Goal-based Composition of Stateful Services
for Smart Homes

Giuseppe De Giacomo!, Claudio Di Ciccio!, Paolo Felli,
Yuxiao Hu?, and Massimo Mecella!

1 SAPIENZA — Universita di Roma, Italy
{degiacomo|cdc|felli|mecella}@dis.uniromal.it
2 Google Waterloo, Canada
yuxiao@google.com

Abstract. The emerging trend in process management and in service
oriented applications is to enable the composition of new distributed
processes on the basis of user requests, through (parts of) available (and
often embedded in the environment) services to be composed and or-
chestrated in order to satisfy such requests. Here, we consider a user
process as specified in terms of repeated goals that the user may choose
to get fulfilled, organized in a kind of routine. Available services are
suitably composed and orchestrated in order to realize such a process.
In particular we focus on smart homes, in which available services are
those ones offered by sensor and actuator devices deployed in the home,
and the target user process is directly and continuously controlled by
the inhabitants, through actual goal choices. We provide a solver that
synthesizes the orchestrator for the requested process and we show its
practical applicability in a real smart home use case.

Keywords: process/service composition, smart houses/buildings, plan-
ning techniques

1 Introduction

The promise of Web services (WSs) and of Service Oriented Architectures
(SOASs) in general, coupled with the technologies and methodologies of Business
Process Management (BPM), is to enable the composition of new distributed
processes/solutions: (parts of) available services can be composed and orches-
trated in order to realize complex processes, offering advanced functionalities to
users.

Many approaches (surveyed, e.g., in [3]) have been proposed in the last years
in order to address the above problem from different viewpoints. Works based
on Planning in AI, such as [I6/24J5l26] consider only the input/output specifi-
cation of available services, which is captured by atomic actions together with
their pre- and post-conditions (a notable extension is [2]), and specify the over-
all semantics in terms of propositions/formulas (facts known to be true) and
actions, affecting the proposition values. All these approaches consider stateless

services, as the operations offered to clients do not depend on the past history,
as services do not retain any information about past interactions. Also other
works (e.g., [25/T7I86]) consider available services as atomic actions, but, rather
than on (planning-based) composition, they focus on modeling issues and au-
tomatic service discovery, by resorting to rich ontologies as a basic description
mean. Many works (e.g., [I5I22/TIT8] consider how to perform composition by
taking into account Quality-of-Service (QoS) of the composite and component
services. Some works consider non classical techniques (e.g., [23] adopts learning
approaches) for solving the composition problem.

There are also approaches (e.g., [I2]) that consider stateful services, which
impose constraints on the possible sequences of interactions (a.k.a., conversa-
tions) that a client can engage with the service. Stateful services raise additional
challenges, as the process coordinating such services should be correct w.r.t. the
possible conversations allowed by the services themselves. An interesting ap-
proach of this type is the one of [19], in which the specification is a set of atomic
actions and propositions, like in planning, services are (finite-state) transition
systems whose transitions correspond to action executions, which, in general, af-
fect the truth values of propositions, and the client requests a (main) goal (i.e., a
formula built from the above propositions) to be achieved, while requiring run-
time failures to be properly handled by achieving a special exception handling
goal. Another interesting approach is the one adopted in [4], often referred to as
Roman Model, in which again services are abstracted as transition systems and
the objective is to obtain a composite service that preserves a desired interaction,
expressed as a (virtual) target service.

In this paper, we consider a notable extension of the Roman Model, where
goal-based processes are used, instead of target services, to specify what the user
desires to achieve. Such processes can be thought of as routines built from virtual
tasks expressed declaratively simply as goals, which allow users to specify the
desired state of affair to bring about. Such goals are organized in a control flow
structure, possibly involving loops that regulates their sequencing, as well as the
decision points where the user can choose the next goal to request.

Wrt [19], the main novelty proposed in this paper is allowing clients to request
new goals, once the current one is achieved (by a plan). In general, such requests
can be arranged as routines represented as finite-state transition systems whose
transitions correspond to goal requests. These routines typically involve loops,
thus ruling out naive approaches based on (classical, conditional or conformant)
planning. Indeed, not all plans that achieve a requested goal are successful: some
might lead the system to states preventing future client requests fulfillment.
Such bad plans could be recognized by taking into account all goals the client
can request in the future, which, in the presence of loops, span over an infinite
horizon (though finite-state).

The approach proposed here is strongly motivated by challenging applications
in the domain of smart houses and buildings, i.e., buildings pervasively equipped
with sensors and actuators making their functionalities available according to the
service-oriented paradigm. In order to be dynamically configurable and compos-

able, embedded services need to expose semantically rich service descriptions,
comprising (i) interface specifications and (%) specifications of the externally
visible behaviors. Moreover, human actors in the environment can be abstracted
as services, and actually “wrapped” by a semantic description (e.g., a nurse of-
fering medical services). This allows them to be involved in orchestrations and
to collaborate with devices, to reach certain goals. See, e.g., [T4UTTI7].

