follows:

δ(q, j1, . . . , jk) is the game structure state q′ such that:

• sch(q′) = jk

• statew(q′) = jw if jk = w

• statei(q
′) = statei(q) ∀i 6= w

• statet(q
′) = st, where {st} = Succ(statet(q), actt(q))

• actt(q′) = jt

• finali(q′) = true iff statei(q
′) ∈ Fi.

Figure 3(a) shows a fragment of the game structure NGS
for the example in Figure 1. Nodes represent states of the
game and edges represent game transitions labelled with
move vectors (for simplicity, states where one of the agents
is in err are left as sink nodes).

ATL formula to check for composition.
Checking the existence of a composition is reduced to

checking the ATL formula ϕ, over the game structure NGS,
defined as follows:

ϕ = �k��(
∧i=1,...,n(statei 6= erri) ∧
(finalt → (∧i=1,...,nfinali = true))

)

5. RESULTS
Given a target agent St and n available agents S1, . . . ,Sn,

let NGS = 〈k,Q,Π, π, d, δ〉 be the game structure and ϕ the
ATL formula defined above. The set of winning states of the
games is:

[ϕ]NGS = {q ∈ Q | q |= ϕ}

Referring to Figure 3(a) grey states are those in [ϕ]NGS .
From [ϕ]NGS we can build an ATL Composition Genera-

tor ACG for the composition of S1, . . . ,Sn for St exploiting
the set [ϕ]NGS .

Definition 2. (ATL Composition Generator) Let NGS
and ϕ be as above. We define the ATL Composition
Generator ACG as a tuple ACG = 〈A, {1, . . . , n}, SNGS ,
S0

NGS , ωACG, δACG〉 where:

• A is the set of actions, and {1, . . . , n} is the set of
players representing the available agents, as in NGS;

• SNGS = {〈statet(q), state1(q), . . . , staten(q)〉 | q ∈
[ϕ]NGS};

• S0
NGS = {〈statet(q0), state1(q0), . . . , staten(q0)〉 | q0 ∈
Qo ∩ SNGS};

• δACG : SNGS × A × {1, . . . , n} → SNGS is the tran-
sition function, defined as follows: 〈s′t, s′1, . . . , s′n〉 ∈
δACG(〈st, s1, . . . , sn〉, a, w) iff there exists q ∈ [ϕ]NGS

with si = statei(q) for i = t, 1, . . . , n, a =
actt(q), s

′
t ∈ Succt(st, a) such that for each q′ =

δ(q, s′1, · · · , s′n, a′, w), with sch(q′) = w , s′w ∈
Succw(sw, a), s′i = si for i 6= w, and a′ ∈ Actt(q),
we have q′ ∈ [ϕ]NGS .

• ωACG : SNGS × A → 2{1,...,n} is the agent se-
lection function: ωACG(〈st, s1, . . . , sn〉, a) =
{i | ∃〈s′t, s′1, . . . , s′n〉 with 〈s′t, s′1, . . . , s′n〉 ∈
δACG(〈st, s1, . . . , sn〉, a, i)}.

Figure 3(b) shows the agent selection function ωACG of the
ATL Composition Generator for the game structure of Fig-
ure 3(a). Next theorem states the soundness and complete-
ness of the method based on the construction of ACG for
computing agent compositions.

Theorem 3. Let St be a target agent and
S1, . . . ,Sn n available agents. Let ACG =
〈A, {1, . . . , n}, SACG, S

0
ACG, ωACG, δACG〉 and ωg be,

respectively, the ATL Composition Generator and the
Composition Generator for St by S1, . . . ,Sn. Then

1. 〈st, s1, . . . , sn〉 ∈ SACG iff st � 〈s1, . . . , sn〉 and

2. for all st, s1, . . . , sn such that st � 〈s1, . . . , sn〉 and for
all a ∈ A, we have that

ωACG(〈st, s1, . . . , sn〉, a) = ωg(〈st, s1, . . . , sn〉, a)

Proof. We focus on (1) since (2) is a direct consequence
of 1 and of the definition ωACG. ACG’s correctness is basi-
cally proven showing that the set S in ACG is a simulation
relation (i.e., it satisfies the constraints (i) and (ii) in the
definition of simulation relation), and it is hence contained
in � which is the largest one.