We envision a user that can express processes she would like to have realized
in the house, in the form of routines consisting of goals (e.g., states of the house
she would like to have realized); an engine automatically synthesizes the right
orchestration of services able to satisfy the goals. Users can interact with the
house through different kinds of interfaces, either centralized (e.g., in a home
control station) or distributed, and embedded in specific interface devices. Brain
Computer Interfaces (BCIs) allow also people with disabilities to interact with
the system. Using such interfaces, users issue specific goals to the system, which
is, in turn, expected to react and satisfy the request.

In this paper, we detail this approach. We provide a framework for composi-
tion of goal-oriented processes form available (non-atomic) services (Section 2).
We present a case study where the framework is applied in a real smart home
setting (Section 3). We provide a effective solver (Section 4), which synthesize
an orchestrator that realizes the target goal-oriented processes, by detailing sub-
processes that fulfil the various goals at the various point in time. Our solver
is sound and complete, and far more practical than other solutions proposed
in literature, also because it easily allows for exploiting heuristic in the search
for the solution. We show the effectiveness of our solver with some experiments
in our use case (Section 5). We conclude the paper with a brief discussion on
further work (Section 6).

2 Framework

We assume that the user acts on an environment that is formalized as a possibly
nondeterministic dynamic domain D, which provides a symbolic abstraction of
the world that the user acts in. Formally, a dynamic domain is a tuple D =
(P, A, Dy, p), where:

P ={p1,...,pn} is a finite set of domain propositions. D € 2F is a state;

— A=/{ay,...,a,} is the finite set of domain actions;

Dq € 2F is the initial state;

— p C 2P x A x 2 is the transition relation. We freely interchange notations
(D,a,D') € pand D - D’ in D.

Intuitively, a dynamic domain models an environment whose states are described
by the set P of boolean propositions, holding all relevant information about the
current situation. For instance, the state of a room can be defined by the light
being on or off and the door being open or closed, using two propositions light_on
and door_open. By convention, we say that if one of such propositions is in the
current state of D, then it evaluates to T (true), otherwise it is L (false). Hence,

a propositional formula ¢ over P holds in a domain state D € 2P (D & ¢) if
@ evaluates to T when all of its propositions occurring in D are replaced by T.
However, such domain can not be manipulated directly, i.e., domain actions can
not be accessed directly by the user: they are provided through available services.
The idea is that, at each moment, a service offers a set of possible actions, and
the user can interact with the domain D only by means of available services.

Given a dynamic domain D, a service over D is a tuple B = (B, 0, by, o),
where: (i) B is the finite set of service states; (i) O is the finite set of service
actions over the domain, i.e., O N A # (; (iii) by € B is the service initial
state; (iv) o C B x O x B is the service transition relation. We will interchange
notations (b, a,b’) € g and b — ¥’ in B.

As a service is instructed to perform an action over D, both the service and
the domain evolve synchronously (and possibly nondeterministically) according
to their respective transition relations. So, for a domain action to be carried
out, it needs to be both compatible with the domain and (currently) available
in some service. However, services can also feature local actions, i.e., actions
whose execution does not affect the domain evolution. For instance, a service
representing a physical device might require to be switched on to use all its
functionalities, a fact that is not captured by D alone. To define formally this
idea, we introduce the notiton of executability for actions of a service B =
(B, 0, by, 0): given B in its own service state b and a domain D in domain state
D, action a € O is said to be ezecutable by B in b iff (i) it is available in b, i.e.
b —%5 b’ in B for some state b’ € B and (ii) it is either a local action (a ¢ O N A)
or it is allowed in D, i.e., there exists a domain state D’ such that D —— D’.
Notice that services are loosely-coupled with the domain they are interacting
with: new services can be easily added to the systems and modifications to the
description of the underlying domain do not affect them.

Ezample 1. Consider a dynamic domain D = (P, A, Dy, p) describing (among
othet components) a simple door as in Figure A domain proposition
doorlsOpen € P is used to keep its state, and the door can be ei-
ther closed or opened executing domain actions {doClose,doOpen} C A.

However, the door can only be managed through a service doorSrv =

({open, closed}, {doOpen, doClose}, open, ¢) where ¢ is such that open doClose

closed and closed 22" open. Assume that doorSrv is in its state open, and
the current domain state D to be such that doorlsOpen € D (i.e., it evaluates
to true in D). As soon as action doClose is executed, both the doorSrv service
evolves changing its state to closed and, synchronously, the domain evolves to a
state D’ such that doorlsOpen ¢ D' (i.e., it evaluates to false in D’).

Given a dynamic domain D and a fixed set of available services over it, we define
a dynamic system to be the resulting global system, seen as a whole: it is an
abstract structure used to capture the interaction of available services with the
environment. Formally, given a dynamic domain D and a set of available services
Bi,...,B,, with B; = (B;, 0;, b, 0;), the corresponding dynamic system is the
tuple S = (S, I, sp,), where:

(B1 % -+ x By) x 2F is the set of system states;

AU U@ 1 O; is the set of system actions;

({(b10, - - -, bno), Do) € S is the system initial state;

S x (I’ x {1,...,n}) x S is the system transition relation such that
{ by), D) 25 ((by, .. b)), D') is in ¥ iff:
(i) {biva,bl) € o

(i) for eachj €{1l,...,n}, if j # i then b} = b;.

(i) if a € A then <D a,D’) € p, otherwise D’ = D;

S
- I
S0
Y

? IN H Il

(i)- (ii) require that only one service B; moves from its own state b; to b; per-
forming action a, and (44) requires that, if the action performed is not a local
action, the domain evolves accordingly. Indeed, the set of system operations I’
includes operations local to services, i.e. whose execution, according to 1, does
not affect the domain evolution. We stress the fact that a dynamic system does
not correspond to any actual structure: it is a convenient representation of the
interaction between the available services and the domain. Indeed, a dynamic
system captures the joint execution of a dynamic domain and a set of services
where, at each step, only one service moves, and possibly affects, through opera-
tion execution, the state of the underlying domain. The evolutions of a system &
are captured by its histories, herehence S-histories. One such history is a finite
0 9L g1 g M s’ of length |7| = £+ 1 such

1+1 ci41

that (i) s' € S for i € {0,...,€}; (i) s° = so; (iii) s © =5 st in S, for
each i € {0,...,0—1}. We denote with 7|5 its k-length (ﬁnlte) prefix, and with
‘H the set of all possible S-histories. Given a dynamic system S, a general plan
is a (possibly partial) function 7 : H — I" x {1,...,n} that outputs, given an
S-history, a pair representing the action to be executed and the index of the
service which has to execute it. An ezecution of a general plan 7 from a state

sequence of the form 7 = s

s € S is a possibly infinite sequence 7 = s° aldy 1995 quch that (i) s° = s;
(i3) T|x is an S-history, for all 0 < k < |7|; and (i) (a*,j*) = 7w(7|x), for all
0 < k < |7]. When all possible executions of a general plan are finite, the plan
is a conditional plan. The set of all conditional plans over S is referred to as II.
Note that, being finite, executions of conditional plans are S-histories. A finite
execution 7 such that 7(7) is undefined is a complete execution, which means,
informally, that the execution cannot be extended further. In the following, we
shall consider only conditional plans.

0 al.

-1
) 81 é 19

We say that an execution 7 = s —> st of a conditional plan

m, with s* = ((b%,... %), D%):
— achieves a goal ¢ iff D* = ¢
— maintains a goal v iff D* =4 for every i € {0,...,£— 1}

Such notions can be extended to conditional plans: a conditional plan 7w achieves
¢ from state s if all of its complete executions from s do so; and © maintains
from s if all of its (complete or not) executions from s do.

Finally, we can formally define the notion of (goal-based) target process for a
dynamic domain D as a tuple T = (T, G, tg, d), where:

— T = {to,...,tq} is the finite set of process states;

— G is a finite set of goals of the form achieve ¢ while maintaining v, denoted
by pairs g = (¢, ¢), where ¢ and ¢ are propositional formulae over P;

— to € T is the process initial state;

— 0 CT x G x T is the transition relation. We will also write ¢ It in P.

A target process 7T is a transition system whose states represent choice points,
and whose transitions specify pairs of maintenance and achievement goals that
the user can request at each step. Hence, T allows to combine achievement and
maintenance goals so that they can be requested (and hence fulfilled) according
to a specific temporal arrangement, which is specified by the relation § of 7.
Intuitively, a target process 7T is realized when a conditional plan 7 is available
for the goal couple g = (¢,®) chosen from initial state ty and, upon plan’s
completion, a new conditional plan 7’ is available for the new selected goal,
and so on. In other words, all potential target requests respecting 7’s structure
(possibly infinite) have to be fulfilled by a conditional plan, which is meant to be
executed starting from the state that previous plan execution left the dynamic
system S in (initially from sg). Since the sequences of goals actually chosen by
the user can not be forseen, a realization has to take into account all possible
ones: at any point in time, all possible choices available in the target process
must be guaranteed by the system, i.e., every legal request needs to be satisfied.
We are going to give a formal definition of this intuition [9] in the remainder of
this section.

Let S be a dynamic system and T a target process. A PLAN-simulation
relation, is a relation R C T x S such that (t,s) € R implies that for each

transition ¢ 2% ¢ in T, there exists a conditional plan = such that: (i) «

achieves ¢ and maintains ¢ from state s and (i) for all 7’s possible complete

executions from s of the form s ¥ ... 7Y s’, it is the case that (¢, s*) € R. A

plan 7w preserves R from (t, s) for a given transition ¢ <M>> t’ in T if requirement

(ii) above holds. Also, we say that a target process state t € T is PLAN-simulated
by a system state s € S, denoted t <ppan s, if there exists a PLAN-simulation
relation R such that (t,s) € R. Moreover, we say that a target process T is
realizable in a dynamic system S if tg <prany So. When the target process is
realizable, one can compute once for all (offline) a function 2 : S x § — I

that, if at any point in time the dynamic system reaches state s and the process

requests transition ¢ <M>> t’ of T, outputs a conditional plan 7 that its execution

starting from s (i) achieves ¢ while maintaining ¢ and (%) preserves =<pran,
i.e., it guarantees that, for all possible states the system can reach upon n’s
execution, all target transitions outgoing from ¢ (according to) can still be
realized by a conditional plan (possibly returned by the function itself). Such
function {2 is referred to as process realization.