As for completeness, we show that there exists no gen-
erated composition P for St and S1, . . . ,Sn which cannot
be generated by ωACG. Toward contradiction let us as-
sume that one such P exists. Then there exists a history
of the system coherent with P , such that, considering the
definition of ACG either (a) the requested action can’t be
performed in target’s current state st, (b) target’s current
state st is final but at least one of the current states of the
si (i = 1, . . . , n) available agents is not, or (c) no available
agent is able to perform the requested action in its own cur-
rent state si (i = 1, . . . , n), that is if all successor game
states reached after performing it are error states. But (a)
cannot happen by construction of ACG being the history
coherent with P , and if either of (b) and (c) happens we get
that st 6� 〈s1, . . . , sn〉 contradicting the assumption that P
is a generated composition.

Analogously of what done for the composition generator
in Section 2, we can define the notion of ACG generated
compositions: i.e., the compositions obtained by picking up
one among the available agents returned by function ωACG,
at each step of the (virtual) target agent execution starting
with all agents (target and available in their initial state).
Then, as a direct consequence of Theorem 3 and the results
of [18], we have that:

Theorem 4. Let St be a target agent and S1, . . . ,Sn n
available agents. Then (i) if [ϕ]NGS 6= ∅ then every con-
troller generated by ACG is a composition of target agent
St by S1, . . . ,Sn and (ii) if such composition does exist, then
[ϕ]NGS 6= ∅ and every controller that is a composition of the
target agent St by S1, . . . ,Sn can be generated by the ATL
Composition Generator ACG.

By recalling that model checking ATL formulas is linear
in the size of the game structure, analyzing the construction
above we have:

Theorem 5. Computing ATL composition generator
(ACG) is polynomial in the number of states of the tar-
get and available agents and exponential in the number of
available agents.

Proof. The results follows by the construction of the
game structure NGS above and from the fact that model
checking ATL formula over game structure can be done in
polynomial time.

From Theorem 4 and the EXPTIME-hardness of result in
[11], we get a new proof of the complexity characterization
of the agent composition problem [18].

Theorem 6. [18] Computing agent composition is
EXPTIME-complete.

6. IMPLEMENTATION
In this section we show how to use the ATL model checker

MCMAS [7] to solve agent composition via ATL model
checking. In particular, following the definition of game
structure NGS, we show how to encode instances of the
agent composition problem in ISPL (Interpreted Systems
Programming Language) which is the input formalism for
MCMAS. For readability, we show here a basic encoding,
according to the definition of NGS; some refinement will be
discussed at the end of the section.

ISPL distinguishes between two kinds of agents: ISPL
standard agents and one ISPL Environment. In brief, both
ISPL standard agents and the ISPL Environment are char-
acterized by (1) a set of local states, which are private with
the exception of Environment’s variables declared as Ob-

svars; (2) a set of actions, one of which is choosen by the
ISPL agent in every state; (3) a rule describing which ac-
tion can be performed by the ISPL agent in each local state
(Protocol); and (4) a function describing how the local state
evolve (Evolution).

We encode both the available agents and the target agent
of our problem as ISPL standard agents, while we encode the
controller in the Environment. Each ISPL standard agent
features a variable state, holding the current state of the
corresponding agent, while the ISPL Environment has two
variables: sch and act, which correspond to propositions sch
and actt in Π, i.e., respectively, the available agent chosen
by the controller to perform the requested target agent’s
action, and the target agent’s action itself. The special value
start is introduced for technical convenience: we need to
“generate” a state for each possible action the target agent
may request at the beginning of the game. All variables
have enumeration type, ranging over the set of values they
can assume according to the definition of NGS.

We illustrate the ISPL encoding of our running example.
Consider the same available and target agents as in Figure
1. The code for the ISPL Environment Environment:

Semantics = SA;

Agent Environment

Obsvars:

sch : {S1,S2,start};

act : {a,b,start};

end Obsvars

Actions = {S1,S2,start};

Protocol:

act=start : {start};

Other : {S1,S2};

end Protocol

Evolution:

sch=S1 if Action=S1;

sch=S2 if Action=S2;

act=a if T.Action=a;

act=b if T.Action=b;

end Evolution

end Agent

Notice that the values of sch are unconstrained; they depend
on the action chosen by the environment, which chooses
them so as to satisfy the ATL formula of interest. Instead,
act stores the action that the target agent has chosen to
do next. The statement Semantics = SA specifies that only
one assignment is allowed in each evolution line. This im-
plies that evolution items are partitioned into groups such
that two items belong to the same group if and only if they
update the same variable and that they are not mutually
excluded as long as they belong to different groups.

Next we show the encoding as ISPL standard agents S1

and S2 for the available agents S1 and S2.