We can now formally state the problem of concern: Given a dynamic domain
D, available services By, ..., By, and a target process T, build, if it exists, a
realization of T in the dynamic system S corresponding to D and By, ..., B,.
In previous work [9/T0], a solution to a simplified variant of our problem has been

proposedlﬂ Here, as discussed above, we explicitly distinguish between dynamic
domain and available services, thus obtaining a different, more sophisticated
problem. Nonetheless, the techniques presented there still apply, as we can reduce
our problem to that case. This allows us to claim this result:

Theorem 1 ([9]). Building a realization of a target process T in a dynamic
system S is an EXPTIME-complete problem.

3 Case Study

ST - =

—

- Bed room C D4 Guest room Kitchen E
=~

(1 d (] o]

D3 D5 D6 [E

D2
Bathroom Living room Toilet
W4 ° D7

=== Sl

Fig. 1: The smart home plant

Here we present a case study, freely inspired by a real storyboard of a live
demo held in a smart home located in Rome, whose houseplant is depicted in
Figure [1}

The home is equipped with many devices and a central reasoning system,
whose domotic core is based on the framework and solver described in this
paper, in order to orchestrate all the offered services. Imagine here lives Niels,
a man affected by Amyotrophic Lateral Sclerosis (ALS). He is unable to walk,
thus he needs a wheelchair to move around the house. The other human actors
are Dan, a guest sleeping in the living room, and Wilma, the nurse. At the
beginning of the story, Niels is sleeping in his automated bed. The services
the system can manage are the bedService, i.e., an automated bed, which can
be either down or up; the door NumService, i.e., the doors, for Num € {1,7}
(Figure ; the alarmService, i.e., an alarm, that can be either set or not;
the light RoomService, i.e., light bulbs and lamps, for each Room in Figure
the kitchenService, i.e., a cooking service with preset dishes (Figure ; the
pantryService, i.e., an automated pantry, able to check whether ingredients
are in or not and buy them, if missing (see Figure ; the bathroomService,

3 In particular, in [OI10] services are modelled directly in terms of restrictions on the
domain.

i.e., a bathroom management system, able to warm the temperature inside and
fill or empty the tub (Figure ; and finally the tvService, i.e., a TV, either
on or off.

doOpen v doBuy
> doCheck
doClose doCheck
(a) door NumService (b) pantryService
doPickOwner
doCleanUp
> doLeaveOwner
>
doCook
doMoveToKitchen
doMoveToBedroom
doMoveTo...
(c) kitchenService (d) nurseService
doTurnOffHeater doRaiseBathTemp

doLowerBathTemp doRaiseBathTemp

cooling

doTurnOffBathHeater doTurnOffBathHeater

doLowerBathTemp

doFillTub doEmptyTub

doFillTub

(e) bathroomService

Fig. 2: Case study services

Finally, we consider a very particular service, that we call nurseService: it is
Wilma, the nurse, who is in charge of moving Niels around the house. Despite the
fact that an analogous service could be provided by some mechanical device, we
refer to an human to illustrate how actors can be abstracted as services as well,
wrapped by a semantic description. All services are depicted in Figure 2], except
for 1ight RoomService, bedService, alarmService and tvService that have
very simple on/off behaviors. As described in Section 2] a dynamic domain state

is a subset of 2F, where P = {p;,...,p,} is a finite set of boolean domain propo-
sitions. In order to express that, e.g., the bathroom temperature is mild, we could
make use of a grounded propositional letter such as bathroom TemperaturelsMild.
Nevertheless, we would have a grounded proposition for each value that the
sensed temperature may assume (bathroomTemperaturelsHot, etc.) with the im-
plicit constraint that only one of them can be evaluated to T at a time (and all
the others to). Thus, for sake of simplicity, here we make use of statements
of the form “var = wal” (e.g., “varBathroomTemperature = warm”). We call
var the domain variable; val can be equal to any expected value which var can
assume. Using such abbreviations we can phrase concepts like “a domain vari-
able var is set to the val value” to easily refer to a transition in the dynamic
domain moving from the current state to a following one where the proposition
var = wval holds. For the sake of readability, actions are identified by the do-
prefix (e.g., doRing).

Now we comment the case study. All services affect, through their actions, the
related domain variables representing the state of the context. As an example,
consider Figure Action doRaiseBathTemp causes the bathroomService to
reach warming state, and affects the domain setting varBathroom Temperature
either to (i) mild if it was equal to cold, or (ii) warm, if previously mild.
However, we can imagine also indirect effects: e.g., the door4Service and
door5Service’s doOpen actions trivially turn the warDoorj and warDoors
domain variables from closed to open and, at the same time, change the
varGuestDisturbed domain variable from false to true, since, as depicted in
Figure they leed to the guest room, which we supposed Dan, the guest,
to sleep in. The dynamic domain constrains the execution of service actions,
allowing ezecutable transitions only to take place (as explained in Section .
For instance, consider the doPick and dolLeave actions in nurseService: they
represent Wilma taking and releasing Niels’ wheelchair. Even if they are al-
ways available according to the service’s description (Figure , they are al-
lowed by the domain iff varPositionOwner and varPositionNurse are equal (i.e.,
iff /. c Rooms (varPositionOwner = r A varPositionNurse = r) for Rooms =
{livingRoom, bedRoom, bathRoom, guestRoom, toilet, kitchen}). Further on, it is
stated that you can activate the doPick transition only if varOwnerPicked = false
(conversely, activate the doPick only if warOwnerPicked = true) and, when
varOwnerPicked = true, doMoveToRoom causes both varPositionOwner and
varPositionNurse to be set to the same Room. As an example of interaction
between services, consider kitchenService and pantryService. As depicted
in Figure they do not have any action in common. Though, cooking any
dish (namely, invoking doCook action on the kitchenService service) is not
possible if some ingredients are missing (i.e., if varlngredients = false). The
pantryService can buy them (indeed, doBuylngredients sets varlngredients =
true), but only after the execution of a check (doChecklngredients). The evolu-
tion of doCheckIngredients is constrained by the varlngredients domain variable:
if varIngredients = false, then the next state of pantryService is missing (and
the doBuylngredients action ezecutable), otherwise it remains in the ready state.

Such comments motivate the advantages of decoupling services and dynamic
domain as in the framework: the evolution of the system is not straightforward
from the inspection of services or dynamic domains alone. Indeed, a service rep-
resents the behavior of a real device or application plugged in the environment,
and it is distributed by vendors who do not know the actual context in which
it will be used. The same service could affect (or be affected by) the world in
different ways, according to the environment it is interacting with.

1 = (varLightsBedroom = off)
A(varPositionOwner = bedroom)
A(varDoor8 = closed)
A(varDoor4 = closed)
A(varBed = down)

¢1 = (varBreakfastReady = true)

N Cvariormet — falsey Yo = (varGuestDisturbed = false)

¢o = (varPositionOwner = livingroom)
A (varOuwnerPicked = false)
A(varTv = on)

cook
Breakfast
tl

P2
63 = (varBathtub = filled)
A(varDoor2 = closed)
A (varLightsBathroom = on)
A (varOwnerPicked = false)
A (varPositionOwner = bathroom)
A (varBathroom Temperature = warm)

true
(varBed = down)
A(varAlarmSet = true)

Yo
b0

eat
Yy = (varGuestDisturbed = false)

A (varOwnerPicked = false) Breakfast

A(varBathtub = empty) t4 A (varBathroom Temperature = warm)
A(varLightsToilet = on) ¢4 = (varBreakfastReady = true)

A (varLightsBedroom = off) A (varPositionOwner = kitchen)
A(varLightsBathroom = off) A(varLightsKitchen = on)

A (varLightsKitchen = o, A (varOwnerPicked = false)

A(varLights Livingroom
A(varPositionOuner = bedroom)
A(varDoor2 = closed) A (varDoor3 = closed)
A(varDoor4 = closed) A (varDoor5 = closed)
A(varDoor6 = closed) N (varDoor7 = closed)
A(varPositionNurse = toilet)

A(varTv = off)

A(varBathroom Temperature = cold)

0,

Fig. 3: The sample target process

Next we turn to the target process itself, shown in Figure 3] representing what
Niels wants to happen, when waking up in the morning. First, the home system
must let Niels get awaken only after the breakfast is ready: this is the aim of
the first transition, where the reachability goal is to have (varBreakfastReady =
true) A (varAlarmSet = false), while all conditions that make Niels sleep com-
fortable must be kept: (varBed = down) A (varLightsBedroom = off) A ...
Then, once the alarm rang out, we let Niels decide whether he prefers to
have a bath or to watch TV (and optionally have a bath afterwards). In both
cases, we do not want to wake up Dan (1o = (varGuestDisturbed = false)).
Niels can successively have breakfast, but we suppose that further he can go

back to the bathroom and eat a little more again how many times he wishes:
this is the rationale beneath the formulation of: ¥y = (varGuestDisturbed =
false) A (varBathroomTemperature = warm). Finally, Niels can get back to the
bed room. The transition from the eatBreakfast (t4) state to the sleep (t0) one
has no maintenance goal (i.e., ¢o = true), whereas the reachability goal is just
to reset the domain variables to their initial setup.

4 Solver

As we can see from the case study above, goal-based processes can be used to
naturally specify the behavior of complex long-running intelligent systems. In
order to apply this framework to real applications, however, we need a prac-
tical and efficient solver for such composition tasks. The solution in [9], [10]
reduces the composition problem to LTL synthesis by model checking. As a re-
sult, an efficient model checker and the approach is viable in practice only if
large computational resources are available; on typical hardware for the smart
home applications, only simple examples can be solved with that approach.