Agent S1

Vars:

state : {s10,s11,s12,err};

end Vars

Actions = {s10,s11,s12,err};

Protocol:

state=s10 and Environment.act=a : {s11,s12};

state=s11 and Environment.act=a : {s12};

state=s12 and Environment.act=b : {s10};

Other : {err};

end Protocol

Evolution:

state=err if Action=err and Environment.Action=S1;

state=s10 if Action=s10 and Environment.Action=S1;

state=s11 if Action=s11 and Environment.Action=S1;

state=s12 if Action=s12 and Environment.Action=S1;

end Evolution

end Agent

Agent S2

Vars:

state : {s20,s21,err};

end Vars

Actions = {s20,s21,err};

Protocol:

state=s20 and Environment.act=b : {s20,s21};

state=s21 and Environment.act=a : {s20};

Other : {err};

end Protocol

Evolution:

state=err if Action=err and Environment.Action=S2;

state=s20 if Action=s20 and Environment.Action=S2;

state=s21 if Action=s21 and Environment.Action=S2;

end Evolution

end Agent

Each ISPL standard agent for the available agents reads vari-
able Environment.act which has been chosen in the previ-
ous game round and chooses a next state to go to among
those reachable through that action. If such an action is
not available to the agent in its current state, then err is
chosen. If the ISPL standard agent is the one chosen by the
controller, then by reaching such an error state, it falsifies
the ATL formula.

Finally, we show the encoding as a ISPL standard agent
T of the target agent T .

Agent T

Vars:

state : {t0,t1};

end Vars

Actions = {a,b};

Protocol:

Environment.act=start: {a};

state=t0 and Environment.act=a : {b};

state=t1 and Environment.act=b : {a};

end Protocol

Evolution:

state=t1 if state=t0 and Environment.act=a;

state=t0 if state=t1 and Environment.act=b;

end Evolution

end Agent

The ISPL standard agent T reads the current action
Environment.act in the ISPL Environment Environment,
which stores its own previous choice, and virtually makes the
corresponding transition (remember that the target agent is
deterministic) getting to the new state. Then, it selects its
next action among those available in its next state. Consider
for example the first Evolution statement: state=t1 if

state=t0 and Environment.act=a. Such a can be read as
follows: “if current state is t0 and the (last) action requested
is a, then request an action chosen among those available at
state t1, namely the set {b} in this case”. Note that, con-
sidering the definition of Environment, the ISPL standard
agent T chooses the action to be stored in Environment.act

at the next turn of the game.
The ISPL code is completed as follows.

Evaluation

Error if S1.state=err or S2.state=err;

S1Final if S1.state=s10 or S1.state=s11;

S2Final if S2.state=s20 or S2.state=s21;

TFinal if T.state=t0;

end Evaluation

InitStates

S1.state=s10 and S2.state=s20 and T.state=t0 and

Environment.act=start and Environment.sch=start;

end InitStates

Groups

Controller = {Environment};

end Groups

Formulae

<Controller> G (

!Error and (TFinal -> (S1Final and S2Final))

);

end Formulae

where we define some computed propositions for convenience
(Evaluation), the initial state of the game (InitState), the
group of agents appearing in the ATL formula (Groups), and
the ATL formula itself (Formulae). All of these part directly
correspond to what described in Section 4: in particular
the ATL formula requires that all ISPL standard agents for
available agents have to be in a final state if the one for
the target does, and none of the ISPL standard agent for
available agents can be in error state (since this can only
be reached whenever the scheduled available agent cannot
actually replicate requested action).

Standard MCMAS checks if the ATL formula ϕ is satisfied
in the specified game structure NGS. However, we used an
available prototype of MCMAS that can actually return a
convenient data structure with the set of all states of the
game structure that satisfy the ATL formula, namely the

set [ϕ]NGS , and the transitions among them. Using such a
data structure we wrote a simple Java program that actually
computes ωACG of Definition 2, thus obtaining a practical
way to generate all compositions.

The whole approach is quite effective in practice. In par-
ticular, we have run some experimental comparisons with
direct implementations of the simulation approach proposed
in [18], and our MCMAS based system is generally two or-
ders of magnitude faster. We also compare it with imple-
mentations based on tlv [14] that are tailored for the agent
composition problem [12], and the results of the two systems
are similar, even if we used a completely standard MCMAS
implementation and prototypical additional components.