In light of the success of heuristic search in classical planning, it is interesting
to ask whether this problem can be more efficiently solved by a direct search
method. In this paper, we pursue this idea, and propose a novel solution to
the composition problem based on an AND-OR search in the space of execution
traces of incremental partial policies. Intuitively, the search keeps a partial policy
at each step, and simulates its execution, taking into account all possibilities of
the goal requests and the nondeterministic effects of the actions. If no action is
specified for some situation yet, the policy is augmented by trying all possible
actions for it. Starting from an empty policy, this process is repeated until either
a valid policy is found that works in all contingencies, or all policy extensions are
tried yet no solution is found. In this process, the nondeterministic goal requests
and action effects are handled as “AND steps,” whereas the free choice of actions
during expansion represents an “OR step.” Figure {4f shows the Prolog code of
the body of our solver.

The composition starts from an empty policy [] with the initial goal state and
initial world state Sy, and simulates (while incrementally building) its execution,
until all possible goal requests in the target process can always be achieved by
some policy C (line 2). In our implementation, we always assume that the intial
goal state is 0. To handle all the possible evolutions of the system from goal
state T and world state .S, the compose/4 ﬂpredicate first finds all goal requests
GL that originate from T, and augments the current policy Cy to obtain Cj
that handles these requests (lines 4-6). This is done by compGoals/5, which
represents the first AND step in the search cycle. It recursively processes each
goal request in the list GL by using planForGoal/8 (lines 8-11). Notice that
the policy is updated in each recursive step with the intermediate variable C' in
line 11. The predicate planForGoal/8 essentially performs conditional planning

4 According to the Prolog convention, we use the syntax <name of the predi-
cate>/<arity>.

—_ =

13:

14:
15:
16:
17:

18:
19:
20:
21:
22:

23:
24:
25:

N

% planner.pl - a generic solver for goal-based process composition.
% Usage: call compose(C) to find a realization C.
compose(C) :- initial_state(So), compose(0, So, [],C).

% compose(T, S, Co, C1) compose for goal state T'.
compose(T, S, Co,C4) :-
findall((M, G, T"), goal(T, M,G,T"),GL), |,
compGoals(T, GL, S, Co, C1).

% compGoals(T,GL, S, Co,C1) compose for all goal requests in GL.
compGoals(_,[],-,C,C).
compGoals(T, [{M,G,T")|GL], S, Co, C1) :-

planForGoal(T, M, G,T", S,[], Co, C),

compGoals(T,GL, S,C,Ch).

% planForGoal(T, M, G, T', S, H, Cy, C1)
% update policy for a specific goal.
planForGoal(-, -, -, -, S, H, _,_) :- member(S, H), !, fail.
planForGoal(_, M, _,_,S,_,_,) - \+ holds(M, S), |, fail.
planForGoal(T, _, _,T",S,_,C,C) :- member((T,T’, S, _),C), .
planForGoal(-, -, G, T, S, _, Co,C1) - holds(G, S), !,
compose(T, S, Co, C1).
planForGoal(T, M, G, T’, S, H,Cy, C1) :-

bestAct(G, A, S), next_states(S, A, SL),

tryStates(T, M, G, T", SL,[S|H], [{T, T', S, A)|Co], C1).

% tryStates(T, M,G,T’',SL, H,Co,Ch)

% compose for all progressed world states.

tryStates(_, -, _, -, [],-,C, C).

tryStates(T, M, G, T', [S|SL], H, Co, C1) :-
planForGoal(T, M, G,T", S, H, Co, C),
tryStates(T, M, G, T', SL, H,C, C1).

Fig. 4: Prolog implementation of our search-based solver.

with full observability and nondeterministic effects (lines 13-20). Lines 14 and
15 prevent the found partial policy from containing deadloops or violating the
maintenance goal. Line 16 detects visited states in achieved goals so that they
can be realized in the same way, and thus no further search is needed. Line 17
checks whether the current achievement goal has been realized, and if so, it goes
on to recursively compose for the next goal state. Finally, Lines 18-20 capture
the last case where no action is associated to the current situation, in which case
the current policy needs expansion to handle it. This is done by the OR step
of the search cycle, which proposes a best candidate action with the predicate
bestAct/3, and planning goes on for the resulting world states.

Since the actions are nondeterministic, it means that executing an action
may lead to multiple possible states, and the policy we find must work for them
all. In our algorithm, tryStates/8 handles all these states by recursing into
planForGoal/8 with updated policy for each state, which represents the second
AND step in the search cycle (lines 22-25).

Recall that the exploration of a search branch may fail in Lines 14 and 15,
due to a deadloop and violation of a maintenance goal, respectively. When either
case occurs, the program backtracks to the most recent predicate with a different
succeeding assignment, which is always bestAct/3. From there, the next best
action is proposed and tried, and so on. If all the possible actions have been
tried, yet none leads to a valid policy, the program backtracks to the next most
recent bestAct/3 instance, and the same process is performed similarly.

Notice that our algorithm is applicable to any goal-based process composition
task, as the predicates initial_state/1, holds/2, bestAct/3, next_states/3
and goal/4 behave according to the actual target goal-based process and its
underlying dynamic environment which are specified using a problem definition
language detailed below. It is not hard to see that the our algorithm strategi-
cally enumerates all valid policies, generating on-the-fly action mappings for
reachable situations only. The algorithm can be shown to be sound and complete.

Theorem 2 (Soundness and completeness). Let T be a target goal-based
process and S its underlying dynamic system. If compose(C) succeeds, then C
is a realization of T in S. Moreover, if T is realizable in S, then compose(C)
succeeds.

This algorithm can be used for solving small composition problems even
with a simple enumeration-based implementation of bestAct/3. However, as the
problem size grows, this naive implementation quickly becomes intractable, due
to the large branching factor and deep search tree. Therefore, some intelligent
ordering is needed for the succeeding bindings of bestAct/3, in order to make our
solver efficient for large composition tasks. In our implementation of the solve

5 The code of both solver and case study, as well as the experimental results, are avail-
able at the URL: http://www.dis.uniromal.it/~cdc/pubs/CoopIS2012-Code_
Tests.zip

http://www.dis.uniroma1.it/~cdc/pubs/CoopIS2012-Code_Tests.zip
http://www.dis.uniroma1.it/~cdc/pubs/CoopIS2012-Code_Tests.zip

we make use of the well-known delete-relazation heuristics [13], although other
heuristics in classical planning could be adapted as well.

The delete-relaxation heuristics for a state is computed by solving a relaxed
goal-reachability problem where all negative conditions and delete effects are
eliminated from the original planning problem. It can be shown that the relaxed
problem can always be solved (or proven unsolvable) in polynomial time. If a
relaxed plan is found, then the number of actions in the plan is used as a heuristic
estimation for the cost of achieving the goal from the current state; otherwise
it is guaranteed that no plan exists to achieve the goal from the current state,
so it is safe to prune this search branch and backtrack to other alternatives. In
our implementation, when choosing the best action, bestAct/3 first sorts all
legal actions according to the optimistic goal distance of their successor states
using the delete-relaxation heuristic&ﬂ and unifies with each of the actions in
ascending order when the predicate is (re-)evaluated. Notice that the heuristics
only changes the ordering of branch exploration in the search tree, with possible
sound pruning for deadends, and does not affect the correctness guarantee of our
algorithm.

For our solver, a problem specification is a regular Prolog source file which
contains the following components:

— the instruction to load the solver :- include(planner).

— a list of primitive fluents, each fluent F specified by prim_fluent (F) .

— a list of primitive actions, each action A specified by prim_action(A).

— action preconditions, one for each action A, by poss(A,P). where A is the
action, and P is its precondition formula.

— conditional effects of actions of the form causes(A,F,V,C). meaning that
fluent F will take value V if action A is executed in a state where condition C
holds.

— initial assignment of fluents of the form init(F,V). where F is the fluent
and V is its initial value.

— the process by a list of goal transitions of the form goal (T,M,G,T’). where
T and T’ are the source and target goal states of the transition, M is the
maintanence goal, and G the achievement goal. By default, the initial goal
state is always 0.

5 Experiments on the Case Study

In order to test the efficiency of the solution presented in Sectiond] we conducted
some experiments based on the case study of Section

Given the dynamic system S and the target process T described in Section
we considered both 7 and its restrictions 7jcy1,... 51, shown in Figure [, where
states and goals refer to the ones depicted in Figure

5 In our experiments, we also take into account the conjunction of the maintenance
goals of the next goal state, so that states violating future maintenance goals are
pruned earlier, leading to further gain in efficiency.

Y1 Py u’?
b1 b1 ¢1
*0/ i \/® >
¥o
]
© d!o 1/)4

(b) T2 (©) Ts

P2

¥y Y1 b2 vy
1 ve P1 w2 P1
3
Va4
K ¢4
O, o
0 ¢0

(e) Ts

Fig. 5: Test target processes

Hence, for each 7;, we run the solver 10 times in a SWI-Prolog 5.10.2 envi-
ronment, on top of an Intel Core Duo 1.66 GHz (2 GB DDR2 RAM, Ubuntu
10.04) laptop.

Trans.’s Time [sec] Std. Dev. |Coeff. of Var. [%o]
Mean (M)|min (m)|Max (M)|(o) (c/ M)
T |2 1.166 1.15 1.19|0.011 9.219
T2 |3 60.688 60.54 60.82(0.094 1.545
Ts |4 30.448 30.39 30.61|0.088 2.896
Ta |5 83.497| 83.26 83.88(0.195 2.331
Ts |7 180.894| 180.29 182.05/0.523 2.889
T I8 238.841| 238.38 239.19]0.291 1.219

Fig. 6: Test results

We gathered the results listed in Figure [6] The solution for the complete
problem was found in about 239 seconds. Performances for simpler formulations
followed an almost linear trend with respect to the input dimension, measured in
terms of number of transitions in the target process (see Figure . Figure
|Z| shows that such results are quite reliable, since the Coefficient of Variation
(i.e., the ratio between the Standard Deviation ¢ and the Mean Value M) is
fair little (ca. 2%o, excluding the first value, which is not significant, being the
solution for that instance computed in too few milliseconds) and keeps constant

" There, the base for the Logarithm of the Mean Time M is the least M value

300 5 40.000
T 35.000
250 =
£ 30.000
200 S 25000
. 150 & 20.000
(8] O
2 Log Mean
[}
£ 100 § 15.000 Time
g M Mean time O 10-000 == Coefficient
= 50 ' 5.000 of Variation
g | 3 (%)
5] 0 — g 0.000
= T T, T, T, T, T ; T, T, T, T, T, T
£
Experiment type *; Experiment type
©
)
=
D
o
-
(a) Tests results (b) Coeficient of variation

as the M value grows. The performances are notable, especially if compared to
the previous tests. Indeed, we ran a solver based on model checking techniques,
built on top of TLV (version 4.18.4, see [20]), on the laptop mentioned above.
Notice that such a solver requires the usage of high computational resources,
which are not affordable in a smart home scenario. Indeed, on our laptop it took
more than 24 hours to terminate, whereas the solver presented in this paper is
returned a solution within less than 4 minutes.