We close the section by observing that the ISPL encoding
shown here, which directly reflects the theoretical construc-
tion done above, could be easily refined (though possibly at
expenses of clarity) with at least two major improvements.
First, we can massively reduce the number of error states
from the resulting structure, giving ISPL Environment both
a copy of available agents’ states and a protocol function
which only schedules ISPL standard agents that are actu-
ally able to perform the current target action, according to
their own protocols. If none of the ISPL standard agents is
able to fullfill this condition, then an error action is selected,
and the successor state is flagged with a boolean variable set
to true in the Environment. Local error states are no more
needed and the Error definition in the Evaluation section
needs to be changed accordingly. Second, the system can
be forced to “loop” after such an error condition is reached,
e.g. forcing all ISPL agents to select an error action, thus
avoiding to generate further (error) states.

7. CONCLUSIONS
In this paper we have shown that agent composition can

be naturally and effectively solved by ATL model checking.
This gives effective techniques for agent composition based
on current ATL model checkers.

The connection between agent composition and ATL and
more generally the work on ATL-based agent verification
can be quite fruitful in the future. First of all, such a work
can stimulate the ATL community on focusing more on the
problem of actually extracting the strategies to lead to the
satisfaction of ATL formulae, moving from ATL-based verifi-
cation to ATL-based synthesis. Then several advancements
in the recent work on ATL within the Agent community
can be of great interest for agent composition. For exam-
ple, the recent work on using ATL together with forms of
epistemic logics to capture the different knowledge of the
various agents could give effective techniques to deal with
partial observability of the behaviors of the available agents
in the agent composition. Currently known techniques are
mostly based on a belief-state construction [16, 13, 4] and
have mostly resisted effective implementations. We plan to
look into this issue in the future.

Acknowledgments
We would like to thank Alessio Lomuscio, Hongyang Qu and
Franco Raimondi for the development of some experimental
components of MCMAS that return full witnesses of ATL
formulae, which have proven to be essential for our work.
We would like also to thank Riccardo De Masellis and Fabio
Patrizi for discussions and insights, and the anonymous re-
viewers for their valuable comments.

8. REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman.

Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[2] P. Balbiani, F. Cheikh, and G. Feuillade. Algorithms
and complexity of automata synthesis by
asynhcronous orchestration with applications to web
services composition. Electronic Notes in Theoretical
Computer Science, 229(3):3–18, July 2009.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. The MIT Press, Cambridge, MA, USA, 1999.

[4] G. De Giacomo, R. De Masellis, and F. Patrizi.
Composition of partially observable services exporting
their behaviour. In ICAPS, 2009.

[5] G. De Giacomo and S. Sardiña. Automatic synthesis
of new behaviors from a library of available behaviors.
In IJCAI, pages 1866–1871, 2007.

[6] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
The MIT Press, 2000.

[7] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: A
model checker for the verification of multi-agent
systems. In CAV, pages 682–688, 2009.

[8] A. Lomuscio and F. Raimondi. Model checking
knowledge, strategies, and games in multi-agent
systems. In AAMAS, pages 161–168, 2006.

[9] Y. Lustig and M. Y. Vardi. Synthesis from component
libraries. In FOSSACS, pages 395–409, 2009.

[10] R. Milner. An algebraic definition of simulation
between programs. In IJCAI, pages 481–489, 1971.

[11] A. Muscholl and I. Walukiewicz. A lower bound on
web services composition. Logical Methods in
Computer Science, 4(2), 2008.

[12] F. Patrizi. Simulation-based Techniques for Automated
Service Composition. PhD thesis, DIS, Sapienza Univ.
Roma, 2009.

[13] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso.
Automated composition of web services by planning at
the knowledge level. In IJCAI, pages 1252–1259, 2005.

[14] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. In VMCAI, pages 364–380, 2006.

[15] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In POPL, pages 179–190, 1989.

[16] J. Rintanen. Complexity of planning with partial
observability. In ICAPS, pages 345–354, 2004.

[17] S. Sardiña, F. Patrizi, and G. De Giacomo. Automatic
synthesis of a global behavior from multiple
distributed behaviors. In AAAI, 2007.

[18] S. Sardiña, F. Patrizi, and G. De Giacomo. Behavior
composition in the presence of failure. In KR, pages
640–650, 2008.

[19] T. Ströder and M. Pagnucco. Realising deterministic
behavior from multiple non-deterministic behaviors. In
IJCAI, 2009.

[20] J. Su, editor. IEEE Data Engineering Bulletin: Special
Issue on Semantic Web Services, volume 31:2, 2008.

[21] M. Wooldridge. An Introduction to MultiAgent
Systems. John Wiley & Sons, 2nd edition, 2009.