6 Conclusions

In this paper we have proposed an approach for composing goal-based processes
on the basis of available services, which stems from the real needs of a smart
home scenario, in which available services are based on sensors, actuators and
equipments of the home. The approach and the solver we develop turned out
to be effective in practice as the case study and the experiments demonstrate.
Future work include the investigation of the case of multiple users (e.g., all
inhabitants of the home) asking for different simultaneous goal-based processes.
Preliminary ideas can be found in [21T0].

Acknowledgements. This work has been partly supported by the EU projects
SM4All (FP7-224332), ACSI (FP7-257593) and Greener Buildings (FP7-
258888), and by the Italian AriSLA project Brindisys. Yuxiao Hu would like
to thank his PhD supervisor Hector Levesque for useful discussions and finan-
cial support.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-aware Web

Service Compositions. In: ICSOC 2007.

Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning.
In: ICSOC 2008.

ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composi-
tion. Annals of Mathematics, Computing and Teleinformatics 1(5), 1-10 (2007).
Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
Service Composition based on Behavioural Descriptions. International Journal of
Cooperative Information Systems 14(4), 333-376 (2005).

. Blythe, J., Ambite, J. (eds.): Proc. of ICAPS 2004 Workshop on Planning and

Scheduling for Web and Grid Services (2004).

Cardose, J., Sheth, A.: Introduction to Semantic Web Services and Web Process
Composition. In: SWSWPC 2004.

Catarci, T., Di Ciccio, C., Forte, V., lacomussi, E., Mecella, M., Santucci, G., Tino,
G.: Service Composition and Advanced User Interfaces in the Home of Tomorrow:
The SM4All Approach. In: AMBI-SYS 2011.

Curbera, F.; Sheth, A., Verma, K.: Services Oriented Architectures and Semantic
Web Processes. In: ICWS 2004.

De Giacomo, G., Patrizi, F., Sardina, S.: Agent Programming via Planning Pro-
grams. In: AAMAS 2010.

De Giacomo, G., Felli, P., Patrizi, F., Sardina, S.: Two-player Game Structures for
Generalized Planning and Agent Composition. In: AAAT 2010.

Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., lacomussi, E., Rasch, K., Quer-
zoni, L., Santucci, G., Tino, G.: The Homes of Tomorrow: Service Composition
and Advanced User Interfaces. ICST Trans. Ambient Systems 11(10-12) (2011).
Hassen, R.R., Nourine, L., Toumani, F.: Protocol-based Web Service Composition.
In: ICSOC 2008.

Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation through
Heuristic Search. Journal of Artificial Intelligence Research 14, 253-302 (2001).
Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation,
Composition and Simulation of Services at Home. In: ICSOC 2010.

Klein, A., Ishikawa, F., Honiden, S.: Efficient QoS-aware Service Composition with
a Probabilistic Service Selection Policy. In: ICSOC 2010.

Mecllraith, S., Son, T.: Adapting GOLOG for Composition of Semantic Web Ser-
vices. In: KR 2002.

Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web Services on the
Semantic Web. Very Large Data Base Journal 12(4), 333351 (2003)

De Paoli, F, Lulli, G., Maurino, A.: Design of Quality-based Composite Web Ser-
vices. In: ICSOC 2006.

Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated Composition of Web
Services by Planning at the Knowledge Level. In: IJCAT 2005.

Pnueli, A., Shahar, E.: The TLV System and its Applications. Tech. rep., Depart-
ment of Computer Science, Weizmann Institute, Rehovot, Israel (1996).

Sardifia, S., De Giacomo, G.: Realizing Multiple Autonomous Agents through
Scheduling of Shared Devices. In: ICAPS 2008.

Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.:
QoS-based Optimization of Service Compositions for Complex Workflows. In:
ICSOC 2010.

23.

24.

25.

26.

Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive Service
Composition based on Reinforcement Learning. In: ICSOC 2010.

Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web
Services Composition using SHOP2. In: ISWC 2003.

Yang, J., Papazoglou, M.: Service Components for Managing the Life-cycle of Ser-
vice Compositions. Information Systems 29(2), 97-125 (2004).

Zhao, H., Doshi, P.: A Hierarchical Framework for Composing Nested Web Pro-
cesses. In: ICSOC 2006.

	Goal-based Composition of Stateful Services for Smart Homes
	Introduction
	Framework
	Case Study
	Solver
	Experiments on the Case Study
	Conclusions

